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Abstract

We establish a new theorem on the existence and uniqueness of the adapted solution to backward stochastic
differential equations under some weaker conditions than the Lipschitz one. The extension is based on
Athanassov’s condition for ordinary differential equations. In order to prove the existence of the solutions
we use a fixed point technique based on Schauder’s fixed point theorem. Also, we study some regularity
properties of the solution for this class of stochastic differential equations.
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1. Introduction

A backward differential equation (see for example in Pardoux and Peng [25]) which appears in the optimal
stochastic control is the following:

Yt = ξ +

1∫
t

f(s, Ys, Zs)ds−
1∫
t

ZsdW (s), 0 ≤ t ≤ 1 (1.1)
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where {W (t), 0 ≤ t ≤ 1} is a Brownian motion defined on the probability space (Ω,F , P ) with the natural
filtration {Ft, 0 ≤ t ≤ 1} and ξ is a given F1-measurable random variable such that E|ξ|2 < ∞. In
the field of control, we usually regard Z(·) as an adapted control and Y (·) as the state of the system.
We are allowed to choose an adapted control Z(·) which drives the state Y (·) of the system to the given
target X at time t = 1. This is the so-called reachability problem. So in fact we are looking for a pair
of stochastic processes {Y (t), Z(t), 0 ≤ t ≤ 1} with values in R × R which is Ft-adapted and satisfies the
above equation. Such a pair is called an adapted solution of the equation. Pardoux and Peng in [25] showed
the existence and uniqueness of the adapted solution under the condition that f(t, y) is uniformly Lipschitz
continuous in y. Since then, the interest on BSDEs has increased steadily (see [1], [27] or [19]), due to the
connections of this subject with computational finance, stochastic control, and partial differential equations.
In particular, many efforts have been made to relax the assumptions on the coefficient functions (for instance
[20, 16, 17, 26, 18, 15, 4, 3, 8, 23]). An interesting domain for the applications of this class of stochastic
differential equations in computational finance has also been found (see e.g. [13, 11, 10, 14, 12]).

The starting point in the study of our equation is given by Z. Athanassov in [2], where a uniqueness the-
orem of Nagumo type for the Cauchy problem is pointed out, which generalizes several known uniqueness
theorems and sufficient conditions to guarantee the convergence of the Picard successive approximations
for ordinary differential equations. The importance of Athanassov’s result comes from the fact that the
coefficients functions can have some singularities at the time moment t = 1. That result clarifies the rela-
tionship between the modulus of the continuity and growth conditions imposed to the coefficient functions.
Stochastic generalizations of the results of Athanassov for SDE’s are given by A. Constantin ([5, 6, 7]) and
others (e.g. [21, 8, 9, 23]). The fixed point method was proposed to show the existence of the solution for
a BSDE starting with the first papers on this topic (e.g. [1]). Many other mathematicians have applied
different fixed point theorems for various classes of BSDEs. Schauder’s fixed point theorem is an interesting
extension of Brouwer’s fixed theorem in the case of infinite dimensional spaces. To our best knowledge, the
first intention to apply this theorem in the context of BSDE was proposed in [22]. Other results are given
in [23] and [24].

2. Preliminary results

Let {Bt}0≤t≤1 denote a d-dimensional Brownian motion defined on some complete probability space
(Ω,F , P ) with the natural filtration {Ft, 0 ≤ t ≤ 1} and ξ(ω) be a given F1-measurable random variable
with E(|ξ|2) < ∞. Let P be the σ-algebra of Ft-progressively measurable subsets of [0, 1] × Ω and M2 be
the family of real-valued processes which are P-measurable and square integrable with respect to λ× P , λ
being the Lebesgue measure.

A solution of a backward stochastic differential equation is a pair of stochastic processes {Y (t, ω), Z(t, ω) :
t ∈ [0, 1]} ∈ ×M2([0, 1],Rm)×M2([0, 1],Rm×d).

For Y ∈M2([0, 1],Rm) we define the norm

|Y |2 =
m∑
j=1

E[ sup
0≤t≤1

|Yj(t)|2].

Similarly, for Z ∈M2([0, 1],Rm×d) we define the norm

‖Z‖2 =

m∑
j=1

d∑
i=1

E[
∣∣∣ ∫ 1

0
Zj(t)dWi(t)

∣∣∣2].
Next, we recall the following lemma:

Lemma 2.1. [23] Let u(t) be a continuous, positive function on 0 < t < 1 having nonnegative derivative
u′(t) ∈ L([0, 1]). Let v(t) be a continuous, nonnegative function for 0 ≤ t ≤ 1 such that v(t) = o(u(t)) as
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t→ 1− and

v(t) ≤
∫ 1

t

u′(s)

u(s)
v(s)ds, ∀ 0 ≤ t ≤ 1.

Then v(t) ≡ 0 on 0 ≤ t ≤ 1.

3. Main results

3.1. Assumptions

We consider the following assumptions for the system (1.1):

i) f is a P ⊗BRm ⊗BRm×d measurable and Ft-adapted function, and it is continuous in the variable (y, z)
on M2([0, 1],Rm)×M2([0, 1],Rm×d);

ii) f(·, 0, 0) is in M2([0, 1],Rm)×M2([0, 1],Rm×d);
iii) there exists a continuous, positive and derivable function u(t) on 0 ≤ t ≤ 1, having nonnegative

derivative u′(t) ∈ L([0, 1]) with u′(t)→∞ for t→ 1−, such that

|f(t, y, z)− f(t, ỹ, z̃)|2 ≤ u′(t)

A1u(t)
(|y − ỹ|2 + ‖z − z̃‖2), (3.1)

for all y, ỹ ∈ Rm, z, z̃ ∈ Rm×d 0 ≤ t ≤ 1, with A1 a positive real constant;

iv) with the same function u(t) as above,

|f(t, y, z)|2 ≤ u′(t)

A2
(1 + |y|2 + ‖z‖2), (3.2)

for all y ∈ Rm, z ∈ Rm×d, 0 ≤ t ≤ 1, with A2 a positive real constant;

v) ξ is a given F1-measurable random variable such that E|ξ|2 <∞ and α ∈ Rn.

It’s not difficult to see that any Lipschitz function f verifies the above assumption. Also, any function with a
quadratic growth satisfies the assumption iv). Moreover, the assumption iv) does not require the continuity
of the coefficient functions at the final moment t = 1 because we suppose just u′(t) ∈ L([0, 1]), hence we will
prove a Nagumo type theorem for BSDE’s frame. We will see, in the last section, an example where the
coefficient function f can have a jump in a neighborhood of t = 1, a situation which is frequently observed
in applications of BSDE’s to financial modeling (see e.g. [13, 14, 11, 10, 12]). An extension of this result for
a class of forward-backward stochastic differential equations is given in [24].

3.2. Existence and uniqueness

Theorem 3.1. Let f satisfy the above hypotheses and ξ ∈ L2(Ω,F1, P,R). Then there exists a unique
pair (Y,Z) ∈M2([0, 1],Rm)×M2([0, 1],Rm×d) which satisfies the equation (1.1) on any compact subsets of
interval [0, 1].

Proof. Uniqueness.
Let (Y,Z) and (Ỹ , Z̃) be two solutions in M2((0, 1),Rm)×M2([0, 1],Rm×d)
of the equation (1.1). Then

Y (t)− Ỹ (t) +

1∫
t

Z(s)dW (s)−
1∫
t

Z̃(s)dW (s) =

=

1∫
t

f(s, Y (s), Z(s)ds−
1∫
t

f(s, Ỹ (s), Z̃(s))ds.
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Now we apply the conditioned expectation, and, using the isometry property for the Ito integral we
obtain

|Y (t)− Ỹ (t)|2 + ‖Z(t)− Z̃(t)‖2 ≤

≤
1∫
t

|f(s, Y (s), Z(s))− f(s, Ỹ (s), Z̃(s))|2 ds

≤
1∫
t

u′(s)

A1u(s)
(|Y (s)− Ỹ (s)|2 + ‖Z(s)− Z̃(s)‖2)ds, 0 < t < 1.

In a similar way as in [7], we consider

τ = inf{t ≤ 1 : (|Y (t)|2 > n) ∨ (|Ỹ (t)‖2 > n) ∨ (‖Z(t)‖2 > n) ∨ (‖Z̃(t)‖2 > n)} ∧ t0

for 0 ≤ t0 < 1, and

v(t) = sup
s≥t

(|Y (s)− Ỹ (s)|2 + ‖Z(s)− Z̃(s)‖2), 0 ≤ t0 ≤ t ≤ s < 1.

Then

v(t) ≤
1∫

τ∧t

u′(s)

A1u(s)
(|Y (s)− Ỹ (s)|2 + ‖Z(s)− Z̃(s)‖2)ds, 0 ≤ t0 ≤ t < 1 .

From hypothesis u′(t) → ∞ for t → 1− taking ε > 0, we can choose δ1 > 0 such that |f(t, Y (t), Z(t))|2 ≤
ε
4u
′(1− t). Then

v(t) ≤
1∫

τ∧t

|f(s, Y (s), Z(s))− f(s, Ỹ (s), Z̃(s))|2 ds

≤ 2

1∫
τ∧t

|f(s, Y (s), Z(s))|2 ds+

1∫
τ∧t

|f(s, Ỹ (s), Z̃(s))|2 ds

≤ 4ε

1∫
τ∧t

u′(1− s) ds ≤ ε(u(t)− u(0)) ≤ εu(t), 0 < δ1 ≤ t ≤ s < 1.

Applying Lemma 2.1 (with A1 ≥ 1) for v(t) we obtain

|Y (t)− Ỹ (t)|2 + ‖Z(t)− Z̃(t)‖2 ≡ 0, 0 < δ1 ≤ t < 1,

and therefore
|Y (t)− Ỹ (t)|2 ≡ 0, ‖Z(t)− Z̃(t)‖2 ≡ 0, 0 < δ1 ≤ t < 1,

which proves the uniqueness of the solution for the system (1.1).
Existence.
We will prove the existence of a solution of system (1.1) on some interval [δ1, δ2] with 0 < δ1 < δ2 < 1.

We will make a reasoning similar to the one in [9].
Consider the Banach space B2 = (M2([0, 1],Rm)×M2([0, 1],Rm×d)) with the norm

|||(y, z)||| =
√
|y|2 + ‖z‖2, |x|2 = E[ sup

0≤t≤1
|y(t)|2], ‖z‖2 = E[

1∫
t

|z|2].
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Let q = |ξ| and Q = 2q. We define the set

S = {(Y,Z) ∈ B2 : |Y | ≤ Q, ‖Z‖ ≤ Q, for t ∈ [δ1, δ2]}

which is a closed bounded and convex subset of the Banach space (B2(0, 1), |||.|||).
We will define a map T : B2 → B2 such that (Y,Z) ∈ B2 is a solution of the BSDE (1.1) if it is a fixed

point of T .
Let (Ỹ , Z̃) ∈ S, and (Y,Z) = T (Ỹ , Z̃) with {Yt} given by the relation (1.1) and {Zt} obtained by using

Ito’s martingale representation theorem, applied to the square integrable random variable

ξ +

∫ 1

t
f(s, Ỹs, Z̃s)ds, t ∈ [δ1, δ2].

We will prove that (Y,Z) ∈ B2 is solution of the BSDE if it is a fixed point of T .
First, using the hypothesis iv), we prove that

T (S) ⊆ S.

Indeed,

|Y (t)|2 +

1∫
t

|Z(s)|2ds ≤

≤ 2
(
|ξ|2 +

1∫
t

|f(s, Ỹ (s), Z̃(s))|2ds
)

≤ 2
(
|ξ|2 +

1∫
t

ds
u′(s)

A2
(1 + |Ỹ (s)|2 + ‖Z̃(s)‖2)ds

)

≤ 2
(
q2 +

1∫
t

u′(s)

A2
(1 + 2Q2)ds

)
≤ 2
(Q2

4
+ (1 + 2Q2)

1∫
t

u′(s)

A2
ds
)

≤ 2
(Q2

4
+ (1 + 2Q2)

u(1)− u(t)

A2

)
≤ 2
(Q2

4
+ (1 + 2Q2)

u(1)

A2

)
≤ 2Q2

2
,

for A2 ≥ 2u(1).
Hence,

|Y (t)|2 + ‖Z(t)‖2 ≤ Q2 ⇒ T (S) ⊂ S .

Next, we will prove that the set T (S) is equicontinuous.
For 0 < s < t < 1 we have

|||T (Ỹ (t), Z̃(t))− T (Ỹ (s), Z̃(s))|||2 = |Y (t)− Y (s)|2 + ‖Z(t)− Z(s)‖2

≤
t∫
s

|f(τ, Ỹ (τ), Z̃(τ))|2dτ

≤
t∫
s

2
u′(τ)

A2
(1 + |Ỹ (τ)|2 + ‖Z̃(τ)‖2)dτ

≤ 2(1 + 2Q2)
u(t)− u(s)

A2
,
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for u a continuous, positive and increasing function on [0, 1]. Therefore the equicontinuity of the set T (S)
is proved.

For (Ỹ , Z̃) and (Ŷ , Ẑ) ∈ S, with T (Ỹ , Z̃) = (Y, Z) and T (Ŷ , Ẑ) = (Ȳ , Z̄), we evaluate

|||T (Ỹ (t), Z̃(t))− T (Ŷ (t), Ẑ(t))|||2 = |Y (t)− Ȳ (t)|2 + ‖Z(t)− Z̄(t)‖2, t ∈ [δ1, δ2] .

But

|Y (t)− Ȳ (t)|2 + ‖Z(t)− Z̄(t)‖2 ≤

≤
1∫
t

|f(s, Ỹ (s), Z̃(s))− f(Ŷ (s), Ẑ(s))|2ds,

and then from the hypothesis iii) on the continuity of the function f in the variables y, z on B2 we deduce
by the Lebesgue convergence theorem that T is continuous.

Applying Schauder’s fixed point theorem we obtain that T has a fixed point S, thus the stochastic
differential system (1.1) has a solution on [δ1, δ2], for any positive real numbers 0 < δ1 < δ2 < 1.

3.3. Regularity properties

In the formulation of a mathematical model for a physical, biological or economical problem, we make
errors in constructing the initial conditions. For theoretical purposes it is sufficient to know that the change
in the solution can be made arbitrary small by making the change in the initial values sufficiently small.

Now, we will give some results on the stability properties of the solution of the equation (1.1). We
consider the family of backward stochastic integral equations

Yλ(t) = ξλ +

1∫
t

fλ(s, Yλ(s), Zλ(s))ds−
1∫
t

Zλ(s)dBs, 0 ≤ t ≤ 1, (3.3)

with λ ∈ Λ- a open and bounded set in Rn.
First, under the considered hypothesis, we prove the existence and uniqueness of solutions and the

continuity with respect to the final condition ξ in the equation (3.3).

Theorem 3.2. If, for any λ ∈ Λ, the coefficient functions fλ satisfy the hypotheses i)-v), then the family
(3.3) has a unique solution (Yλ, Zλ) ∈M2([0, 1],Rm)×M2([0, 1],Rm×d).

Moreover, if
lim
k→∞

|ξλ,k − ξλ|2 = 0,

then
lim
k→∞

|||(Yλ,k, Zλ,k)− (Yλ, Zλ)|||2 = 0, 0 < t < 1,

for every fixed λ ∈ Λ, where (Yλ, Zλ) is the solution of the equation (3.3) and (Yλ,k, Zλ,k) is the solution of
(3.3) with the terminal condition ξλ,k ∈ L2(Rm) .

Proof. The existence and the uniqueness of the solution processes are proved in a similar way as in Theorem
3.1.

Because
ξλ,k

P→ ξλ, k →∞

yields
|ξλ,k − ξλ|2 → 0, k →∞,

we obtain
|Yλ,k(t)− Yλ(t)|2 + ‖Zλ,k(t)− Zλ(t)‖2 ≤
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≤ |ξλ,k − ξλ|2 +

∫ t

0

u′(s)

A1u(s)
(|Yλ,k(s)− Yλ(s)|2 + ‖Zλ,k(s)− Zλ(s)‖2)ds.

If we denote
v2λ,k(t) = |Yλ,k(t)− Yλ(t)|2 + ‖Zλ,k(t)− Zλ(t)‖2

and

V 2
λ,k(t) =

t∫
0

u′(s)

A1u(s)
v2λ,k(s)ds,

it is easy to see that
v2λ,k(t) ≤ |ξλ,k − ξλ|+ V 2

λ,k(t).

Hence, if we denote v2λ(t) = lim
k→∞

v2λ,k(t), and

V 2
λ (t) =

1∫
t

u′(s)

u(s)
v2λ(s)ds

then, from Lebesgue’s theorem of dominated convergence, we obtain

v2λ(t) ≤
1∫
t

u′(s)

u(s)
v2λ(s)ds = V 2

λ (t), t ∈ [δ, 1],

and therefore, by Lemma 2.1,

|Yλ,k(t)− Yλ(t)|2 + ‖Zλ,k(t)− Zλ(t)‖2 ≡ 0, 0 < t < 1.

It is known that if
ϕλ(t, Y (t), Z(t))

P−→ ϕλ0(t, Y (t), Z(t)), λ→ λ0 (3.4)

then

lim
λ→λ0

1∫
t

‖fλ(s, Y (s), Z(s))− fλ0(s, Y (s)), Z(s)‖2ds = 0. (3.5)

Theorem 3.3. In the hypotheses i)-v), if

lim
λ→λ0

|ξλ − ξλ0 |2 = 0,

and

lim
λ→λ0

1∫
t

‖fλ(s, Y (s), Z(s))− fλ0(s, Y (s)), Z(s)‖2ds = 0,

then
lim
λ→λ0

|||(Yλ, Zλ)− (Yλ0 , Zλ0)|||2 = 0

on (0, 1).
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Proof. In similar way as in the proof of Theorem 3.1, we have

|Yλ(t)− Yλ0(t)|2 + ‖Zλ(t)− Zλ0(t)‖2 ≤

≤ 2(|ξλ − ξλ0 |2 + 2I2 + 2

1∫
t

u′(s)

A1u(s)
[|Yλ(s)− Yλ0(s)|2 + ‖Zλ(s)− Zλ0(s)‖2]ds),

where I2 =

1∫
t

|fλ(s,Xλ0(s), Yλ0(s), Zλ0(s))− fλ0(s,Xλ0(s), Yλ0(s), Zλ0(s))|2]ds. Noting that

M2(λ) = |ξλ − ξλ0 |2 + 2I2

and using the hypothesis, we obtain
lim
λ→λ0

M2(λ) = 0.

Consequently,
|Yλ(t)− Yλ0(t)|2 + ‖Zλ(t)− Zλ0(t)‖2 ≤

≤ 2M2(λ) + 4

1∫
t

u′(s)

A1u(s)
[|Yλ(s)− Yλ0(s)|2 + ‖Zλ(s)− Zλ0(s)‖2]ds,

and then, by Lebesgue’s convergence theorem

lim
λ→λ0

[|Yλ(t)− Yλ0(t)|2 + ‖Zλ(t)− Zλ0(t)‖2] ≤

≤ 4

1∫
t

u′(s)

A1u(s)

(
lim
λ→λ0

[|Yλ(s)− Yλ0(s)|2 + ‖Zλ(s)− Zλ0(s)‖2]
)
ds

≤
1∫
t

u′(s)

u(s)
v(s)ds,

where v(s) = lim
λ→λ0

[|Yλ(s)− Yλ0(s)|2 + ‖Zλ(s)− Zλ0(s)‖2]ds and A1 ≥ 4.

Noting that

V (t) =

∫ 1

t

u′(s)

u(s)
v(s)ds,

similarly as in the proof of Theorem 3.2, using Lemma 2.1, we obtain that V (t) ≡ 0, which concludes the
proof.

4. Comments and examples

For more applications with some unexpected external perturbations, there appears a discontinuity in a
time moment (in our paper are two such time moments as to the initial time moment t = 0 and to the
final time t = 1) and before this time moment the stochastic control shows its utility by controlling these
perturbations. For example, on several financial markets (especially transition financial markets) the strike
price for a derivative financial asset is over quoted or higher quoted, and this yields a discontinuity in the
path of this asset.
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Example 4.1. The following example shows the consistency of our condition:

f(t, y, z) := e
√
t(
√
y − 3
√
z2 + 1)

and
u(t) = arcsin (t)

After some complex but not very hard computations, it can be showed that the control function u and
the coefficient function f satisfy our assumptions.

Moreover, because the control function u has the property u′(t) → ∞, t → 1−, we have that the
coefficient function f can have a jump in a neighborhood of t = 1 and therefore, the assumption iv) does
not require the continuity of the coefficient functions at the final moment t = 1. This situation is frequently
observed in applications of BSDE’s to financial modeling. The control function u(t) plays the role of risk-free
asset for the optimal hedging theory in stochastic finances.
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