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Abstract

We establish some strong sufficient conditions that the inequality f4(x, y, z) ≥ 0 holds for all nonnegative
real numbers x, y, z, where f4(x, y, z) is a cyclic homogeneous polynomial of degree four. In addition, in the
case f4(1, 1, 1) = 0 and also in the case when the inequality f4(x, y, z) ≥ 0 does not hold for all real numbers
x, y, z, we conjecture that the proposed sufficient conditions are also necessary that f4(x, y, z) ≥ 0 for all
nonnegative real numbers x, y, z. Several applications are given to show the effectiveness of the proposed
methods.
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1. Introduction

Consider first the third degree cyclic homogeneous polynomial

f3(x, y, z) =
∑

x3 +Bxyz + C
∑

x2y +D
∑

xy2,

where B,C,D are real constants, and
∑

denotes a cyclic sum over x, y and z. In [6], Pham Kim Hung
gives the necessary and sufficient conditions that f3(x, y, z) ≥ 0 for any nonnegative real numbers x, y, z.

∗Corresponding author
Email address: vcirtoaje@upg-ploiesti.ro (Vasile Cirtoaje)

Received 2012-6-3



Y. Zhou, V. Cirtoaje, J. Nonlinear Sci. Appl. 6 (2013), 74–85 75

Theorem 1.1. The cyclic inequality f3(x, y, z) ≥ 0 holds for all nonnegative real numbers x, y, z if and only
if

f3(1, 1, 1) ≥ 0

and
f3(x, 1, 0) ≥ 0

for all nonnegative real x.

Consider now the fourth degree cyclic homogeneous polynomial

f4(x, y, z) =
∑

x4 +A
∑

x2y2 +Bxyz
∑

x+ C
∑

x3y +D
∑

xy3,

where A,B,C,D are real constants.
The following two theorems in [4] express the necessary and sufficient conditions that f4(x, y, z) ≥ 0 for

any real numbers x, y, z.

Theorem 1.2. The cyclic inequality f4(x, y, z) ≥ 0 holds for all real numbers x, y, z if and only if

f4(t+ k, k + 1, kt+ 1) ≥ 0

for all real t, where k ∈ [0, 1] is a root of the equation

(C −D)k3 + (2A−B − C + 2D − 4)k2 − (2A−B + 2C −D − 4)k + C −D = 0.

Theorem 1.3. The cyclic inequality
f4(x, y, z) ≥ 0

holds for all real numbers x, y, z if and only if g4(t) ≥ 0 for all t ≥ 0, where

g4(t) = 3(2 +A− C −D)t4 − Ft3 + 3(4−B + C +D)t2 + 1 +A+B + C +D,

F =
√

27(C −D)2 + E2, E = 8− 4A+ 2B − C −D.

In the particular case f4(1, 1, 1) = 0, from Theorem 1.3 we get the following corollary (see [1] and [3]):

Corollary 1.4. If
1 +A+B + C +D = 0,

then the cyclic inequality f4(x, y, z) ≥ 0 holds for all real numbers x, y, z if and only if

3(1 +A) ≥ C2 + CD +D2.

The following propositions in [4] give the equality cases of the inequality f4(x, y, z) ≥ 0 in Theorem 1.2
and Theorem 1.3, respectively.

Proposition 1.5. The cyclic inequality f4(x, y, z) ≥ 0 in Theorem 1.2 becomes an equality if

x

t+ k
=

y

k + 1
=

z

kt+ 1

(or any cyclic permutation), where k ∈ (0, 1] is a root of the equation

(C −D)k3 + (2A−B − C + 2D − 4)k2 − (2A−B + 2C −D − 4)k + C −D = 0

and t ∈ R is a root of the equation
f4(t+ k, k + 1, kt+ 1) = 0.
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Proposition 1.6. For F > 0, the cyclic inequality f4(x, y, z) ≥ 0 in Theorem 1.3 becomes an equality if
and only if x, y, z satisfy

(C −D)(x+ y + z)(x− y)(y − z)(z − x) ≥ 0

and are proportional to the real roots w1, w2 and w3 of the equation

w3 − 3w2 + 3(1− t2)w +
2E

F
t3 + 3t2 − 1 = 0,

where t is any double nonnegative real root of the polynomial g4(t).

The following theorem in [5] expresses some strong sufficient conditions that the inequality f4(x, y, z) ≥ 0
holds for any real numbers x, y, z.

Theorem 1.7. Let
G =

√
1 +A+B + C +D,

H = 2 + 2A−B − C −D − C2 − CD −D2.

The cyclic inequality f4(x, y, z) ≥ 0 holds for all real numbers x, y, z if the following two conditions are
satisfied:

(a) 1 +A+B + C +D ≥ 0;
(b) there exists a real number t ∈ (−

√
3,
√

3) such that f(t) ≥ 0, where

f(t) = 2Gt3 − (6 + 2A+B + 3C + 3D)t2 + 2(1 + C +D)Gt+H.

In this paper, we will establish some very strong sufficient conditions that the inequality

f4(x, y, z) ≥ 0

holds for all nonnegative real numbers x, y, z.

2. Main Results

The main result of this paper is given by the following two theorems.

Theorem 2.1. The inequality f4(x, y, z) ≥ 0 holds for all nonnegative real numbers x, y, z if

1 +A+B + C +D ≥ 0

and one of the following two conditions is fulfilled:

(a) 3(1 +A) ≥ C2 + CD +D2;

(b) 3(1 +A) < C2 + CD +D2, 5 +A+ 2C + 2D ≥ 0, f4(x, 1, 0) ≥ 0, h3(x) ≥ 0 for all x ≥ 0, where

h3(x) = (4 + C +D)(x3 + 1) + (A+ 2C −D − 1)x2 + (A− C + 2D − 1)x.

Theorem 2.2. The inequality f4(x, y, z) ≥ 0 holds for all nonnegative real numbers x, y, z if

1 +A+B + C +D ≥ 0

and one of the following two conditions is fulfilled:

(a) 3(1 +A) ≥ C2 + CD +D2;

(b) 3(1 +A) < C2 + CD +D2 , and there is t ≥ 0 such that

(C + 2D)t2 + 6t+ 2C +D ≥ 2
√

(t4 + t2 + 1)(C2 + CD +D2 − 3− 3A).
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Remark 2.3. If the sufficient conditions in Theorem 2.1 or Theorem 2.2 are fulfilled, then the following
sharper inequality holds for all x, y, z ≥ 0:

f4(x, y, z) ≥ (1 +A+B + C +D)xyz
∑

x.

This claim is true because B ≥ −1−A−C −D and, on the other hand, Theorems 2.1 and 2.2 remain valid
by replacing B with −1−A− C −D. Therefore, if

1 +A+B + C +D > 0

and the other sufficient conditions in Theorem 2.1 or Theorem 2.2 are fulfilled, then the inequality f4(x, y, z) ≥
0 becomes an equality only when one of x, y, z is zero; that is, for x = βy and z = 0 (or any cyclic per-
mutation), where β is a double positive root of the polynomial f4(x, 1, 0) (see the proof of Theorem 2.1)
or

h4(t) = [(C + 2D)t2 + 6t+ 2C +D]2 − 4(t4 + t2 + 1)(C2 + CD +D2 − 3− 3A)

(see the proof of Theorem 2.2).

Remark 2.4. Consider the main case when

1 +A+B + C +D = 0.

In the case (a) of Theorem 2.1 and Theorem 2.2, the inequality f4(x, y, z) ≥ 0 holds for all real num-
bers x, y, z, and the equality conditions (including the case x = y = z) are given by Proposition 1.5 and
Proposition 1.6.

In the case (b) of Theorem 2.1 and Theorem 2.2, the inequality f4(x, y, z) ≥ 0 holds for all nonnegative
real numbers x, y, z, but does not hold for all real numbers x, y, z. Equality holds for x = y = z, and for
x = βy and z = 0 (or any cyclic permutation), where β is a double positive root of the polynomial f4(x, 1, 0)
(see the proof of Theorem 2.1) or h4(t) (see the proof of Theorem 2.2).

Conjecture 2.5. If 1 + A + B + C + D = 0, then the conditions in Theorem 2.1 and Theorem 2.2 are
necessary and sufficient to have f4(x, y, z) ≥ 0 for all x, y, z ≥ 0.

Conjecture 2.6. If the inequality f4(x, y, z) ≥ 0 does not hold for all real numbers x, y, z, then the conditions
in Theorem 2.1 and Theorem 2.2 are necessary and sufficient to have f4(x, y, z) ≥ 0 for all x, y, z ≥ 0.

3. Proof of Theorem 2.1

Let us define

f̄4(x, y, z) =
∑

x4 +A
∑

x2y2 − (1 +A+B + C +D)xyz
∑

x+ C
∑

x3y +D
∑

xy3.

Since
f4(x, y, z) ≥ f̄4(x, y, z)

for all x, y, z ≥ 0, it suffices to prove that f̄4(x, y, z) ≥ 0. Assume that x = min{x, y, z}, and use the
substitution y = x+ p, z = x+ q, where p, q ≥ 0. From∑

x4 = 3x4 + 4(p+ q)x3 + 6(p2 + q2)x2 + 4(p3 + q3)x+ p4 + q4,∑
x2y2 = 3x4 + 4(p+ q)x3 + 2(p+ q)2x2 + 2pq(p+ q)x+ p2q2,

xyz
∑

x = 3x4 + 4(p+ q)x3 + (p2 + 5pq + q2)x2 + pq(p+ q)x,∑
x3y = 3x4 + 4(p+ q)x3 + 3(p2 + pq + q2)x2 + (p3 + 3p2q + q3)x+ p3q,
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xy3 = 3x4 + 4(p+ q)x3 + 3(p2 + pq + q2)x2 + (p3 + 3pq2 + q3)x+ pq3,

we get
f̄4(x, y, z) = A1(p, q)x

2 +B1(p, q)x+ C1(p, q) := h(x),

where
A1(p, q) = (5 +A+ 2C + 2D)(p2 − pq + q2),

B1(p, q) = (4 + C +D)(p3 + q3) + (A+ 2C −D − 1)p2q + (A− C + 2D − 1)pq2,

C1(p, q) = p4 + Cp3q +Ap2q2 +Dpq3 + q4.

As we have shown in [3], the inequality h(x) ≥ 0 holds for all real x and all p, q ≥ 0 if 3(1+A) ≥ C2+CD+D2.
Assume now that 3(1 +A) < C2 +CD+D2. Clearly, the inequality h(x) ≥ 0 holds for all nonnegative real
x if A1(p, q) ≥ 0, B1(p, q) ≥ 0 and C1(p, q) ≥ 0 for all p, q ≥ 0. Clearly, these inequality are respectively
equivalent to 5 +A+ 2C + 2D ≥ 0, h3(x) ≥ 0 for all x ≥ 0 and f4(x, 1, 0) ≥ 0 for all x ≥ 0.

4. Proof of Theorem 2.2

(a) By Corollary 1.4, if
3(1 +A) ≥ C2 + CD +D2

and
B = −1−A− C −D,

then f4(x, y, z) ≥ 0 for all real numbers x, y, z, so the more for all nonnegative real numbers x, y, z. Since
the polynomial f4 is increasing in B, the inequality f4(x, y, z) ≥ 0 holds also for all B ≥ −1−A−C −D.

(b) The main idea is to find a sharper cyclic homogeneous inequality of degree four∑
x4 +A1

∑
x2y2 +B1xyz

∑
x+ C1

∑
x3y +D1

∑
xy3 ≥ 0,

such that
1 +A1 +B1 + C1 +D1 = 0.

Let us define
f̄4(x, y, z) = f4(x, y, z)− g(x, y, z),

where
g(x, y, z) = yz(px+ qy − qtz)2 + zx(py + qz − qtx)2 + xy(pz + qx− qty)2,

with
t ≥ 0,

q =
4

√
C2 + CD +D2 − 3− 3A

t4 + t2 + 1
> 0,

p = q(t− 1) +
√

1 +A+B + C +D.

Since g(x, y, z) ≥ 0, it suffices to prove that f̄4(x, y, z) ≥ 0. We can write f̄4(x, y, z) in the form

f̄4(x, y, z) =
∑

x4 +A1

∑
x2y2 +B1xyz

∑
x+ C1

∑
x3y +D1

∑
xy3,

where
A1 = A+ 2q2t, B1 = B − p(p+ 2q − 2qt),

C1 = C − q2, D1 = D − q2t2.

Since
1 +A1 +B1 + C1 +D1 = 1 +A+B + C +D − (p+ q − qt)2 = 0,
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according to Corollary 1.4, it suffices to show that 3(1 +A1) ≥ C2
1 + C1D1 +D2

1. Write this inequality as

(C + 2D)t2 + 6t+ 2C +D ≥ q2(t4 + t2 + 1) +
1

q2
(C2 + CD +D2 − 3− 3A),

(C + 2D)t2 + 6t+ 2C +D ≥ 2
√

(t4 + t2 + 1)(C2 + CD +D2 − 3− 3A).

By the hypothesis in (b), there is t ≥ 0 such that the last inequality is true. Thus, the proof is completed.

5. Applications

Application 5.1. Let x, y, z be nonnegative real numbers. If k ≥ 0, then ([2] and [7])∑
x4 + (k2 − 2)

∑
x2y2 + (1− k2)xyz

∑
x ≥ 2k(

∑
x3y −

∑
xy3).

Proof. Write the inequality as f4(x, y, z) ≥ 0, where

A = k2 − 2, B = 1− k2, C = −2k, D = 2k, 1 +A+B + C +D = 0.

First Solution. We will show that the condition (b) in Theorem 2.1 is fulfilled. Since

C2 + CD +D2 − 3(1 +A) = k2 + 3 > 0

and
5 +A+ 2C + 2D = k2 + 3 > 0,

we only need to show that f4(x, 1, 0) ≥ 0 and h3(x) ≥ 0 for all x ≥ 0. We have

f4(x, 1, 0) = x4 − 2kx3 + (k2 − 2)x2 + 2kx+ 1 = (x2 − kx− 1)2 ≥ 0,

h3(x) = 4(x3 + 1) + (k2 − 6k − 3)x2 + (k2 + 6k − 3)x.

For 0 ≤ x < 1, we get

h3(x) = 4(x3 + 1) + (k2 − 3)x(1 + x) + 6kx(1− x) ≥ 4(x3 + 1) + (k2 − 3)x(1 + x)

≥ 4(x3 + 1)− 4x(1 + x) = 4(x+ 1)(x− 1)2 > 0.

Also, for x ≥ 1, we get

h3(x) = 4(x− 1)3 + (k − 3)2x2 + (k2 + 6k − 15)x+ 8

= 4(x− 1)3 + (k − 3)2(x− 1)2 + 3(k − 1)2x− k2 + 6k − 1

= 4(x− 1)3 + (k − 3)2(x− 1)2 + 3(k − 1)2(x− 1) + 2(k2 + 1) > 0.

The polynomial f4(x, 1, 0) has the double positive real root β =
k +
√
k2 + 4

2
. Therefore, according to

Remark 2.4, equality holds for x = y = z, and also for x = 0 and
y

z
=

k +
√
k2 + 4

2
(or any cyclic

permutation).

Second Solution. We will show that the condition (b) in Theorem 2.2 is fulfilled. Since

C2 + CD +D2 − 3(1 +A) = k2 + 3 > 0,

we only need to show that there exists t ≥ 0 such that

kt2 + 3t− k ≥
√

(k2 + 3)(t4 + t2 + 1).
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This is true if
kt2 + 3t− k ≥ 0

and h4(t) ≥ 0, where

h4(t) = (kt2 + 3t− k)2 − (k2 + 3)(t4 + t2 + 1) = −(t2 − kt− 1)2.

Clearly, for

t =
k +
√
k2 + 4

2
,

we have h4(t) = 0 and
kt2 + 3t− k = k(kt+ 1) + 3t− k = (k2 + 3)t > 0.

Since the polynomial h4(t) has the double positive real root β =
k +
√
k2 + 4

2
, according to Remark 2.4,

equality holds for x = y = z, and also for x = 0 and
y

z
=
k +
√
k2 + 4

2
(or any cyclic permutation).

Remark. For k = 1, we get the inequality

x4 + y4 + z4 − x2y2 − y2z2 − z2x2 ≥ 2(x3y + y3z + z3x− xy3 − yz3 − zx3),

with equality for x = y = z, and for x = 0 and
y

z
=

1 +
√

5

2
(or any cyclic permutation).

Also, for k =
√

2, we get the inequality

x4 + y4 + z4 − xyz(x+ y + z) ≥ 2
√

2(x3y + y3z + z3x− xy3 − yz3 − zx3),

with equality for x = y = z, and for x = 0 and
y

z
=

√
2 +
√

6

2
(or any cyclic permutation).

�

Application 5.2. If x, y, z are nonnegative real numbers, then ([2])

x4 + y4 + z4 + 5(x3y + y3z + z3x) ≥ 6(x2y2 + y2z2 + z2x2).

Proof. Write the inequality as f4(x, y, z) ≥ 0, where

A = −6, B = 0, C = 5, D = 0, 1 +A+B + C +D = 0.

First Solution. We will show that the condition (b) in Theorem 2.1 is fulfilled. Since

C2 + CD +D2 − 3(1 +A) = 40

and 5 +A+ 2C + 2D = 9, we only need to show that f4(x, 1, 0) ≥ 0 and h3(x) ≥ 0 for all x ≥ 0. We have

f4(x, 1, 0) = x4 + 5x3 − 6x2 + 1 = (x− 1)4 + x(3x− 2)2 > 0

and
h3(x) = 3(3x3 + x2 − 4x+ 3).

For 0 ≤ x < 1, we get
3x3 + x2 − 4x+ 3 ≥ (x− 1)(x− 3) > 0,

and for x ≥ 1, we get
3x3 + x2 − 4x+ 3 ≥ 4x(x− 1) + 3 > 0.
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Since the polynomial f4(x, 1, 0) has no double positive real root, equality holds only for x = y = z (see
Remark 2.4).

Second Solution. We will show that the condition (b) in Theorem 2.2 is fulfilled. Since

C2 + CD +D2 − 3(1 +A) = 40,

we only need to show that there is t ≥ 0 such that

10t2 + 6t+ 5 ≥ 2
√

40(t4 + t2 + 1).

Indeed, for t = 3/2, we get

10t2 + 6t+ 5−
√

40(t4 + t2 + 1) =
73

2
−
√

1330 =
9

2(73 + 2
√

1330
> 0.

According to Remark 2.4, equality holds for x = y = z.

�

Application 5.3. If x, y, z are nonnegative real numbers, then

3(x4 + y4 + z4) + 4(xy3 + yz3 + zx3) ≥ 7(x3y + y3z + z3x).

Proof. Write the inequality as f4(x, y, z) ≥ 0, where

A = 0, B = 0, C = −7

3
, D =

4

3
, 1 +A+B + C +D = 0.

First Solution. We will prove that the condition (b) in Theorem 2.1 is fulfilled. Since

C2 + CD +D2 − 3(1 +A) =
10

9

and 5 +A+ 2C + 2D = 2, we only need to show that f4(x, 1, 0) ≥ 0 and h3(x) ≥ 0 for all x ≥ 0. We have

f4(x, 1, 0) = x(x+ 1)(3x− 5)2 + 5

(
x− 13

10

)2

+
11

20
> 0,

and
h3(x) = 3x3 − 7x2 + 4x+ 3.

For 0 ≤ x ≤ 1 and x ≥ 4

3
, we get

3x3 − 7x2 + 4x+ 3 > 3x3 − 7x2 + 4x = x(x− 1)(3x− 4) ≥ 0,

and for 1 ≤ x ≤ 3

2
, we get

3x3 − 7x2 + 4x+ 3 ≥ −4x2 + 4x+ 3 = (2x+ 1)(3− 2x) ≥ 0.

Since the polynomial f4(x, 1, 0) has no double positive real root, equality holds only for x = y = z (see
Remark 2.4).

Second Solution. We will prove that the condition (b) in Theorem 2.2 is fulfilled. Since

C2 + CD +D2 − 3(1 +A) =
10

9
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we only need to show that there exists t ≥ 0 such that

t2 + 18t− 10 ≥ 2
√

10(t4 + t2 + 1).

Indeed, for t = 2, we get

t2 + 18t− 10−
√

10(t4 + t2 + 1) = 30− 2
√

210 =
609

30 + 2
√

210
> 0.

According to Remark 2.4, equality holds for x = y = z.

�

Application 5.4. If x, y, z are nonnegative real numbers, then ([1])

x4 + y4 + z4 +

(
4

4
√

27
− 1

)
xyz(x+ y + z) ≥ 4

4
√

27
(x3y + y3z + z3x).

Proof. Write the inequality as f4(x, y, z) ≥ 0, where

A = 0, B =
4

4
√

27
− 1, C = − 4

4
√

27
, D = 0, 1 +A+B + C +D = 0.

First Solution. We will show that the condition (b) in Theorem 2.1 is fulfilled. Since

C2 + CD +D2 − 3(1 +A) =
16

3
√

3
− 3 > 0,

and

5 +A+ 2C + 2D = 5− 8
4
√

27
> 0,

we only need to show that f4(x, 1, 0) ≥ 0 and h3(x) ≥ 0 for all x ≥ 0. We have

f4(x, 1, 0) = x4 − 4
4
√

27
x3 + 1 = (x− 4

√
3)2
(
x2 +

2
4
√

27
x+

1√
3

)
≥ 0

and

h3(x) = 4x3 − x2 − x+ 4− 4
4
√

27
(x3 + 2x2 − x+ 1).

Since
x3 + 2x2 − x+ 1 ≥ x2 − x+ 1 > 0

and
4

4
√

27
<

9

5
,

we get
5h3(x) > 5(4x3 − x2 − x+ 4)− 9(x3 + 2x2 − x+ 1) = 11x3 − 23x2 + 4x+ 11

= 11x

(
x− 3

2

)2

+ 10x2 − 83

4
x+ 11 ≥ 10x2 − 83

4
x+ 11

= 10

(
x− 83

80

)2

+
251

640
> 0.

The polynomial f4(x, 1, 0) has the double positive real root β = 4
√

3. Therefore, according to Remark 2.4,

equality holds for x = y = z, and also for x = 0 and
y

z
= 4
√

3 (or any cyclic permutation).
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Second Solution. We will show that the condition (b) in Theorem 2.2 is fulfilled. Since

C2 + CD +D2 − 3(1 +A) =
16

3
√

3
− 3 > 0,

we only need to show that there exists t ≥ 0 such that

−2t2 + 3
4
√

27t− 4 ≥
√

(16− 9
√

3)(t4 + t2 + 1).

This is true if
−2t2 + 3

4
√

27t− 4 ≥ 0

and h4(t) ≥ 0, where
h4(t) = (−2t2 + 3

4
√

27t− 4)2 − (16− 9
√

3)(t4 + t2 + 1).

Since
h4(t) = 3(t− 4

√
3)2[(3

√
3− 4)t2 − 2

4
√

3(4−
√

3)t+ 3],

we have h4(t) = 0 for t = 4
√

3, when

−2t2 + 3
4
√

27t− 4 = 5− 2
√

3 > 0.

The polynomial h4(t) has the double positive real root β = 4
√

3. Therefore, according to Remark 2.4, equality

holds for x = y = z, and also for x = 0 and
y

z
= 4
√

3 (or any cyclic permutation).

�

Application 5.5. If x, y, z are nonnegative real numbers, then ([7])

x4 + y4 + z4 + 15(x3y + y3z + z3x) ≥ 47

4
(x2y2 + y2z2 + z2x2).

Proof. Write the inequality as f4(x, y, z) ≥ 0, where

A =
−47

4
, B = 0, C = 15, D = 0, 1 +A+B + C +D =

17

4
.

First Solution. We will show that the condition (b) in Theorem 2.1 is fulfilled. Since

C2 + CD +D2 − 3(1 +A) =
1029

4
,

and

5 +A+ 2C + 2D =
93

4
,

we only need to show that f4(x, 1, 0) ≥ 0 and h3(x) ≥ 0 for all x ≥ 0. We have

f4(x, 1, 0) = x4 + 15x3 − 47

4
x2 + 1 =

1

4
(2x− 1)2(x2 + 16x+ 4) ≥ 0.

and

h3(x) = 19(x3 + 1) +
69

4
x2 − 111

4
x > 14 + 14x2 − 28x = 14(x− 1)2 ≥ 0.

According to Remark 2.3, since the polynomial f4(x, 1, 0) has the double nonnegative real root β =
1

2
,

equality holds for x = 0 and 2y = z (or any cyclic permutation).
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Second Solution. We will show that the condition (b) in Theorem 2.2 is fulfilled. Since

C2 + CD +D2 − 3(1 +A) =
1029

4
,

we only need to show that there is t ≥ 0 such that

15t2 + 6t+ 30 ≥
√

1029(t4 + t2 + 1).

This is true if h4(t) ≥ 0, where

h4(t) = (15t2 + 6t+ 30)2 − 1029(t4 + t2 + 1).

Since
h4(t) = −3(2t− 1)2(67t2 + 52t+ 43),

we have h4(t) = 0 for t =
1

2
.

According to Remark 2.3, since the polynomial h4(t) has the double nonnegative real root β =
1

2
,

equality holds for x = 0 and 2y = z (or any cyclic permutation).

�

Application 5.6. If x, y, z are nonnegative real numbers such that

x2 + y2 + z2 =
5

2
(xy + yz + zx),

then

x4 + y4 + z4 ≥ 17

8
(x3y + y3z + z3x).

Proof. We see that equality holds for x = 0, y = 2, z = 1 (or any cyclic permutation). Since

x4 + y4 + z4 ≥ (x2 + y2 + z2)2 − 2(xy + yz + zx)2

=
17

4
(xy + yz + zx)2,

it suffices to show that
2(xy + yz + zx)2 ≥ x3y + y3z + z3x.

In addition, since

36(xy + yz + zx)2 = [6(xy + yz + zx)2 = [2(x2 + y2 + z2) + xy + yz + zx]2,

it suffices to show that

[2(x2 + y2 + z2) + xy + yz + zx]2 ≥ 18(x3y + y3z + z3x),

which is equivalent to

4
∑

x4 + 9
∑

x2y2 + 6xyz
∑

x+ 4
∑

xy3 ≥ 14
∑

x3y.

It suffices to show that f4(x, y, z) ≥ 0, where

f4(x, y, z) = 4
∑

x4 + 9
∑

x2y2 − 3xyz
∑

x− 14
∑

x3y + 4
∑

xy3.

with

A =
9

4
, B =

−3

4
, C =

−7

2
, D = 1, 1 +A+B + C +D =

9

4
.

Since
3(1 +A)− C2 − CD −D2 = 0,

the condition (a) in Theorem 2.1 and Theorem 2.2 is fulfilled.
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