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Abstract

We extend the recent results of coupled coincidence point theorems of Shatanawi et. al. (2012) by weakening
the concept of mixed g-monotone property. We also give an example of a nonlinear contraction mapping,
which is not applied to the existence of coupled coincidence point by the results of Shatanawi et. al. but
can be applied to our results. The main results extend and unify the results of Shatanawi et. al. and many
results of the coupled fixed point theorems of Sintunavarat et. al. (2012).
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1. Introduction

Since Banach’s fixed point theorem in 1922, because of its simplicity and usefulness, it has become a
very important tool in solving the existence problems in many branches of non-linear analysis. Ran and
Reurings [12] extended the Banach contraction principle to metric spaces endowed with a partial ordering
and they gave application of their results to matrix equations. In [11] Nieto and López extended the result
of Ran and Reurings [12] for non-decreasing mappings and applied their results to get a unique solution for
a first order differential equation.

The concept of cone metric spaces is a generalization of metric spaces, where each pair of points is
assigned to a member of a real Banach space with a cone. This cone naturally induces a partial order in
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the Banach spaces. The concept of cone metric space was introduced in the work of Huang and Zhang [5]
where they also established the Banach contraction mapping principle in this space. Then, several authors
have studied fixed point problems in cone metric spaces. For some of the work on cone metric spaces, one
may refer to ([1, 3, 5, 6, 17]).

Bhaskar and Lakshmikantham [2] introduced the notion of a coupled fixed point of a mapping F from
X ×X into X. They established some coupled fixed point results and applied their results to the study of
existence and uniqueness of solution for a periodic boundary value problem. Lakshmikantham and Ćirić [9]
introduced the concept of coupled coincidence points and proved coupled coincidence and coupled common
fixed point results for mappings F from X×X into X and g from X into X satisfying nonlinear contraction
in ordered metric space. For more study on coupled fixed point theory see ([1, 4, 8, 9, 10, 13, 14, 16]).

Recently Cho et. al. [3] introduced a new concept of c-distance in cone metric spaces which is a cone
version of w-distance of Kada et. al. In [16] Sintunavarat et. al. established coupled fixed point theorems
for weak contraction mappings by using the concept of F -invariant set and c-distance in partially ordered
cone metric spaces. Further, In [15] Shatanawi et. al. established coupled coincidence point theorems for
nonlinear contractions by using the concept of mixed g-monotone property and c-distance in partially orderd
cone metric spaces. In this paper we introduce the concept of an (F,g)-invariant set and extend the results
of Shatanawi et. al. [15] and Sintunavarat et. al. [16] as we establish the existence of coupled coincidence
point for mappings F : X × X → X and g : X → X satisfying nonlinear contraction under c-distance in
cone metric spaces having an (F, g)-invariant subset.

Throughout this paper (X,v) denotes a partially ordered set with partial order v.

Definition 1.1. [2] A mapping F : X×X → X is said to have mixed monotone property if for any x, y ∈ X

x1, x2 ∈ X, x1 v x2 =⇒ F (x1, y) v F (x2, y),

y1, y2 ∈ X, y1 v y2 =⇒ F (x, y1) w F (x, y2).

Definition 1.2. [9] A mapping F : X × X → X is said to have mixed g-monotone property if for any
x, y ∈ X

x1, x2 ∈ X, gx1 v gx2 =⇒ F (x1, y) v F (x2, y),

y1, y2 ∈ X, gy1 v gy2 =⇒ F (x, y1) w F (x, y2).

Definition 1.3. [2] An element (x, y) ∈ X×X is called a coupled fixed point of the mappings F : X×X → X
if F (x, y) = x and F (y, x) = y.

Definition 1.4. [9] An element (x, y) ∈ X × X is called a coupled coincidence point of the mappings
F : X ×X → X and g : X → X if F (x, y) = gx and F (y, x) = gy.

Definition 1.5. [9] Let F : X ×X → X and g : X → X. The mappings F and g are said to commute if
gF (x, y) = F (gx, gy) for all x, y ∈ X.

In [5] , cone metric space was introduced in the following manner:
Let (E, ‖.‖) be a real Banach space and θ denote the zero element in E. Assume that P is a subset of

E. Then P is called a cone if and only if:

1. P is non empty, closed and P 6= {θ},
2. If a, b are nonnegative real numbers and x, y ∈ P then ax+ by ∈ P .
3. x ∈ P and −x ∈ P implies x = θ.

For any cone P ⊆ E and x, y ∈ E,the partial ordering � on E with respect to P is defined by x � y if and
only if y − x ∈ P . The notation of ≺ stand for x � y but x 6= y. Also, we used x � y to indicate that
y − x ∈ intP . It can be easily shown that λ.intP ⊆ intP for all λ > 0. and intP + intP ⊆ intP . A cone P
is called normal if there is a number K > 0 such that for all x, y ∈ E, θ � x � y implies ‖x‖ ≤ K‖y‖. The
least positive number K satisfying above is called the normal constant of P .

In the following we always suppose E is a real Banach space, P is a cone in E with intP 6= φ. and � is
partial ordering with respect to P .
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Definition 1.6. [5] Let X be a non empty set and E be a real Banach space equipped with the partial
ordering � with respect to the cone P . Suppose that the mapping d : X × X → E satisfies the following
condition:

(i) θ ≺ d(x, y) for all x, y ∈X with x 6= y and d(x, y) = θ ⇔ x = y

(ii) d(x, y) = d(y, x) for all x, y ∈ X
(iii) d(x, z) � d(x, y) + d(y, z) for all x, y, z ∈ X.

Then d is called a cone metric on X and (X, d) is called a cone metric space.

Definition 1.7. [5] Let (X, d) be a cone metric space ,{xn} be a sequence in X and x ∈ X.

1. For all c ∈ E with θ � c, if there exists a positive integer N such that d(xn, x)� c for all n > N then
xn is said to be convergent and x is the limit of {xn}.We denote this by xn → x.

2. For all c ∈ E with θ � c,if there exists a positive integer N such that d(xn, xm)� c for all n,m > N
then {xn} is called a Cauchy sequence in X.

3. A cone metric space (X, d) is called complete if every Cauchy sequence in X is convergent.

Lemma 1.8. [5] Let (X, d) be a cone metric space, P be a normal cone with normal constant K, and {xn}
be a sequence in X. Then,

1. the sequence {xn} converges to x if and only if d(xn, x)→ 0 (or equivalently ‖d(xn, x)‖ → 0),

2. the sequence {xn} is Cauchy if and only if d(xn, xm)→ 0 (or equivalently ‖d(xn, xm)‖ → 0) .

3. the sequence {xn} (respectively, {yn}) converges to x (respectively, y) then d(xn, yn)→ d(x, y).

Lemma 1.9. [17] Every cone metric space (X, d) is a topological space. For c � 0, c ∈ E, x ∈ X let
B(x, c) = {y ∈ X : d(y, x) � c} and β = {B(x, c) : x ∈ X, c � 0}. Then τ = {U ⊆ X : ∀ x ∈ U ∃ Bx ∈ β
with x ∈ Bx ⊆ U} is a topology on X.

Definition 1.10. [17] Let (X, d) be a cone metric space. A map T : (X, d) → (X, d) is called sequentially
continuous if xn ∈ X,xn → x implies Txn → Tx.

Lemma 1.11. [17] Let (X, d) be a cone metric space, and T : (X, d) → (X, d) be any map. Then, T is
continuous if and only if T is sequentially continuous.

Let (X, d) be a cone metric space and X2 = X × X. Define a function ρ : X2 × X2 → E by
ρ((x1, y1), (x2, y2)) = d(x1, x2) + d(y1, y2) for all (x1, y1) and (x2, y2) ∈ X2. Then (X2, ρ) is a cone metric
space [8].

Lemma 1.12. [8] Let zn = (xn, yn) ∈ X2 be a sequence and z = (x, y) ∈ X2. Then zn → z if and only if
xn → x and yn → y.

Next we give the notation of c-distance on a cone metric space which is generalization of w-distance of
Kada et. al. [7] with some properties.

Definition 1.13. [3] Let (X, d) be a cone metric space. A function q : X ×X → E is called a c-distance
on X if the following conditions hold:

(q1) θ � q(x, y) for all x, y ∈ X,

(q2) q(x, z) � q(x, y) + q(y, z) for all x, y, z ∈ X,

(q3) For each x ∈ X and n ∈ N, if q(x, yn) � u for some u = ux ∈ P , then q(x, y) � u whenever {yn} is a
sequence in X converging to a point y ∈ X,

(q4) For all c ∈ E with θ � c, there exists e ∈ E with θ � e such that q(z, x) � e and q(z, y) � e imply
d(x, y)� c.
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Remark 1.14. The c-distance q is a w-distance on X if we let (X, d) be a metric space, E = R, P = [0, ∞),
and q3 is replaced by the following condition: for any x ∈ X, q(x, .) : X → R is lower semicontinuous.
Moreover, q3 holds whenever q(x, .) is lower semi-continuous. Thus, if (X, d) is a metric space, E = R,
and P = [0, ∞), then every w-distance is a c-distance. But the converse is not true in the general case.
Therefore, the c-distance is a generalization of the w-distance.

Example 1.15. [16] Let E = R and P = {x ∈ E : x ≥ 0}. Let X = [0,∞) and define a mapping
d : X ×X → E by d(x, y) = |x− y| for all x, y ∈ X. Then (X, d) is a cone metric space. Define a mapping
q : X ×X→ E by q(x, y) = y for all x, y ∈ X. Then q is a c-distance on X.

Example 1.16. [16] Let (X, d) be a cone metric space and P a normal cone. Define a mapping q : X×X → P
by q(x, y) = d(x, y) for all x, y ∈ X. Then, q is c-distance.

Example 1.17. [16] Let E = C1
R[0, 1] with ‖x‖1 = ‖x‖∞ + ‖x′‖∞ and P = {x ∈ E : x(t) ≥ 0, t ∈ [0, 1]}.

Let X = [0,+∞)(with usual order) and d(x, y)(t) = |x − y|ϕ(t) where ϕ : [0, 1] → R is given by ϕ(t) = et

for all t ∈ [0, 1]. Then (X, d) is an ordered cone metric space(see [3] Example 2.9). This cone is not normal.
Define a mapping q : X ×X → P by q(x, y) = (x+ y)ϕ for all x, y ∈ X. Then q is a c-distance.

Example 1.18. [16] Let (X, d) be a cone metric space and P a normal cone. Define a mapping q : X×X → P
by q(x, y) = d(u, y) for all x, y ∈ X, where u is a fixed point in X. Then q is a c-distance.

Lemma 1.19. [3] Let (X, d) be a cone metric space and q be a c-distance on X. Let{xn} and {yn} be
sequences in X and y, z ∈ X. Suppose that un is a sequence in P converging to θ. Then the following hold:

1. If q(xn, y) � un and q(xn, z) � un, then y = z.

2. If q(xn, yn) � un and q(xn, z) � un, then yn converges to z.

3. If q(xn, xm) � un for m > n, then {xn} is a Cauchy sequence in X.

4. If q(y, xn) � un, then {xn} is a Cauchy sequence in X.

Remark 1.20. [3]

1. q(x, y) = q(y, x) may not be true for all x, y ∈ X.

2. q(x, y) = θ is not necessarily equivalent to x = y for all x, y ∈ X.

Samet et. al. in [14] introduced an F -invariant set.

Definition 1.21. [14] Let (X, d) be a metric space and F : X ×X → X be a given mapping. Let M be a
non empty subset of X4. We say that M is an F -invariant subset of X4 if and only if for all x, y, z, w ∈ X
we have

(a) (x, y, z, w) ∈M ⇔ (w, z, y, x) ∈M and

(b) (x, y, z, w) ∈M ⇒ (F (x, y), F (y, x), F (z, w), F (w, z)) ∈M .

We observe that the set M = X4 is trivially F -invariant.

2. Main Results

We begin with the introduction of an (F, g)-invariant set which is a generalization of an F -invariant set
introduced by Samet et. al. in [14].

Definition 2.1. Let (X, d) be a metric space and F : X × X → X, g : X → X be given mappings. Let
M be a non empty subset of X4. We say that M is an (F, g)-invariant ssubset of X4 if and only if for all
x, y, z, w ∈ X we have

(a) (x, y, z, w) ∈M ⇔ (w, z, y, x) ∈M and

(b) (gx, gy, gz, gw) ∈M ⇒ (F (x, y), F (y, x), F (z, w), F (w, z)) ∈M .
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We observe that

1. The set M = X4 is trivially (F, g)-invariant.

2. Every F -invariant set is (F, IX)-invariant. Here IX denotes identity map on X.

Following example shows that we may have (F, g)-invariant set which is not F -invariant.

Example 2.2. Let X = R and F : X × X → X be defined by F (x, y) = 1 − x2. Let g : X → X be
given by gx = 1 + x. Then M = {(x, y, z, w) ∈ X4 : y = z = 0} is not F -invariant as (1, 0, 0, 1) ∈ M
but (F (1, 0), F (0, 1), F (0, 1), F (1, 0)) = (0, 1, 1, 0) does not belong to M . It is easy to see that M is (F, g)-
invariant.

Example 2.3. Let (X, d) be a cone metric space endowed with a partial order v. Let F : X ×X → X and
g : X → X be any two mappings such that F satisfies mixed g-monotone property. Define a subset M of
X4 by M = {(a, b, c, d) : c v a, b v d}. Then M is (F, g)-invariant.

Theorem 2.4. Let (X,v) be a partially ordered set and suppose that (X, d) is a complete cone metric space.
Suppose F : X×X → X and g : X → X be two continuous and commuting functions with F (X×X) ⊆ g(X).
Let q be a c-distance on X and M be an (F, g)-invariant subset of X4. Let

q(F (x, y), F (u, v)) + q(F (y, x), F (v, u)) � k(q(gx, gu) + q(gy, gv))

for some k ∈ [0, 1) and all x, y, u, v ∈ X with (gx, gy, gu, gv) ∈ M or (gu, gv, gx.gy) ∈ M . If there exist
x0, y0 ∈ X satisfying (F (x0, y0), F (y0, x0), gx0, gy0) ∈ M , then there exist x∗, y∗ ∈ X such that F (x∗, y∗) =
gx∗ and F (y∗, x∗) = gy∗, that is, F and g have a coupled coincidence point (x∗, y∗).

Proof. Choose x0, y0 ∈ X satisfying (F (x0, y0), F (y0, x0), gx0, gy0) ∈ M . Since F (X × X) ⊆ g(X) , one
can find x1, y1 ∈ X in a way that gx1 = F (x0, y0) and gy1 = F (y0, x0). Repeating the same argument one
can find x2, y2 ∈ X in a way that gx2 = F (x1, y1) and F (y1, x1) = gy2. Continuing this process one can
construct sequences {xn} and {yn} in X that satisfy gxn+1 = F (xn, yn) and gyn+1 = F (yn, xn) for all n ≥ 0.
It is asserted that

(gxn+1, gyn+1, gxn, gyn) ∈M for all n ≥ 0. (2.1)

For n = 0, (2.1) follows by the choice of x0 and y0. Let us assume that (2.1) holds good for n = k, k ≥ 0.
Then we have (gxk+1, gyk+1, gxk, gyk) ∈M . (F, g)-invariance of M now implies that

(F (xk+1, yk+1), F (yk+1, xk+1), F (xk, yk), F (yk, xk)) ∈M

That is, (gxk+2, gyk+2, gxk+1, gyk+1) ∈M . Thus (2.1) follows for k + 1. Hence, by induction, our assertion
follows. Now for all n ∈ N

q(gxn, gxn+1) + q(gyn, gyn+1) = q(F (xn−1, yn−1), F (xn, yn)) + q(F (yn−1, xn−1), F (yn, xn))

� k(q(gxn−1, gxn) + q(gyn−1, gyn))

Put qn = q(gxn, gxn+1) + q(gyn, gyn+1). Then, we have

qn = q(gxn, gxn+1) + q(gyn, gyn+1)

� k qn−1
...

� kn q0



R. Batra, S. Vashistha, J. Nonlinear Sci. Appl. 6 (2013), 86–96 91

Let m > n ≥ 1. It follows that

q(gxn, gxm) � q(gxn, gxn+1) + q(gxn+1, gxn+2) + . . .+ q(gxm−1, gxm) and

q(gyn, gym) � q(gyn, gyn+1) + q(gyn+1, gyn+2) + . . .+ q(gym−1, gym).

Then we have

q(gxn, gxm) + q(gyn, gym) � qn + qn+1 + . . .+ qm−1

� kn q0 + kn+1 q0 + . . .+ km−1 q0

� kn

1− k
q0 (2.2)

From (2.2) we have

q(gxn, gxm) � kn

1− k
q0 (2.3)

and also

q(gyn, gym) � kn

1− k
q0 (2.4)

Thus, Lemma 1.19(3) shows that gxn and gyn are Cauchy sequences in X. Since X is complete, there exists
there exists x∗, y∗ ∈ X such that gxn→ x∗ and gyn→ y∗ as n→∞. By continuity of g we get

lim
n→∞

ggxn = gx∗ and lim
n→∞

ggyn = gy∗

Commutativity of F and g now implies that

ggxn = g(F (xn−1, yn−1)) = F (gxn−1, gyn−1) for all n ∈ N

and ggyn = gF (yn−1, xn−1) = F (gyn−1, gxn−1) for all n ∈ N.
Since F is continuous, therefore,

gx∗ = lim
n→∞

ggxn

= lim
n→∞

F (gxn−1, gyn−1)

= F ( lim
n→∞

gxn−1, lim
n→∞

gyn−1)

= F (x∗, y∗)

and gy∗ = lim
n→∞

ggyn

= lim
n→∞

F (gyn−1, gxn−1)

= F ( lim
n→∞

gyn−1, lim
n→∞

gxn−1)

= F (y∗, x∗)

Thus (x∗, y∗) is a coupled coincidence point of F and g.

Corollary 2.5. [15] Let (X,v) be a partially ordered set and suppose that (X, d) is a complete cone metric
space. Let q be a c-distance on X. Suppose F : X × X → X and g : X → X be two continuous and
commuting functions with F (X ×X) ⊆ g(X). Let F satisfy mixed g-monotone property and

q(F (x, y), F (u, v)) + q(F (y, x), F (v, u)) � k(q(gx, gu) + q(gy, gv))

for some k ∈ [0, 1) and all x, y, u, v ∈ X with (gx v gu) and (gy w gv) or (gx w gu) and (gy v gv). If
there exist x0, y0 ∈ X satisfying gx0 v F (x0, y0) and F (y0, x0) v gy0, then there exist x∗, y∗ ∈ X such that
F (x∗, y∗) = gx∗ and F (y∗, x∗) = gy∗, that is, F and g have a coupled coincidence point (x∗, y∗).
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Proof. Take M as in Example 2.3.

Corollary 2.6. Let (X,v) be a partially ordered set and suppose that (X, d) is a complete cone metric space.
Suppose F : X×X → X and g : X → X be two continuous and commuting functions with F (X×X) ⊆ g(X).
Let q be a c-distance on X and M be an (F, g)-invariant subset of X4. Let

q(F (x, y), F (u, v)) � aq(gx, gu) + bq(gy, gv)) (2.5)

for some a, b ∈ [0, 1) with a+ b < 1 and all x, y, u, v ∈ X with (gx, gy, gu, gv) ∈ M or (gu, gv, gx.gy) ∈ M .
If there exist x0, y0 ∈ X satisfying (F (x0, y0), F (y0, x0), gx0, gy0) ∈M , then there exist x∗, y∗ ∈ X such that
F (x∗, y∗) = gx∗ and F (y∗, x∗) = gy∗, that is, F and g have a coupled coincidence point (x∗, y∗).

Proof. Given x, y, u, v ∈ X with (gx, gy, gu, gv) ∈M or (gu, gv, gx.gy) ∈M . So by (2.5) we have

q(F (x, y), F (u, v)) � aq(gx, gu) + bq(gy, gv))

and
q(F (y, x), F (v, u)) � aq(gy, gv) + bq(gx, gu)

Thus q(F (x, y), F (u, v)) + q(F (y, x), F (v, u)) � (a+ b)(q(gx, gu) + q(gy, gv)) where a+ b < 1. Result follows
by Theorem 2.4.

Corollary 2.7. Let (X,v) be a partially ordered set and suppose that (X, d) is a complete cone metric
space. Let q be a c-distance on X. Suppose F : X×X → X is a continuous functions, M is an F -invariant
subset of X4 and

q(F (x, y), F (u, v)) � aq(x, u) + bq(y, v))

for some a, b ∈ [0, 1) with a + b < 1 and all x, y, u, v ∈ X with (x, y, u, v) ∈ M or (u, v, x, y) ∈ M . If
there exist x0, y0 ∈ X satisfying (F (x0, y0), F (y0, x0), x0, y0) ∈ M , then there exist x∗, y∗ ∈ X such that
F (x∗, y∗) = x∗ and F (y∗, x∗) = y∗, that is, F has a coupled fixed point (x∗, y∗).

Proof. Take g = IX , the identity map on X in Corollary 2.6.

Corollary 2.8. Let (X,v) be a partially ordered set and suppose that (X, d) is a complete cone metric
space. Let q be a c-distance on X. Suppose F : X ×X → X is a continuous functions, M is an F -invariant
subset of X4 and

q(F (x, y), F (u, v)) + q(F (y, x), F (v, u)) � k(q(x, u) + q(y, v))

for some k ∈ [0, 1) and all x, y, u, v ∈ X with (x, y, u, v) ∈ M or (u, v, x, y) ∈ M . If there exist x0, y0 ∈ X
satisfying (F (x0, y0), F (y0, x0), x0, y0) ∈ M , then there exist x∗, y∗ ∈ X such that F (x∗, y∗) = x∗ and
F (y∗, x∗) = y∗, that is, F has a coupled fixed point (x∗, y∗)

Proof. Take g = IX in Theorem 2.4.

The continuity of F in Theorem 2.4 can be dropped. For this, we refer to the following useful lemma
which is a variant of Lemma 1.19(1).

Lemma 2.9. [15] Let (X, d) be a cone metric space and q be a c-distance on X. Let (xn) be a sequence in
X. Suppose that (αn) and (βn) are sequences in P converging to θ. If q(xn, y) � αn and q(xn, z) � βn, then
y = z.
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Theorem 2.10. Let (X,v) be a partially ordered set and suppose that (X, d) is a cone metric space. Let
F : X × X → X and g : X → X be given functions with F (X × X) ⊆ g(X) and (g(X), d) is a complete
subspace of X. Let q be a c-distance on X and M be an (F, g)-invariant subset of X4. Let

q(F (x, y), F (u, v)) + q(F (y, x), F (v, u)) � k(q(gx, gu) + q(gy, gv))

for some k ∈ [0, 1) and all x, y, u, v ∈ X with (gx, gy, gu, gv) ∈ M or (gu, gv, gx.gy) ∈ M . Suppose
(xn, yn, xn−1, yn−1) ∈ M for all n ∈ N and xn → x, yn → y implies (x, y, xn−1, yn−1) ∈ M for all n ∈ N. If
there exist x0, y0 ∈ X satisfying (F (x0, y0), F (y0, x0), gx0, gy0) ∈ M , then there exist x∗, y∗ ∈ X such that
F (x∗, y∗) = gx∗ and F (y∗, x∗) = gy∗, that is, F and g have a coupled coincidence point (x∗, y∗).

Proof. Consider Cauchy sequences {gxn} and {gyn} as in the proof of Theorem 2.4. Since (g(X), d) is
complete, there exists x∗, y∗ ∈ X such that gxn → gx∗ and gyn → gy∗. By q3,(2.3) and (2.4) we have

q(gxn, gx
∗) � kn

1− k
q0 for all n ≥ 0 (2.6)

and

q(gyn, gy
∗) � kn

1− k
q0 for all n ≥ 0 (2.7)

Adding (2.6) and (2.7) we get

q(gxn, gx
∗) + q(gyn, gy

∗) � 2kn

1− k
q0 for all n ≥ 0

Since gxn → gx∗, gyn → gy∗ and (gxn+1, gyn+1, gxn, gyn) ∈M for all n ≥ 0, therefore, (gx∗, gy∗, gxn, gyn) ∈
M for all n ≥ 0. Thus for all n ∈ N

q(gxn, F (x∗, y∗)) + q(gyn, F (y∗, x∗)) = q(F (xn−1, yn−1), F (x∗, y∗)) + q(F (yn−1, xn−1), F (y∗, x∗))

� k[q(gxn−1, gx
∗) + q(gyn−1, gy

∗)]

� k k
n−1

1− k
q0 +

kn−1

1− k
q0

=
2kn

1− k
q0

This implies that

q(gxn, F (x∗, y∗)) � 2kn

1− k
q0 (2.8)

and

q(gyn, F (y∗, x∗)) � 2kn

1− k
q0 (2.9)

By Lemma 2.9, (2.6) and (2.8) we have F (x∗, y∗) = gx∗. Similarly, by Lemma 2.9, (2.7) and (2.9) we have
F (y∗, x∗) = gy∗. Thus (x∗, y∗) is a coupled coincidence point of F and g.

Corollary 2.11. [15] Let (X,v) be a partially ordered set and suppose that (X, d) is a cone metric space.
Let F : X ×X → X and g : X → X be given functions with F (X ×X) ⊆ g(X) and (g(X), d) is a complete
subspace of X. Let q be a c-distance on X. Let F satisfy mixed g-monotone property and

q(F (x, y), F (u, v)) + q(F (y, x), F (v, u)) � k(q(gx, gu) + q(gy, gv))

for some k ∈ [0, 1) and all x, y, u, v ∈ X with (gx v gu) and (gy w gv) or (gx w gu) and (gy v gv). Suppose
X has the following property:
(i) if a nondecreasing sequence {xn} → x,then xn v x for all n.
(ii)if a nonincreasing sequence {yn} → y, then y v yn for all n.
If there exist x0, y0 ∈ X satisfying gx0 v F (x0, y0) and F (y0, x0) v gy0, then there exist x∗, y∗ ∈ X such
that F (x∗, y∗) = gx∗ and F (y∗, x∗) = gy∗, that is, F and g have a coupled coincidence point (x∗, y∗).
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Proof. Take M as in Example 2.3.

Corollary 2.12. Let (X,v) be a partially ordered set and suppose that (X, d) is a cone metric space. Let
F : X × X → X and g : X → X be given functions with F (X × X) ⊆ g(X) and (g(X), d) is a complete
subspace of X. Let q be a c-distance on X and M be an (F, g)-invariant subset of X4. Let

q(F (x, y), F (u, v)) � aq(gx, gu) + bq(gy, gv)

for some a, b ∈ [0, 1) with a+ b < 1 and all x, y, u, v ∈ X with (gx, gy, gu, gv) ∈M or (gu, gv, gx, gy) ∈M .
Suppose (xn, yn, xn−1, yn−1) ∈ M for all n ∈ N and xn → x, yn → y implies (x, y, xn−1, yn−1) ∈ M for all
n ∈ N. If there exist x0, y0 ∈ X satisfying (F (x0, y0), F (y0, x0), gx0, gy0) ∈ M , then there exist x∗, y∗ ∈ X
such that F (x∗, y∗) = gx∗ and F (y∗, x∗) = gy∗, that is, F and g have a coupled coincidence point (x∗, y∗).

Proof. It follows from Theorem 2.10 by similar arguments to those given in proof of Corollary 2.6.

Corollary 2.13. Let (X,v) be a partially ordered set and suppose that (X, d) is a cone metric space. Let
F : X ×X → X be a given function. Let q be a c-distance on X and M be an F -invariant subset of X4.
Let

q(F (x, y), F (u, v)) � aq(x, u) + bq(y, v)

for some a, b ∈ [0, 1) with a+ b < 1 and all x, y, u, v ∈ X with (x, y, u, v) ∈ M or (u, v, x, y) ∈ M . Suppose
(xn, yn, xn−1, yn−1) ∈ M for all n ∈ N and xn → x, yn → y implies (x, y, xn−1, yn−1) ∈ M for all n ∈ N.
If there exist x0, y0 ∈ X satisfying (F (x0, y0), F (y0, x0), x0, y0) ∈ M , then there exist x∗, y∗ ∈ X such that
F (x∗, y∗) = x∗ and F (y∗, x∗) = y∗, that is, F has a coupled fixed point (x∗, y∗).

Proof. Take g = IX in Corollary 2.12.

Corollary 2.14. Let (X,v) be a partially ordered set and suppose that (X, d) is a cone metric space. Let
F : X ×X → X be a given function. Let q be a c-distance on X and M be an F -invariant subset of X4.
Let

q(F (x, y), F (u, v)) + q(F (y, x), F (v, u)) � k(q(x, u) + q(y, v))

for some k ∈ [0, 1) and all x, y, u, v ∈ X with (x, y, u, v) ∈M or (u, v, x, y) ∈M . Suppose (xn, yn, xn−1, yn−1) ∈
M for all n ∈ N and xn → x, yn → y implies (x, y, xn−1, yn−1) ∈M for all n ∈ N. If there exist x0, y0 ∈ X
satisfying (F (x0, y0), F (y0, x0), x0, y0) ∈ M , then there exist x∗, y∗ ∈ X such that F (x∗, y∗) = x∗ and
F (y∗, x∗) = y∗, that is, F has a coupled fixed point (x∗, y∗).

Proof. It follows from Theorem 2.10 by taking g = IX .

Theorem 2.15. In addition to the hypothesis of either Theorem 2.4 or Theorem 2.10 if (gx, gy, gx, gy) ∈M
or (gy, gx, gy, gx) ∈M for all x, y ∈ X then we have q(gx∗, gx∗) = θ and q(gy∗, gy∗) = θ.

Proof.

We have q(gx∗, gx∗) + q(gy∗, gy∗) = q(F (x∗, y∗), F (x∗, y∗) + q(F (y∗, x∗), F (y∗, x∗))

� k(q(gx∗, gx∗) + q(gy∗, gy∗))

That is q(gx∗, gx∗) + q(gy∗, gy∗) � k(q(gx∗, gx∗) + q(gy∗, gy∗)) Since 0 ≤ k < 1, we have q(gx∗, gx∗) +
q(gy∗, gy∗) = θ.
But q(gx∗, gx∗) ≥ θ and q(gy∗, gy∗) ≥ θ, hence q(gx∗, gx∗) = θ and q(gy∗, gy∗) = θ.

Theorem 2.16. In addition to hypothesis of either Theorem 2.4 or Theorem 2.10, suppose that any two
elements x and y of X satisfy (gx, gy, gy, gx) ∈ M or (gy, gx, gx, gy) ∈ M and g is one-one. Then there
exists a coupled coincidence point of F and g which is of the form (x∗, x∗) for some x∗ ∈ X.
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Proof. Consider coupled coincidence point (x∗, y∗) of F and g. Then

we have q(gx∗, gy∗) + q(gy∗, gx∗) = q(F (x∗, y∗), F (y∗, x∗) + q(F (y∗, x∗), F (x∗, y∗)

� k(q(gx∗, gy∗) + q(gy∗, gx∗))

That is q(gx∗, gy∗) + q(gy∗, gx∗) � k(q(gy∗, gx∗) + q(gx∗, gy∗)) Since 0 ≤ k < 1,we have q(gx∗, gy∗) +
q(gy∗, gx∗) = θ.
But q(gx∗, gy∗) ≥ θ and q(gy∗, gx∗) ≥ θ, hence q(gx∗, gy∗) = θ and q(gy∗, gx∗) = θ. Let un = θ, xn = gx∗

for all n ≥ 0.,then we have q(xn, gx
∗) � un for all n ≥ 0 and q(xn, gy

∗) � un for all n ≥ 0. By Lemma
1.19(1) we have gx∗ = gy∗.since g is one-one, therefore, x∗ = y∗. Thus there exists a coupled coincidence
point of the form (x∗, x∗) for some x∗ ∈ X. This completes the proof.

Corollary 2.17. In addition to hypothesis of either Corollary 2.5 or Corollary 2.11, suppose that any two
elements of g(X) are comparable and g is one-one. Then there exists a coupled coincidence point of F and
g which is of the form (x∗, x∗) for some x∗ ∈ X.

Example 2.18. Let E = C1
R[0, 1] with ‖x‖1 = ‖x‖∞ + ‖x′‖∞ and P = {x ∈ E : x(t) ≥ 0, t ∈ [0, 1]}. Let

X = [0,+∞)(with usual order), and d(x, y)(t) = ‖x−y‖ et. Then (X, d) is an ordered cone metric space(see
[3] Example 2.9). Further, let q : X ×X → E be defined by q(x, y)(t) = y et. It is easy to check that q is a
c-distance on X. Consider now the function defined by

F (x, y) =

{
1
7(x+ y) if x ≥ y
0 if x < y

and g(x) = 3
2x for all x. Then F (X ×X) ⊆ g(X) = X and (g(X), d) = (X, d) is complete. For y1 = 2 and

y2 = 3 we have gy1 v gy2 but F (x, y1) v F (x, y2) for all x > 3. So F does not satisfy mixed g-monotone
property. Hence main result of [15] can not be applied to this example. Also it can be seen easily that
q(F (x, y), F (u, v)) + q(F (y, x), F (v, u)) � 1

3(q(gx, gu) + q(gy, gv)) for all (x, y, u, v) ∈ X4 = M . It is easy to
see that all other conditions of Theorem 2.10 are satisfied for M = X4. Thus, by Theorem 2.10, F and g
have a coincidence point. Here F and g have a unique coincidence point at (0, 0).
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