Research Article

Journal of Nonlinear Science and Applications

Print: ISSN 2008-1898 Online: ISSN 2008-1901

Fixed points for non-self operators in gauge spaces

Tania Lazăr^a, Gabriela Petrușel^{b,*}

^a Department of Mathematics, Technical University of Cluj-Napoca, Memorandumului Street no. 28, 400114, Cluj-Napoca, Romania. ^b Department of Business, Babeș-Bolyai University, Horia Street no. 7, 400174 Cluj-Napoca, Romania.

Dedicated to the memory of Professor Viorel Radu

Communicated by Professor Dorel Mihet

Abstract

The purpose of this article is to present some local fixed point results for generalized contractions on (ordered) complete gauge space. As a consequence, a continuation theorem is also given. Our theorems generalize and extend some recent results in the literature.

Keywords: gauge space, generalized contraction, fixed point, ordered gauge space, continuation theorem. 2010 MSC: Primary 47H10, Secondary 54H25.

1. Introduction

Throughout this paper \mathbb{E} will denote a nonempty set E endowed with a separating gauge structure $\mathcal{D} = \{d_{\alpha}\}_{{\alpha} \in \Lambda}$, where Λ is a directed set (see [5] for definitions). Let $\mathbb{N} := \{0, 1, 2, \dots\}$ and $\mathbb{N}^* := \mathbb{N} \setminus \{0\}$. We also denote by \mathbb{R} the set of all real numbers and by $\mathbb{R}_+ := [0, +\infty)$.

A sequence (x_n) of elements in \mathbb{E} is said to be Cauchy if for every $\varepsilon > 0$ and $\alpha \in \Lambda$, there is an N with $d_{\alpha}(x_n, x_{n+p}) \leq \varepsilon$ for all $n \geq N$ and $p \in \mathbb{N}^*$. The sequence (x_n) is called convergent if there exists an $x_0 \in \mathbb{E}$ such that for every $\varepsilon > 0$ and $\alpha \in \Lambda$, there is an $N \in \mathbb{N}^*$ with $d_{\alpha}(x_0, x_n) \leq \varepsilon$, for all $n \geq N$.

A gauge space \mathbb{E} is called complete if any Cauchy sequence is convergent. A subset of X is said to be closed if it contains the limit of any convergent sequence of its elements. See also J. Dugundji [5] for other definitions and details.

If $f: E \to E$ is an operator, then $x \in E$ is called fixed point for f if and only if x = f(x). The set $F_f := \{x \in E | x = f(x)\}$ denotes the fixed point set of f.

On the other hand, Ran and Reurings [19] proved the following Banach-Caccioppoli type principle in ordered metric spaces.

Email addresses: tanialazar@yahoo.com (Tania Lazăr), gabi.petrusel@tbs.ubbcluj.ro (Gabriela Petrușel)

^{*}Corresponding author

Theorem 1.1 (Ran and Reurings [19]) Let X be a partially ordered set such that every pair $x, y \in X$ has a lower and an upper bound. Let d be a metric on X such that the metric space (X, d) is complete. Let $f: X \to X$ be a continuous and monotone (i.e., either decreasing or increasing) operator. Suppose that the following two assertions hold:

- 1) there exists $a \in]0,1[$ such that $d(f(x),f(y)) \leq a \cdot d(x,y),$ for each $x,y \in X$ with $x \geq y$
- 2) there exists $x_0 \in X$ such that $x_0 \leq f(x_0)$ or $x_0 \geq f(x_0)$.

Then f has an unique fixed point $x^* \in X$, i. e. $f(x^*) = x^*$, and for each $x \in X$ the sequence $(f^n(x))_{n \in \mathbb{N}}$ of successive approximations of f starting from x converges to $x^* \in X$.

Since then, several authors considered the problem of existence (and uniqueness) of a fixed point for contraction-type operators on partially ordered sets.

In 2005, J.J. Nieto and R. Rodríguez-López in [12] proved a modified variant of Theorem 1.1, by removing the continuity of f. The case of decreasing operators is treated in J.J. Nieto and R. Rodríguez-López [14]. It is also worth mentioning that A. Petruşel, I.A. Rus in [16] and J.J. Nieto, R.L. Pouso, R. Rodríguez-López, improved part of the above mentioned results working in the setting of abstract L-spaces in the sense of Fréchet. D. O'Regan and A. Petruşel in [15] extended these theoretical results to the case of nonlinear contractions and gave some interesting applications to integral equations. Moreover, since then a lot of different generalizations and extensions of these results are proved in the literature (see [1], [2], [9], [10], [11], [22], etc.).

The aim of this paper is to present some local fixed point theorems for generalized contractions on ordered complete gauge space. As a consequence, a continuation theorem is also given. Our theorems generalize some of the above mentioned theorems, as well as, some other ones in the recent literature.

2. Preliminaries

Let X be a nonempty set and $f: X \to X$ be an operator. Then,

$$f^0 := 1_X, \ f^1 := f, \dots, f^{n+1} = f \circ f^n, \ n \in \mathbb{N}$$

denote the iterate operators of f. Let X be a nonempty set and let $s(X) := \{(x_n)_{n \in N} | x_n \in X, n \in N\}$. Let $c(X) \subset s(X)$ a subset of s(X) and $Lim : c(X) \to X$ an operator. By definition the triple (X, c(X), Lim) is called an L-space (Fréchet [6]; see also [21]) if the following conditions are satisfied:

- (i) If $x_n = x$, for all $n \in N$, then $(x_n)_{n \in N} \in c(X)$ and $Lim(x_n)_{n \in N} = x$.
- (ii) If $(x_n)_{n\in\mathbb{N}}\in c(X)$ and $Lim(x_n)_{n\in\mathbb{N}}=x$, then for all subsequences, $(x_{n_i})_{i\in\mathbb{N}}$, of $(x_n)_{n\in\mathbb{N}}$ we have that $(x_{n_i})_{i\in\mathbb{N}}\in c(X)$ and $Lim(x_{n_i})_{i\in\mathbb{N}}=x$.

By definition, an element of c(X) is a convergent sequence, $x := Lim(x_n)_{n \in N}$ is the limit of this sequence and we also write $x_n \to x$ as $n \to +\infty$.

In what follow we denote an L-space by (X, \rightarrow) .

In this setting, if $U \subset X \times X$, then an operator $f: X \to X$ is called orbitally U-continuous (see [13]) if: $[x \in X \text{ and } f^{n(i)}(x) \to a \in X, \text{ as } i \to +\infty \text{ and } (f^{n(i)}(x), a) \in U \text{ for any } i \in \mathbb{N}] \text{ imply } [f^{n(i)+1}(x) \to f(a), \text{ as } i \to +\infty].$ In particular, if $U = X \times X$, then f is called orbitally continuous.

Let (X, \leq) be a partially ordered set, i.e., X is a nonempty set and \leq is a reflexive, transitive and anti-symmetric relation on X. Denote

$$X < := \{(x, y) \in X \times X | x \le y \text{ or } y \le x\}.$$

In the same setting, consider $f: X \to X$. Then,

$$(LF)_f := \{x \in X | x < f(x)\}$$

is the lower fixed point set of f, while

$$(UF)_f := \{x \in X | x \ge f(x)\}$$

is the upper fixed point set of f.

If $f: X \to X$ and $g: Y \to Y$, then the cartesian product of f and g is denoted by $f \times g$ and it is defined in the following way:

$$f\times g:X\times Y\to X\times Y, (f\times g)(x,y):=(f(x),g(y)).$$

Definition 2.1 Let X be a nonempty set. By definition (X, \to, \leq) is an ordered L-space if and only if:

- (i) (X, \rightarrow) is an L-space;
- (ii) (X, \leq) is a partially ordered set;
- (iii) $(x_n)_{n\in\mathbb{N}} \to x$, $(y_n)_{n\in\mathbb{N}} \to y$ and $x_n \leq y_n$, for each $n \in \mathbb{N} \Rightarrow x \leq y$.

If $\mathbb{E} := (E, \mathcal{D})$ is a gauge space, then the convergence structure is given by the family of gauges $\mathcal{D} = \{d_{\alpha}\}_{{\alpha} \in \Lambda}$. Hence, (E, \mathcal{D}, \leq) is an ordered L-space and it will be called an ordered gauge space, see also [17], [18], [4].

If $\mathbb{E} := (E, \mathcal{D})$ is a gauge structure, then for $r := \{r_{\alpha}\}_{{\alpha} \in A} \in (0, \infty)^A$ and $x_0 \in E$, we will denote by $\overline{B}_d(x_0, r)$ the closure of $B_d(x_0, r)$ in $(\mathbb{E}, \mathcal{D})$, where

$$B_d(x_0, r) := \{ x \in \mathbb{E} : d_\alpha(x_0, x) < r_\alpha, \text{ for all } \alpha \in A \}.$$

Recall that $\varphi: \mathbb{R}_+ \to \mathbb{R}_+$ is said to be a comparison function if it is increasing and $\varphi^k(t) \to 0$, as $k \to +\infty$. As a consequence, we also have $\varphi(t) < t$, for each t > 0, $\varphi(0) = 0$ and φ is right continuous at 0. For example, $\varphi(t) = at$ (where $a \in [0,1[), \varphi(t) = \frac{t}{1+t}$ and $\varphi(t) = \ln(1+t)$, $t \in \mathbb{R}_+$ are comparison functions.

3. Fixed point results

Our first main result is the following existence, uniqueness and approximation fixed point theorem.

Theorem 3.3 Let (E, \mathcal{D}, \leq) be an ordered complete gauge space, $x_0 \in E$ and $r := \{r_\alpha\}_{\alpha \in A} \in (0, \infty)^A$. Let $f : \overline{B} := \overline{B}_d(x_0, r) \to E$ be an operator. Suppose that:

- (i) $B < \in I(f \times f)$;
- $(ii) \ (x,y) \in \overline{B}_{\leq} \ and \ (y,z) \in \overline{B}_{\leq} \ imply \ (x,z) \in \overline{B}_{\leq};$
- (iii) $(x_0, f(x_0)) \in \overline{B}_{<};$
- (iv) f is orbitally continuous;
- (v) there exists a comparison function $\varphi: \mathbb{R}_+ \to \mathbb{R}_+$ such that, for each $\alpha \in \Lambda$ we have

$$d_{\alpha}(f(x), f(y)) \leq \varphi(d_{\alpha}(x, y)), \text{ for each } (x, y) \in \overline{B}_{\leq}.$$

Then, f has at least one fixed point $x^* \in \overline{B}$ and, for each $x \in \overline{B}_{\leq}$, the sequence $(f^n(x))_{n \in \mathbb{N}}$ converges to x^* . Moreover, the fixed point is unique in \overline{B}_{\leq} .

Proof. Let $x_0 \in E$ be such that $(x_0, f(x_0)) \in \overline{B}_{<}$. Suppose first that $x_0 \neq f(x_0)$. From (i) we obtain

$$(f(x_0), f^2(x_0)), (f^2(x_0), f^3(x_0)), \cdots, (f^n(x_0), f^{n+1}(x_0)), \cdots \in \overline{B}_{\leq}.$$

From (v), by induction, we get, for each $\alpha \in \Lambda$, that

$$d_{\alpha}(f^n(x_0), f^{n+1}(x_0)) \le \varphi^n(d_{\alpha}(x_0, f(x_0))), \text{ for each } n \in \mathbb{N}.$$

Since $\varphi^n(d_\alpha(x_0, f(x_0)) \to 0$ as $n \to +\infty$, for an arbitrary $\varepsilon > 0$ we can choose $N \in \mathbb{N}^*$ such that $d_\alpha(f^n(x_0), f^{n+1}(x_0)) < \varepsilon - \varphi(\varepsilon)$, for each $n \geq N$. Since $(f^n(x_0), f^{n+1}(x_0)) \in \overline{B}_{\leq}$ for all $n \in \mathbb{N}$, we have that:

$$d_{\alpha}(f^{n}(x_{0}), f^{n+2}(x_{0})) \leq d_{\alpha}(f^{n}(x_{0}), f^{n+1}(x_{0})) + d_{\alpha}(f^{n+1}(x_{0}), f^{n+2}(x_{0}))$$

$$< \varepsilon - \varphi(\varepsilon) + \varphi(d_{\alpha}(f^{n}(x_{0}), f^{n+1}(x_{0}))) \leq \varepsilon, \text{ for all } n \geq N.$$

Now since
$$(f^n(x_0), f^{n+2}(x_0)) \in \overline{B}_{\leq}$$
 (see (iii)) we have for any $n \geq N$ that $d_{\alpha}(f^n(x_0), f^{n+3}(x_0)) \leq d_{\alpha}(f^n(x_0), f^{n+1}(x_0)) + d_{\alpha}(f^{n+1}(x_0), f^{n+3}(x_0))$

```
< \varepsilon - \varphi(\varepsilon) + \varphi(d_{\alpha}(f^{n}(x_{0}), f^{n+2}(x_{0})) \le \varepsilon.
```

By induction, for each $\alpha \in \Lambda$, we have

 $d_{\alpha}(f^{n}(x_{0}), f^{n+k}(x_{0})) < \varepsilon$, for any $k \in \mathbb{N}^{*}$ and $n \geq N$.

Hence $(f^n(x_0))_{n\in\mathbb{N}}$ is a Cauchy sequence in $(\overline{B},\mathcal{D})$. From the completeness of the gauge space (E,\mathcal{D}) we have $(f^n(x_0))_{n\in\mathbb{N}} \to x^* \in \overline{B}$ as $n \to +\infty$.

Let $x \in E$ be such that $(x, x_0) \in \overline{B}_{\leq}$ then $(f^n(x), f^n(x_0)) \in \overline{B}_{\leq}$ and thus, for each $\alpha \in \Lambda$, we have $d_{\alpha}(f^n(x), f^n(x_0)) \leq \varphi^n(d_{\alpha}(x, x_0))$, for each $n \in \mathbb{N}$. Letting $n \to +\infty$ we obtain that $(f^n(x))_{n \in \mathbb{N}} \to x^*$. By the orbital continuity of f we get that $x^* \in F_f$. Thus $x^* = f(x^*)$.

If $f(x_0) = x_0$, then x_0 plays the role of x^* . \square

Remark 3.4 Equivalent representation of condition (iii) are:

```
(iv)' There exists x_0 \in E such that x_0 \le f(x_0) or x_0 \ge f(x_0)
```

$$(iv)$$
" $(LF)_f \bigcup (UF)_f \neq \emptyset$.

Remark 3.5 Condition (i) is implied by each of the following assertions:

(ii)'
$$f:(\overline{B}, \leq) \to (E, \leq)$$
 is increasing

(ii)"
$$f:(\overline{B}, \leq) \to (E, \leq)$$
 is decreasing.

In a similar way to Theorem 3.3, we can prove the following result, which is useful for applications (see [17]).

Theorem 3.6 Let (E, \mathcal{D}, \leq) be an ordered complete gauge space, $x_0 \in E$ and $r := \{r_\alpha\}_{\alpha \in A} \in (0, \infty)^A$. Let $f : \overline{B} := \overline{B}_d(x_0, r) \to E$ be an operator. We suppose that:

- (i) $f: (\overline{B}, \leq) \to (E, \leq)$ is increasing;
- (ii) $x_0 \le f(x_0)$;
- $(iii)_A$ f is orbitally continuous

or

- $(iii)_B$ if an increasing sequence $(x_n)_{n\in\mathbb{N}}$ converges to x in \overline{B} , then $x_n \leq x$ for all $n \in \mathbb{N}$;
- (iv) there exists a comparison function $\varphi: \mathbb{R}_+ \to \mathbb{R}_+$ such that

$$d_{\alpha}(f(x), f(y)) \leq \varphi(d_{\alpha}(x, y)), \text{ for each } (x, y) \in \overline{B} \text{ with } x \leq y \text{ and for all } \alpha \in \Lambda;$$

(v) $d_{\alpha}(x_0, f(x_0)) < r - \varphi(r)$, for each $\alpha \in \Lambda$;

Then f has at least one fixed point in \overline{B} . Moreover, the fixed point is unique in the set \overline{B}_{\leq} of comparable elements from \overline{B} .

Proof. Since $f:(\overline{B}, \leq) \to (E, \leq)$ is increasing and $x_0 \leq f(x_0)$ we immediately have $x_0 \leq f(x_0) \leq f^2(x_0) \leq \cdots f^n(x_0) \leq \cdots$. Notice that, by (v), we have that $f(x_0) \in \overline{B}$. Thus, by (v) and (iv) we get that, for each $\alpha \in \Lambda$, we have $d_{\alpha}(f^2(x_0), f(x_0)) \leq \varphi(d_{\alpha}(f(x_0), x_0)) < \varphi(r)$. Hence, for each $\alpha \in \Lambda$, we obtain $d_{\alpha}(f^2(x_0), x_0) \leq d_{\alpha}(f^2(x_0), f(x_0)) + d_{\alpha}(f(x_0), x_0) < \varphi(r) + r - \varphi(r) = r$, proving that $f^2(x_0) \in \overline{B}$. By induction, we get that $f^n(x_0) \in \overline{B}$, for each $n \in \{1, 2, \cdots\}$.

Now using (iv), we obtain $d_{\alpha}(f^{n}(x_{0}), f^{n+1}(x_{0})) \leq \varphi^{n}(d_{\alpha}(x_{0}, f(x_{0})))$, for each $n \in \mathbb{N}$. By a similar approach as in the proof of Theorem 3.3 we obtain:

```
d_{\alpha}(f^{n}(x_{0}), f^{n+k}(x_{0})) < \varepsilon, for any k \in \mathbb{N}^{*} and n \geq N.
```

Hence $(f^n(x_0))_{n\in\mathbb{N}}$ is a Cauchy sequence in \mathbb{E} . From the completeness of the gauge space we have that $(f^n(x_0))_{n\in\mathbb{N}} \to x^* \in \overline{B}$ as $n \to +\infty$.

By the orbital continuity of the operator f we get that $x^* \in F_f$. If $(iii)_B$ takes place, then, since $(f^n(x_0))_{n\in\mathbb{N}} \to x^*$, given any $\epsilon > 0$ there exists $N_{\epsilon} \in \mathbb{N}^*$ such that for each $n \geq N_{\epsilon}$ we have $d_{\alpha}(f^n(x_0), x^*) < \epsilon$. On the other hand, for each $n \geq N_{\epsilon}$, since $f^n(x_0) \leq x^*$, we have, for each $\alpha \in \Lambda$, that:

 $d_{\alpha}(x^*, f(x^*)) \leq d_{\alpha}(x^*, f^{n+1}(x_0)) + d_{\alpha}(f(f^n(x_0)), f(x^*)) \leq d_{\alpha}(x^*, f^{n+1}(x_0)) + \varphi(d_{\alpha}(f^n(x_0), x^*)) < 2\epsilon$. Thus $x^* \in F_f$.

The uniqueness of the fixed point follows by contradiction. Suppose there exists $y^* \in F_f$, with $x^* \neq y^*$ and $(x^*, y^*) \in \overline{B}_{\leq}$. Then we have $0 < d_{\alpha}(y^*, x^*) = d_{\alpha}(f^n(y^*), f^n(x^*)) \leq \varphi^n(d_{\alpha}(y^*, x^*)) \to 0$ as $n \to +\infty$, which is a contradiction. Hence $x^* = y^*$. \square

Remark 3.7 A kind of dual result also holds, with the following modified assumptions:

- (*ii*)' $x_0 \ge f(x_0);$
- $(iii)'_B$ if a decreasing sequence $(x_n)_{n\in\mathbb{N}}$ converges to x in \overline{B} , then $x_n \geq x$ for all $n \in \mathbb{N}$.

Remark 3.8 It is worth to mention that could be of interest to extend the above technique for other metrical fixed point theorems, see [3], [8], etc. It is also an open problem to present a fixed point theory (in the sense of [20]) for contractions and generalized contractions in ordered complete gauge spaces.

As a consequence of the above results a continuation result can be given now. For a nice survey on this topic see Frigon [7].

Theorem 3.9 Let $(\mathbb{E}, \mathcal{D})$ be a complete gauge space, where $\mathcal{D} := \{d_{\alpha}\}_{{\alpha} \in \Lambda}$ is a gauge structure on \mathbb{E} . Let U be an open subset of \mathbb{E} and $G : \overline{U} \times [0,1] \to \mathbb{E}$ be an operator. Assume that the following assumptions are satisfied:

- (i) $x \neq G(x,t)$, for each $x \in \partial U$ (the boundary of U) and each $t \in [0,1]$;
- (ii) there exists $a := \{a_{\alpha}\}_{{\alpha} \in A} \in]0, +\infty[^{\Lambda} \text{ such that } a_{\alpha} < 1 \text{ and }$

$$d_{\alpha}(G(x,\cdot),G(y,\cdot)) \leq a_{\alpha} \cdot d_{\alpha}(x,y), \ \text{for each} \ x,y \in \overline{U}_{\leq} \ \text{and for each} \ \alpha \in \Lambda.$$

(iii) there exists a continuous function $\phi:[0,1]\to\mathbb{R}$ such that

$$d_{\alpha}(G(x,t),G(x,s)) \leq |\phi(t)-\phi(s)|, \text{ for all } t,s \in [0,1] \text{ and each } x \in \overline{U};$$

- (iv) $G: \overline{U} \times [0,1] \to \mathbb{E}$ is continuous;
- (v) $G(\cdot,t): \overline{U} \to \mathbb{E}$ is increasing.

Then $G(\cdot,0)$ has a fixed point if and only if $G(\cdot,1)$ has a fixed point.

Proof. Suppose that $z \in F_{G(\cdot,0)}$. From (i) we have that $z \in U$. Consider the set

$$S := \{(t, x) \in [0, 1] \times U : x = G(x, t)\}.$$

Since $(0,z) \in S$, we have that $S \neq \emptyset$. We introduce a partial order defined on S by the formula:

$$(t,x) \le (s,y)$$
 if and only if $t \le s$ and $d_{\alpha}(x,y) \le \frac{2}{1-a_{\alpha}}[\phi(s)-\phi(t)].$

Let M be a totally ordered subset of S, $t^* := \sup\{t : (t, x) \in M\}$ and let $(t_n, x_n)_{n \in \mathbb{N}^*} \subset M$ be a sequence such that $(t_n, x_n) \leq (t_{n+1}, x_{n+1})$ for each $n \in \mathbb{N}^*$ and let $t_n \to t^*$ as $n \to \infty$. Then

$$d_{\alpha}(x_m, x_n) \leq \frac{2}{1 - a_{\alpha}} [\phi(t_m) - \phi(t_n)], \text{ for each } m, n \in \mathbb{N}^*, m > n.$$

Letting $m, n \to +\infty$ we obtain that $d_{\alpha}(x_m, x_n) \to 0$, proving that $(x_n)_{n \in \mathbb{N}^*}$ is Cauchy. Denote by $x^* \in \mathbb{E}$ its limit. Since $x_n = G(x_n, t_n)$, $n \in \mathbb{N}^*$ and using the fact that G is continuous, we get that $x^* = G(x^*, t^*)$. From (i) we note that $x^* \in U$. Thus $(t^*, x^*) \in S$.

From the fact that M is totally ordered we have that $(t,x) \leq (t^*,x^*)$, for each $(t,x) \in M$. Thus (t^*,x^*) is an upper bound of M. We can apply Zorn's Lemma, so S admits a maximal element $(t_0,x_0) \in S$. Notice here that $G(x_0,t) \leq G(x_0,t_0) = x_0$, for each $t \in [0,1]$. We now prove that $t_0 = 1$.

Suppose that $t_0 < 1$. Let $r = \{r_\alpha\}_{\alpha \in A} \in (0, \infty)^A$ and $t \in]t_0, 1]$ be such that $B_d(x_0, r_\alpha) \subset U$ and $r_\alpha := \frac{2}{1-a_\alpha}[\phi(t) - \phi(t_0)]$ for every $\alpha \in A$. Then for each $\alpha \in A$ we have:

$$d_{\alpha}(x_0, G(x_0, t)) \leq d_{\alpha}(x_0, G(x_0, t_0)) + d_{\alpha}(G(x_0, t_0), G(x_0, t))$$

$$\leq \phi(t) - \phi(t_0) = \frac{r_{\alpha}(1 - a_{\alpha})}{2} < (1 - a_{\alpha})r_{\alpha}.$$

Since $\overline{B}_d(x_0, r_\alpha) \subset \overline{U}$, the operator $G(\cdot, t) : \overline{B}_d(x_0, r) \to \mathbb{E}$ satisfies, for all $t \in [0, 1]$, the assumptions of the dual variant of Theorem 3.6 (with $\varphi_\alpha(t) := a_\alpha t$, for each $t \in [0, 1]$). Hence there exists $x \in \overline{B}_d(x_0, r_\alpha)$ such that x = G(x, t). Thus $(t, x) \in S$. Since we have that

$$d_{\alpha}(x_0, x) \le r_{\alpha} = \frac{2}{1 - a_{\alpha}} [\phi(t) - \phi(t_0)],$$

thus we have that

$$(t_0, x_0) < (t, x),$$

which contradicts the maximality of (t_0, x_0) . Thus $t_0 = 1$ and the proof is complete. \square

References

- [1] R.P. Agarwal, M.A. El-Gebeily and D. O'Regan, Generalized contractions in partially ordered metric spaces, Applicable Anal. 87 (2008), No. 1, 2008, 109–116. 1
- [2] A. Amini-Harandi, H. Emami, A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations, Nonlinear Anal. TMA, 72 (2010), 2238–2242. 1
- [3] J. Caballero, J. Harjani, and K. Sadarangani, Contractive-like mapping principles in ordered metric spaces and application to ordinary differential equations, Fixed Point Theory Appl. Volume 2010, Article ID 916064, 14 pages. 3
- [4] C. Chifu and G. Petruşel, Fixed-point results for generalized contractions on ordered gauge spaces with applications, Fixed Point Theory Appl. Volume 2011 Article ID 979586, 10 pages. 2
- [5] J. Dugundji, Topology, Allyn & Bacon, Boston, 1966. 1
- [6] M. Fréchet, Les espaces abstraits, Gauthier-Villars, Paris, 1928. 2
- [7] M. Frigon, Fixed point and continuation results for contractions in metric and gauge spaces, Banach Center Publ. 77 (2007), 89–114. 3
- [8] J. Harjani and K. Sadarangani, Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear Anal. Theory, Methods & Applications, 71 (2009), 3403–3410. 3
- [9] J. Harjani and K. Sadarangani, Fixed point theorems for monotone generalized contractions in partially ordered metric spaces and applications to integral equations, J. Convex Analysis 19 (2012), 853–864. 1
- [10] J. Jachymski, Equivalent conditions for generalized contractions on (ordered) metric spaces Nonlinear Anal. TMA, 74 (2011), 768–774. 1
- [11] H.K. Nashine, B. Samet, C. Vetro, Monotone generalized nonlinear contractions and fixed point theorems in ordered metric spaces, Math. Computer Modelling, 54 (2011), 712–720. 1
- [12] J.J. Nieto and R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005), 223–239. 1
- [13] J.J. Nieto, R.L. Pouso and R. Rodríguez-López, Fixed point theorem theorems in ordered abstract sets, Proc. Amer. Math. Soc. 135 (2007) 2505–2517. 2
- [14] J.J. Nieto and R. Rodríguez-López, Existence and uniqueness of fixed points in partially ordered sets and applications to ordinary differential equations, Acta Math. Sinica-English Series 23 (2007), 2205–2212. 1
- [15] D. O'Regan and A. Petruşel, Fixed point theorems for generalized contractions in ordered metric spaces, J. Math. Anal. Appl. 341 (2008), 1241–1252. 1
- [16] A. Petruşel and I.A. Rus, Fixed point theorems in ordered L-spaces, Proc. Amer. Math. Soc. 134 (2006), 411–418.
- [17] G. Petruşel, Fixed point results for multivalued contractions on ordered gauge spaces, Central Eurropean J. Math. 7 (2009), 520–528. 2, 3
- [18] G. Petruşel and I. Luca, Strict fixed point results for multivalued contractions on gauge spaces, Fixed Point Theory, 11 (2010), 119–124. 2
- [19] A.C.M. Ran and M.C. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004), 1435–1443.
- [20] I.A. Rus, The theory of a metrical fixed point theorem: theoretical and applicative relevances, Fixed Point Theory 9 (2008), 541–559. 3
- [21] I.A. Rus, A. Petruşel and G. Petruşel, Fixed Point Theory, Cluj University Press, Cluj-Napoca, 2008. 2
- [22] R. Saadati, S.M. Vaezpour, Monotone generalized weak contractions in partially ordered metric spaces, Fixed Point Theory, 11 (2010), 375–382.