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Abstract

The purpose of this article is to present some local fixed point results for generalized contractions on (ordered)
complete gauge space. As a consequence, a continuation theorem is also given. Our theorems generalize
and extend some recent results in the literature.
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1. Introduction

Throughout this paper E will denote a nonempty set E endowed with a separating gauge structure
D = {dα}α∈Λ, where Λ is a directed set (see [5] for definitions). Let N := {0, 1, 2, · · · } and N∗ := N \ {0}.
We also denote by R the set of all real numbers and by R+ := [0,+∞).

A sequence (xn) of elements in E is said to be Cauchy if for every ε > 0 and α ∈ Λ, there is an N with
dα(xn, xn+p) ≤ ε for all n ≥ N and p ∈ N∗. The sequence (xn) is called convergent if there exists an x0 ∈ E
such that for every ε > 0 and α ∈ Λ, there is an N ∈ N∗ with dα(x0, xn) ≤ ε, for all n ≥ N .

A gauge space E is called complete if any Cauchy sequence is convergent. A subset of X is said to be
closed if it contains the limit of any convergent sequence of its elements. See also J. Dugundji [5] for other
definitions and details.

If f : E → E is an operator, then x ∈ E is called fixed point for f if and only if x = f(x). The set
Ff := {x ∈ E|x = f(x)} denotes the fixed point set of f .

On the other hand, Ran and Reurings [19] proved the following Banach-Caccioppoli type principle in
ordered metric spaces.
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Theorem 1.1 (Ran and Reurings [19]) Let X be a partially ordered set such that every pair x, y ∈ X
has a lower and an upper bound. Let d be a metric on X such that the metric space (X, d) is complete. Let
f : X → X be a continuous and monotone (i.e., either decreasing or increasing) operator. Suppose that the
following two assertions hold:

1) there exists a ∈]0, 1[ such that d(f(x), f(y)) ≤ a · d(x, y), for each x, y ∈ X with x ≥ y
2) there exists x0 ∈ X such that x0 ≤ f(x0) or x0 ≥ f(x0).

Then f has an unique fixed point x∗ ∈ X, i. e. f(x∗) = x∗, and for each x ∈ X the sequence (fn(x))n∈N
of successive approximations of f starting from x converges to x∗ ∈ X.

Since then, several authors considered the problem of existence (and uniqueness) of a fixed point for
contraction-type operators on partially ordered sets.

In 2005, J.J. Nieto and R. Rodŕıguez-López in [12] proved a modified variant of Theorem 1.1, by
removing the continuity of f . The case of decreasing operators is treated in J.J. Nieto and R. Rodŕıguez-
López [14]. It is also worth mentioning that A. Petruşel, I.A. Rus in [16] and J.J. Nieto, R.L. Pouso, R.
Rodŕıguez-López, improved part of the above mentioned results working in the setting of abstract L-spaces
in the sense of Fréchet. D. O’Regan and A. Petruşel in [15] extended these theoretical results to the case of
nonlinear contractions and gave some interesting applications to integral equations. Moreover, since then a
lot of different generalizations and extensions of these results are proved in the literature (see [1], [2], [9],
[10], [11], [22], etc.).

The aim of this paper is to present some local fixed point theorems for generalized contractions on
ordered complete gauge space. As a consequence, a continuation theorem is also given. Our theorems
generalize some of the above mentioned theorems, as well as, some other ones in the recent literature.

2. Preliminaries

Let X be a nonempty set and f : X → X be an operator. Then,

f0 := 1X , f
1 := f, . . . , fn+1 = f ◦ fn, n ∈ N

denote the iterate operators of f . Let X be a nonempty set and let s(X) := {(xn)n∈N |xn ∈ X, n ∈ N}. Let

c(X) ⊂ s(X) a subset of s(X) and Lim : c(X)→ X an operator. By definition the triple (X, c(X), Lim) is
called an L-space (Fréchet [6]; see also [21]) if the following conditions are satisfied:

(i) If xn = x, for all n ∈ N , then (xn)n∈N ∈ c(X) and Lim(xn)n∈N = x.
(ii) If (xn)n∈N ∈ c(X) and Lim(xn)n∈N = x, then for all subsequences, (xni)i∈N , of (xn)n∈N we have

that (xni)i∈N ∈ c(X) and Lim(xni)i∈N = x.
By definition, an element of c(X) is a convergent sequence, x := Lim(xn)n∈N is the limit of this sequence

and we also write xn → x as n→ +∞.
In what follow we denote an L-space by (X,→).
In this setting, if U ⊂ X ×X, then an operator f : X → X is called orbitally U -continuous (see [13]) if:

[x ∈ X and fn(i)(x)→ a ∈ X, as i→ +∞ and (fn(i)(x), a) ∈ U for any i ∈ N] imply [fn(i)+1(x)→ f(a), as
i→ +∞]. In particular, if U = X ×X, then f is called orbitally continuous.

Let (X,≤) be a partially ordered set, i.e., X is a nonempty set and ≤ is a reflexive, transitive and
anti-symmetric relation on X. Denote

X≤ := {(x, y) ∈ X ×X|x ≤ y or y ≤ x}.

In the same setting, consider f : X → X. Then,

(LF )f := {x ∈ X|x ≤ f(x)}

is the lower fixed point set of f, while

(UF )f := {x ∈ X|x ≥ f(x)}
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is the upper fixed point set of f.
If f : X → X and g : Y → Y , then the cartesian product of f and g is denoted by f × g and it is defined

in the following way:
f × g : X × Y → X × Y, (f × g)(x, y) := (f(x), g(y)).

Definition 2.1 Let X be a nonempty set. By definition (X,→,≤) is an ordered L-space if and only if:
(i) (X,→) is an L-space;
(ii) (X,≤) is a partially ordered set;
(iii) (xn)n∈N → x, (yn)n∈N → y and xn ≤ yn, for each n ∈ N ⇒ x ≤ y.

If E := (E,D) is a gauge space, then the convergence structure is given by the family of gauges D =
{dα}α∈Λ. Hence, (E,D,≤) is an ordered L-space and it will be called an ordered gauge space, see also [17],
[18], [4].

If E := (E,D) is a gauge structure, then for r := {rα}α∈A ∈ (0,∞)A and x0 ∈ E, we will denote by
Bd(x0, r) the closure of Bd(x0, r) in (E,D), where

Bd(x0, r) := {x ∈ E : dα(x0, x) < rα, for all α ∈ A}.

Recall that ϕ : R+ → R+ is said to be a comparison function if it is increasing and ϕk(t) → 0, as
k → +∞. As a consequence, we also have ϕ(t) < t, for each t > 0, ϕ(0) = 0 and ϕ is right continuous at 0.
For example, ϕ(t) = at (where a ∈ [0, 1[), ϕ(t) = t

1+t and ϕ(t) = ln(1 + t), t ∈ R+ are comparison functions.

3. Fixed point results

Our first main result is the following existence, uniqueness and approximation fixed point theorem.

Theorem 3.3 Let (E,D,≤) be an ordered complete gauge space, x0 ∈ E and r := {rα}α∈A ∈ (0,∞)A.
Let f : B := Bd(x0, r)→ E be an operator. Suppose that:

(i) B≤ ∈ I(f × f);
(ii) (x, y) ∈ B≤ and (y, z) ∈ B≤ imply (x, z) ∈ B≤;
(iii) (x0, f(x0)) ∈ B≤;
(iv) f is orbitally continuous;
(v) there exists a comparison function ϕ : R+ → R+ such that, for each α ∈ Λ we have

dα(f(x), f(y)) ≤ ϕ(dα(x, y)), for each (x, y) ∈ B≤.

Then, f has at least one fixed point x∗ ∈ B and, for each x ∈ B≤, the sequence (fn(x))n∈N converges to
x∗. Moreover, the fixed point is unique in B≤.

Proof. Let x0 ∈ E be such that (x0, f(x0)) ∈ B≤. Suppose first that x0 6= f(x0). From (i) we obtain

(f(x0), f2(x0)), (f2(x0), f3(x0)), · · · , (fn(x0), fn+1(x0)), · · · ∈ B≤.

From (v), by induction, we get, for each α ∈ Λ, that

dα(fn(x0), fn+1(x0)) ≤ ϕn(dα(x0, f(x0)), for each n ∈ N.

Since ϕn(dα(x0, f(x0)) → 0 as n → +∞, for an arbitrary ε > 0 we can choose N ∈ N∗ such that
dα(fn(x0), fn+1(x0)) < ε − ϕ(ε), for each n ≥ N . Since (fn(x0), fn+1(x0)) ∈ B≤ for all n ∈ N, we
have that:

dα(fn(x0), fn+2(x0)) ≤ dα(fn(x0), fn+1(x0)) + dα(fn+1(x0), fn+2(x0))
< ε− ϕ(ε) + ϕ(dα(fn(x0), fn+1(x0)) ≤ ε, for all n ≥ N .

Now since (fn(x0), fn+2(x0)) ∈ B≤ (see (iii)) we have for any n ≥ N that
dα(fn(x0), fn+3(x0)) ≤ dα(fn(x0), fn+1(x0)) + dα(fn+1(x0), fn+3(x0))
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< ε− ϕ(ε) + ϕ(dα(fn(x0), fn+2(x0)) ≤ ε.
By induction, for each α ∈ Λ, we have

dα(fn(x0), fn+k(x0)) < ε, for any k ∈ N∗ and n ≥ N .
Hence (fn(x0))n∈N is a Cauchy sequence in (B,D). From the completeness of the gauge space (E,D) we
have (fn(x0))n∈N → x∗ ∈ B as n→ +∞.

Let x ∈ E be such that (x, x0) ∈ B≤ then (fn(x), fn(x0)) ∈ B≤ and thus, for each α ∈ Λ, we have
dα(fn(x), fn(x0)) ≤ ϕn(dα(x, x0)), for each n ∈ N. Letting n → +∞ we obtain that (fn(x))n∈N → x∗. By
the orbital continuity of f we get that x∗ ∈ Ff . Thus x∗ = f(x∗).

If f(x0) = x0, then x0 plays the role of x∗. �

Remark 3.4 Equivalent representation of condition (iii) are:
(iv)’ There exists x0 ∈ E such that x0 ≤ f(x0) or x0 ≥ f(x0)
(iv)” (LF )f

⋃
(UF )f 6= ∅.

Remark 3.5 Condition (i) is implied by each of the following assertions:
(ii)’ f : (B,≤)→ (E,≤) is increasing
(ii)” f : (B,≤)→ (E,≤) is decreasing.

In a similar way to Theorem 3.3, we can prove the following result, which is useful for applications (see
[17]).

Theorem 3.6 Let (E,D,≤) be an ordered complete gauge space, x0 ∈ E and r := {rα}α∈A ∈ (0,∞)A.
Let f : B := Bd(x0, r)→ E be an operator. We suppose that:

(i) f : (B,≤)→ (E,≤) is increasing;
(ii) x0 ≤ f(x0);
(iii)A f is orbitally continuous
or
(iii)B if an increasing sequence (xn)n∈N converges to x in B, then xn ≤ x for all n ∈ N;
(iv) there exists a comparison function ϕ : R+ → R+ such that

dα(f(x), f(y)) ≤ ϕ(dα(x, y)), for each (x, y) ∈ B with x ≤ y and for all α ∈ Λ;

(v) dα(x0, f(x0)) < r − ϕ(r), for each α ∈ Λ;
Then f has at least one fixed point in B. Moreover, the fixed point is unique in the set B≤ of comparable

elements from B.

Proof. Since f : (B,≤) → (E,≤) is increasing and x0 ≤ f(x0) we immediately have x0 ≤ f(x0) ≤
f2(x0) ≤ · · · fn(x0) ≤ · · · . Notice that, by (v), we have that f(x0) ∈ B. Thus, by (v) and (iv) we get that,
for each α ∈ Λ, we have dα(f2(x0), f(x0)) ≤ ϕ(dα(f(x0), x0)) < ϕ(r). Hence, for each α ∈ Λ, we obtain
dα(f2(x0), x0) ≤ dα(f2(x0), f(x0)) + dα(f(x0), x0) < ϕ(r) + r − ϕ(r) = r, proving that f2(x0) ∈ B. By
induction, we get that fn(x0) ∈ B, for each n ∈ {1, 2, · · · }.

Now using (iv), we obtain dα(fn(x0), fn+1(x0)) ≤ ϕn(dα(x0, f(x0)), for each n ∈ N. By a similar
approach as in the proof of Theorem 3.3 we obtain:

dα(fn(x0), fn+k(x0)) < ε, for any k ∈ N∗ and n ≥ N .
Hence (fn(x0))n∈N is a Cauchy sequence in E. From the completeness of the gauge space we have that
(fn(x0))n∈N → x∗ ∈ B as n→ +∞.

By the orbital continuity of the operator f we get that x∗ ∈ Ff . If (iii)B takes place, then, since
(fn(x0))n∈N → x∗, given any ε > 0 there existsNε ∈ N∗ such that for each n ≥ Nε we have dα(fn(x0), x∗) < ε.
On the other hand, for each n ≥ Nε, since fn(x0) ≤ x∗, we have, for each α ∈ Λ, that:

dα(x∗, f(x∗)) ≤ dα(x∗, fn+1(x0)) + dα(f(fn(x0)), f(x∗)) ≤ dα(x∗, fn+1(x0)) + ϕ(dα(fn(x0), x∗)) < 2ε.
Thus x∗ ∈ Ff .

The uniqueness of the fixed point follows by contradiction. Suppose there exists y∗ ∈ Ff , with x∗ 6= y∗

and (x∗, y∗) ∈ B≤. Then we have 0 < dα(y∗, x∗) = dα(fn(y∗), fn(x∗)) ≤ ϕn(dα(y∗, x∗)) → 0 as n → +∞,
which is a contradiction. Hence x∗ = y∗. �
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Remark 3.7 A kind of dual result also holds, with the following modified assumptions:
(ii)’ x0 ≥ f(x0);
(iii)′B if a decreasing sequence (xn)n∈N converges to x in B, then xn ≥ x for all n ∈ N.

Remark 3.8 It is worth to mention that could be of interest to extend the above technique for other
metrical fixed point theorems, see [3], [8], etc. It is also an open problem to present a fixed point theory (in
the sense of [20]) for contractions and generalized contractions in ordered complete gauge spaces.

As a consequence of the above results a continuation result can be given now. For a nice survey on this
topic see Frigon [7].

Theorem 3.9 Let (E,D) be a complete gauge space, where D := {dα}α∈Λ is a gauge structure on E. Let
U be an open subset of E and G : U × [0, 1]→ E be an operator. Assume that the following assumptions are
satisfied:

(i) x 6= G(x, t), for each x ∈ ∂U (the boundary of U) and each t ∈ [0, 1];

(ii) there exists a := {aα}α∈A ∈]0,+∞[Λ such that aα < 1 and

dα(G(x, ·), G(y, ·)) ≤ aα · dα(x, y), for each x, y ∈ U≤ and for each α ∈ Λ.

(iii) there exists a continuous function φ : [0, 1]→ R such that

dα(G(x, t), G(x, s)) ≤ |φ(t)− φ(s)|, for all t, s ∈ [0, 1] and each x ∈ U ;

(iv) G : U× [0, 1]→ E is continuous;

(v) G(·, t) : U → E is increasing.

Then G(·, 0) has a fixed point if and only if G(·, 1) has a fixed point.

Proof. Suppose that z ∈ FG(·,0). From (i) we have that z ∈ U . Consider the set

S := {(t, x) ∈ [0, 1]× U : x = G(x, t)}.

Since (0, z) ∈ S, we have that S 6= ∅. We introduce a partial order defined on S by the formula:

(t, x) ≤ (s, y) if and only if t ≤ s and dα(x, y) ≤ 2

1− aα
[φ(s)− φ(t)].

Let M be a totally ordered subset of S, t∗ := sup{t : (t, x) ∈M} and let (tn, xn)n∈N∗ ⊂M be a sequence
such that (tn, xn) ≤ (tn+1, xn+1) for each n ∈ N∗ and let tn → t∗ as n→∞. Then

dα(xm, xn) ≤ 2

1− aα
[φ(tm)− φ(tn)], for each m,n ∈ N∗, m > n.

Letting m,n→ +∞ we obtain that dα(xm, xn)→ 0, proving that (xn)n∈N∗ is Cauchy. Denote by x∗ ∈ E
its limit. Since xn = G(xn, tn), n ∈ N∗ and using the fact that G is continuous, we get that x∗ = G(x∗, t∗).
From (i) we note that x∗ ∈ U . Thus (t∗, x∗) ∈ S.

From the fact that M is totally ordered we have that (t, x) ≤ (t∗, x∗), for each (t, x) ∈M . Thus (t∗, x∗)
is an upper bound of M . We can apply Zorn’s Lemma, so S admits a maximal element (t0, x0) ∈ S. Notice
here that G(x0, t) ≤ G(x0, t0) = x0, for each t ∈ [0, 1]. We now prove that t0 = 1.

Suppose that t0 < 1. Let r = {rα}α∈A ∈ (0,∞)A and t ∈]t0, 1] be such that Bd(x0, rα) ⊂ U and
rα := 2

1−aα [φ(t)− φ(t0)] for every α ∈ A. Then for each α ∈ A we have:

dα(x0, G(x0, t)) ≤ dα(x0, G(x0, t0)) + dα(G(x0, t0), G(x0, t))

≤ φ(t)− φ(t0) =
rα(1− aα)

2
< (1− aα)rα.
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Since Bd(x0, rα) ⊂ U , the operator G(·, t) : Bd(x0, r)→ E satisfies, for all t ∈ [0, 1], the assumptions of the
dual variant of Theorem 3.6 (with ϕα(t) := aαt, for each t ∈ [0, 1]). Hence there exists x ∈ Bd(x0, rα) such
that x = G(x, t). Thus (t, x) ∈ S. Since we have that

dα(x0, x) ≤ rα =
2

1− aα
[φ(t)− φ(t0)],

thus we have that
(t0, x0) < (t, x),

which contradicts the maximality of (t0, x0). Thus t0 = 1 and the proof is complete. �
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