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Abstract

In this paper, we present existence, uniqueness and Ulam-Hyers stability results for the coupled fixed points
of a pair of contractive type singlevalued and respectively multivalued operators on complete metric spaces.
The approach is based on Perov type fixed point theorem for contractions in spaces endowed with vector-
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1. Introduction

The classical Banach contraction principle is a very useful tool in nonlinear analysis with many appli-
cations to operatorial equations, fractal theory, optimization theory and other topics. Banach contraction
principle was extended for singlevalued contraction on spaces endowed with vector-valued metrics by Perov
in [10], while the case of multivalued contractions is treated in A. Petruşel [12].

In the study of the existence of fixed points for an operator, it is useful to consider a more general
concept, namely coupled fixed points. The concept of coupled fixed point for continuous and discontinuous
operators was introduced in 1987 by D. Guo and V. Lakshmikantham (see [6]) in connection with coupled
quasisolutions of an initial value problem for ordinary differential equations.

Let X be a nonempty set. A mapping d : X × X → Rm is called a vector-valued metric on X if the
following properties are satisfied:
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(a) d(x, y) ≥ 0 for all x, y ∈ X; if d(x, y) = 0, then x = y;
(b) d(x, y) = d(y, x) for all x, y ∈ X;
(c) d(x, y) ≤ d(x, z) + d(z, y) for all x, y ∈ X.
A set endowed with a vector-valued metric d is called generalized metric space. The notions of convergent

sequence, Cauchy sequence, completeness, open subset and closed subset are similar to those for usual metric
spaces.

We denote by Mmm (R+) the set of all m × m matrices with positive elements and by I the identity
m×m matrix. If x, y ∈ Rm, x = (x1, ..., xm) and y = (y1, ..., ym), then, by definition:

x ≤ y if and only if xi ≤ yi for i ∈ {1, 2, ...,m}.

Notice that we will make an identification between row and column vectors in Rm.
For the proof of the main results we need the following theorems. A classical result in matrix analysis is

the following theorem (see [1], [14], [17]).

Theorem 1.1. Let A ∈Mmm (R+). The following assertions are equivalents:
(i) A is convergent towards zero;
(ii) An → 0 as n→∞;
(iii) The eigenvalues of A are in the open unit disc, i.e |λ| < 1, for every
λ ∈ C with det (A− λI) = 0;
(iv) The matrix (I −A) is nonsingular and

(I −A)−1 = I +A+ ...+An + ...; (1.1)

(v) The matrix (I −A) is nonsingular and (I −A)−1 has nonnegative
elements;
(vi) Anq → 0 and qAn → 0 as n→∞, for each q ∈ Rm.

We recall now Perov’s fixed point theorem (see [10]).

Theorem 1.2 (Perov). Let (X, d) be a complete generalized metric space and the operator f : X → X with
the property that there exists a matrix A ∈Mmm (R) such that d (f (x) , f (y)) ≤ A · d (x, y) for all x, y ∈ X.

If A is a matrix convergent towards zero, then:
(i) Fix(f) = {x∗};
(ii) the sequence of successive approximations (xn)n∈N, xn = fn (x0) is
convergent and has the limit x∗, for all x0 ∈ X;
(iii) one has the following estimation

d (xn, x
∗) ≤ An (I −A)−1 d (x0, x1) ; (1.2)

(iv) if g : X → X is an operator such that there exist y∗ ∈ Fix(g) and
η ∈

(
Rm
+

)∗
with d (f (x) , g (x)) ≤ η, for each x ∈ X, then

d (x∗, y∗) ≤ (I −A)−1 η;

(v) if g : X → X is an operator and there exists η ∈
(
Rm
+

)∗
such that

d (f (x) , g (x)) ≤ η, for all x ∈ X, then for the sequence yn := gn (x0)
we have the following estimation

d (yn, x
∗) ≤ (I −A)−1 η +An (I −A)−1 d (xo, x1) . (1.3)



Cristina Urs, J. Nonlinear Sci. Appl. 6 (2013), 124–136 126

Let (X, d) be a metric space. We will focus our attention to the following system of operatorial equations:{
x = T1 (x, y)
y = T2 (x, y)

where T1, T2 : X ×X → X are two given operators.
By definition, a solution (x, y) ∈ X ×X of the above system is called a coupled fixed point for the pair

(T1, T2) . In a similar way, the case of an operatorial inclusion (using the symbol ∈ instead of =) could be
considered.

In this paper we present some coupled fixed points results for contractive type singlevalued and multi-
valued operators on spaces endowed with vector-valued metrics. The approach is based on Perov-type fixed
point theorem for contractions in metric spaces endowed with vector-valued metrics. For related results to
Perov’s fixed point theorem and for some generalizations and applications of it we refer to [3], [4], [13].

2. Existence, uniqueness and stability results for coupled fixed points

For the proof of our main theorem we need the following notions and results.

Definition 2.1. Let (X, d) be a generalized metric space and f : X → X be an operator. Then, the fixed
point equation

x = f(x) (2.1)

is said to be generalized Ulam-Hyers stable if there exists an increasing function ψ : Rm
+ → Rm

+ , continuous
in 0 with ψ (0) = 0, such that, for any ε := (ε1, ..., εm) with εi > 0 for i ∈ {1, ...,m} and any solution y∗ ∈ X
of the inequation

d (y, f (y)) ≤ ε (2.2)

there exists a solution x∗ of (2.1) such that

d (x∗, y∗) ≤ ψ (ε) . (2.3)

In particular, if ψ (t) = C · t, t ∈ Rm
+ (where C ∈ Mmm (R+)), then the fixed point equation (2.1) is called

Ulam-Hyers stable.

Our first abstract result is a direct consequence of Perov’s fixed point theorem.

Theorem 2.2. Let (X, d) be a generalized metric space and let f : X → X be an operator with the property
that there exists a matrix A ∈Mmm (R) such that A converges to zero and

d (f (x) , f (y)) ≤ A · d (x, y) , for all x, y ∈ X.

Then the fixed point equation
x = f(x), x ∈ X

is Ulam-Hyers stable.

Proof. From Perov’s fixed point theorem we get that Fix(f) = {x∗}. Let ε := (ε1, ..., εm), with εi > 0 for
each i ∈ {1, ...,m} and let y∗ be a solution of the inequation

d (y, f (y)) ≤ ε.

Then we succesively have that d(x∗, y∗) = d(f(x∗), y∗) ≤ d(f(x∗), f(y∗)) + d(f(y∗), y∗) ≤ Ad(x∗, y∗) + ε.
Thus, using Theorem 1.2, we get that

d(x∗, y∗) ≤ (I −A)−1ε.
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Definition 2.3. Let (X, d) be a metric space and let T1, T2 : X × X → X be two operators. Then the
operatorial equations system {

x = T1 (x, y)
y = T2 (x, y)

(2.4)

is said to be Ulam-Hyers stable if there exist c1, c2, c3, c4 > 0 such that for each ε1, ε2 > 0 and each pair
(u∗, v∗) ∈ X ×X such that

d (u∗, T1 (u∗, v∗)) ≤ ε1 (2.5)

d (v∗, T2 (u∗, v∗)) ≤ ε2

there exists a solution (x∗, y∗) ∈ X ×X of (2.4) such that

d (u∗, x∗) ≤ c1ε1 + c2ε2 (2.6)

d (v∗, y∗) ≤ c3ε1 + c4ε2

For examples and other considerations regarding Ulam-Hyers stability and generalized Ulam-Hyers sta-
bility of the operatorial equations and inclusions see I.A. Rus [15], Bota-Petruşel [2], Petru-Petruşel-Yao
[11].

Our first main result is the following existence, uniqueness, data dependence and Ulam-Hyers stability
theorem for the coupled fixed point of a pair of singlevalued operators (T1, T2). The conclusions (i)-(ii) are
originally proved by R. Precup [13], but for the sake of completeness we recall here the whole proof.

Theorem 2.4. Let (X, d) be a complete metric space, T1, T2 : X ×X → X be two operators such that

d (T1 (x, y) , T1 (u, v)) ≤ k1d (x, u) + k2d (y, v) (2.7)

d (T2 (x, y) , T2 (u, v)) ≤ k3d (x, u) + k4d (y, v)

for all (x, y) , (u, v) ∈ X ×X. We suppose that A :=

(
k1 k2
k3 k4

)
converges to zero. Then:

(i) there exists a unique element (x∗, y∗) ∈ X ×X such that{
x∗ = T1 (x∗, y∗)
y∗ = T2(x

∗, y∗)
(2.8)

(ii) the sequence (Tn
1 (x, y) , Tn

2 (x, y))n∈N converges to (x∗, y∗) as n→∞, where

Tn+1
1 (x, y) := Tn

1 (T1 (x, y) , T2 (x, y))

Tn+1
2 (x, y) := Tn

2 (T1 (x, y) , T2 (x, y))
(2.9)

for all n ∈ N.
(iii) we have the following estimation:(

d (Tn
1 (x0, y0) , x

∗)
d (Tn

2 (x0, y0) , y
∗)

)
≤ An (I −A)−1

(
d (x0, T1 (x0, y0))
d (y0, T2 (x0, y0))

)
(2.10)

(iv) let F1, F2 : X ×X → X be two operators such that, there exist η1, η2 > 0 with

d (T1 (x, y) , F1 (x, y)) ≤ η1
d (T2 (x, y) , F2 (x, y)) ≤ η2

for all (x, y) ∈ X ×X. If (a∗, b∗) ∈ X ×X is such that{
a∗ = F1 (a∗, b∗)
b∗ = F2 (a∗, b∗)

(2.11)
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then (
d (a∗, x∗)
d (b∗, y∗)

)
≤ (I −A)−1 η (2.12)

where η :=

(
η1
η2

)
.

(v) let F1, F2 : X ×X → X be two operators such that, there exist η1, η2 > 0 with

d (T1 (x, y) , F1 (x, y)) ≤ η1
d (T2 (x, y) , F2 (x, y)) ≤ η2

(2.13)

for all (x, y) ∈ X ×X. If we consider the sequence (Fn
1 (x, y) , Fn

2 (x, y))n∈N, given by

Fn+1
1 (x, y) := Fn

1 (F1 (x, y) , F2 (x, y))

Fn+1
2 (x, y) := Fn

2 (F1 (x, y) , F2 (x, y))
(2.14)

for all n ∈ N∗ and η :=

(
η1
η2

)
, then

(
d (Fn

1 (x0, y0) , x
∗)

d (Fn
2 (x0, y0) , y

∗)

)
≤ (I −A)−1 η +An (I −A)−1

(
d (x0, T1 (x0, y0))
d (y0, T2 (x0, y0))

)

(vi) the operatorial equations system {
x = T1 (x, y)
y = T2 (x, y)

(2.15)

is Ulam-Hyers stable.

Proof. (i)− (ii) Let us define T : X ×X → X ×X by

T (x, y) =

(
T1 (x, y)
T2 (x, y)

)
= (T1 (x, y) , T2 (x, y))

Denote Z := X ×X and consider d̃ : Z × Z → R2
+,

d̃ ((x, y) , (u, v)) :=

(
d (x, u)
d (y, v)

)
.

Then we have

d̃ (T (x, y) , T (u, v)) = d̃

((
T1 (x, y)
T2 (x, y)

)(
T1 (u, v)
T2 (u, v)

))
(2.16)

=

(
d (T1 (x, y) , T1 (u, v))
d (T2 (x, y) , T2 (u, v))

)
≤

(
k1d (x, u) + k2d (y, v)
k3d (x, u) + k4d (y, v)

)
=

(
k1 k2
k3 k4

)(
d (x, u)
d (y, v)

)
= A · d̃ ((x, y) , (u, v))

If we denote (x, y) := z, (u, v) := w, we get that

d̃ (T (z) , T (w)) ≤ A · d̃ (z, w) .

Applying Perov’s fixed point Theorem 1.2 (i), we get that there exists a unique element (x∗, y∗) ∈ X ×X
such that

(x∗, y∗) = T (x∗, y∗)
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and is equivalent with {
x∗ = T1 (x∗, y∗)
y∗ = T2 (x∗, y∗)

Moreover, for each z ∈ X ×X , we have that Tn (z)→ z∗ as n→∞, where

T 0 (z) := z, T 1 (z) = T (x, y) = (T1 (x, y) , T2 (x, y))

T 2 (z) = T (T1 (x, y) , T2 (x, y)) =
(
T 2
1 (x, y) , T 2

2 (x, y)
)

and, in generally

Tn+1
1 (x, y) := Tn

1 (T1 (x, y) , T2 (x, y)) (2.17)

Tn+1
2 (x, y) := Tn

2 (T1 (x, y) , T2 (x, y))

We obtain that Tn (z) = (Tn
1 (z) , Tn

2 (z))→ z∗ := (x∗, y∗) as n→∞, for all z := (x, y) ∈ X ×X.
So, for all (x, y) ∈ X ×X, we have that

Tn
1 (x, y) → x∗ as n→∞ (2.18)

Tn
2 (x, y) → y∗ as n→∞.

(iii) By Perov’s Theorem (iii) we successively have(
d (Tn

1 (x0, y0) , x
∗)

dTn
2 (x0, y0) , y

∗)

)
= d̃ ((Tn (x0, y0)) , (x

∗, y∗))

≤ An (I −A)−1 d̃ ((x0, y0) , (T1 (x0, y0) , T2 (x0, y0)))

= An (I −A)−1
(
d (x0, T1 (x0, y0))
d (y0, T2 (x0, y0))

)
.

(iv) If we consider F : X ×X → X ×X such that

F (x, y) =

(
F1 (x, y)
F2 (x, y)

)
(2.19)

and

d̃ (T (x, y) , F (x, y)) = d̃

((
T1 (x, y)
T2 (x, y)

)(
F1 (x, y)
F2 (x, y)

))
(2.20)

=

(
d (T1 (x, y) , F1 (x, y))
d (T2 (x, y) , F2 (x, y))

)
≤ η

then, applying Perov‘s fixed point Theorem 1.2 (iv) we get

d̃ ((x∗, y∗) , (a∗, b∗)) ≤ (I −A)−1 η (2.21)

(v) By (2.20) we get that
d̃ (T (x, y) , F (x, y)) ≤ η.

Notice that Fn (x, y) = F
(
Fn−1 (x, y)

)
, for all (x, y) ∈ X ×X.

Using the assertion (iii) of this theorem, we can successively write:

d̃ (Fn (x0, y0) , (x
∗, y∗)) ≤ d̃ (Fn (x0, y0) , T

n (x0, y0)) + d̃ (Tn (x0, y0) , (x
∗, y∗))

≤ d̃ (Fn (x0, y0) , T
n (x0, y0)) +An (I −A)−1 d̃ (T (x0, y0) , (x0, y0))
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On the other hand, we have

d̃ (Fn (x0, y0) , T
n (x0, y0)) = d̃

(
F
(
Fn−1 (x0, y0)

)
, T
(
Tn−1 (x0, y0)

))
(2.22)

≤ d̃
(
F
(
Fn−1 (x0, y0)

)
, T
(
Fn−1 (x0, y0)

))
+d̃
(
T
(
Fn−1 (x0, y0)

)
, T
(
Tn−1 (x0, y0)

))
≤ η +Ad̃

(
Fn−1 (x0, y0) , T

n−1 (x0, y0)
)

≤ η +A
(
η + d̃

(
Fn−2 (x0, y0) , T

n−2 (x0, y0)
))

≤ ... ≤ η (I +A+ ...+An + ...) = η (I −A)−1

Thus, we finally get the conclusion

d̃ (Fn (x0, y0) , (x
∗, y∗)) ≤ η (I −A)−1 +An (I −A)−1 d̃ (T (x0, y0) , (x0, y0)) .

(vi) By (i) and (ii) there exists a unique element (x∗, y∗) ∈ X ×X such that (x∗, y∗) is a solution for (2.15)
and the sequence (Tn

1 (x, y) , Tn
2 (x, y)) converges to (x∗, y∗) as n→∞. Let ε1, ε2 > 0 and (u∗, v∗) ∈ X ×X

such that
d (u∗, T1 (u∗, v∗)) ≤ ε1
d (v∗, T2 (u∗, v∗)) ≤ ε2

(2.23)

Then we have

d̃ ((u∗, v∗) , (x∗, y∗)) ≤ d̃ ((u∗, v∗) , (T1 (u∗, v∗) , T2 (u∗, v∗)))

+d̃ ((T1 (u∗, v∗) , T2 (u∗, v∗)) , (x∗, y∗))

= d̃((u∗, v∗), (T1 (u∗, v∗) , T2 (u∗, v∗)))

+d̃ ((T1 (u∗, v∗) , T2 (u∗, v∗)) , (T1 (x∗, y∗) , T2 (x∗, y∗)))

=

(
d(u∗, T1 (u∗, v∗))
d(v∗, T2 (u∗, v∗))

)
+

(
d(T1 (u∗, v∗) , T1 (x∗, y∗))
d(T2 (u∗, v∗) , T2 (x∗, y∗))

)
≤

(
ε1
ε2

)
+ d̃ (T (u∗, v∗) , T (x∗, y∗))

≤ ε+Ad̃ ((u∗, v∗) , (x∗, y∗))

Since (I −A) is inversable and (I −A)−1has positive elements, we imediately obtain

d̃ ((u∗, v∗) , (x∗, y∗)) ≤ (I −A)−1 ε

or equivalently (
d (u∗, x∗)

d (v∗, y∗)

)
≤ (I −A)−1 ε

If we denote (I −A)−1 :=

(
c1 c2
c3 c4

)
, then we obtain

d (u∗, x∗) ≤ c1ε1 + c2ε2

d (v∗, y∗) ≤ c3ε1 + c4ε2 (2.24)

proving that the operatorial system (2.15) is Ulam-Hyers stable.

Remark 2.5. Notice that, if (X, d) is a metric space and T : X ×X → X is an operator and we define

T1(x, y) := T (x, y) and T2(x, y) := T (y, x),

then the above approach leads to some well-known coupled fixed point theorems, see [5], [6]. Moreover,
in a forthcoming paper, the same approach will be applied for the case of coupled fixed points for mixed
monotone operators, see, for example, [7], [8], [9], [16].



Cristina Urs, J. Nonlinear Sci. Appl. 6 (2013), 124–136 131

We will consider now the case of multivalued operators. We need first some notations.
Let (X, d) be a generalized metric space with d : X ×X → Rm

+ given by

d(x, y) =

 d1(x, y)
...

dm(x, y)


Then, for x ∈ X and A ⊆ X we denote:

Dd(x,A) =

 Dd1(x,A)
...

Ddm(x,A)

 :=


inf
a∈A

d1(x, a)

...
inf
a∈A

dm(x, a)


P (X) : = {Y ⊆ X | Y is nonempty} ,

Pcl(X) : = {Y ∈ P (X) | Y is closed} .

We also denote D((x, y), A×B) :=

(
Dd(x,A)
Dd(y,B)

)
.

Our second main result is an existence, uniqueness, data dependence and Ulam-Hyers stability theorem
for the coupled fixed point of a pair of multivalued operators (T1, T2). For the proof of our main result, we
give the following theorem.

Theorem 2.6. Let (X, d) be a complete generalized metric space and let T : X → Pcl(X) be a multivalued
A-contraction, i.e. there exists A ∈ Mmm (R+) which converges towards zero as n → ∞ and for each
x, y ∈ X and each u ∈ T (x) there exists v ∈ T (y) such that d(u, v) ≤ A ·d(x, y). Then T is a MWP-operator,
i.e. FixT 6= ∅ and for each (x, y) ∈ Graph(T ) there exists a sequence (xn)n∈N of succesive approximations
for T starting from (x, y) which converges to a fixed point x∗ of T. Moreover d(x, x∗) ≤ (I − A)−1d(x, y),
for all (x, y) ∈ Graph(T ).

Proof. Let x0 ∈ X and x1 ∈ T (x0). Then by the A-contraction condition, there exists x2 ∈ T (x1) such that
d(x1, x2) ≤ A · d(x0, x1). Now, for x2 ∈ T (x1) there exists x3 ∈ T (x2) such that d(x2, x3) ≤ A · d(x1, x2) ≤
A2 · d(x0, x1).

In this way, by an iterative construction, we get a sequence (xn)n∈N such that
x0 ∈ X

xn+1 ∈ T (xn)
d(xn, xn+1) ≤ And(x0, x1)

for all n ∈ N.
Thus, by the above relation, we get

d(xn, xn+1) ≤ d(xn, xn+1) + ...+ d(xn+p+1, xn+p)

≤ And(x0, x1) + ...+An+p−1d(x0, x1)

= An(I +A+ ...+Ap−1)d(x0, x1)

Leting n→∞ we get that the sequence (xn)n∈N is Cauchy. Hence there exist x∗ ∈ X such that x∗ = lim
n→∞

xn.

We prove that x∗ ∈ T (x∗). Indeed, for xn ∈ T (xn−1) there exist un ∈ T (x∗) such that

d(xn, un) ≤ Ad(xn−1, x
∗), for all n ∈ N∗.

On the other side

d(x∗, un) ≤ d(x∗, xn) + d(xn, un) ≤ d(x∗, xn) +Ad(xn−1, x
∗)→ 0, as n→∞.
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Hence lim
n→∞

un = x∗. But un ∈ T (x∗), for n ∈ N and because T (x∗) is closed, we have that x∗ ∈ T (x∗).

Moreover we can write

d(xn, xn+p) ≤ An(I +A+ ...+Ap−1 + ...)d(x0, x1) = An(I −A)−1d(x0, x1).

Letting p→∞ we get that

d(xn, x
∗) ≤ An(I −A)−1d(x0, x1), for all n ≥ 1.

Thus

d(x0, x
∗) ≤ d(x0, x1) + d(x1, x

∗) ≤ d(x0, x1) +A(I −A)−1d(x0, x1)

= (I +A(I −A)−1)d(x0, x1) = (I +A+A2 + ...)d(x0, x1)

= (I −A)−1d(x0, x1).

Definition 2.7. Let (X, d) generalized metric space and F : X → P (X). The fixed point inclusion

x ∈ F (x), x ∈ X (2.25)

is called generalized Ulam-Hyers stable if and only if there exists ψ : Rm
+ → Rm

+ increasing, continuous in o
with ψ(0) = 0 such that for each ε := (ε1, ..., εm) > 0 and for each ε-solution y∗ of (2.25), i.e.

Dd(y∗, F (y∗)) ≤ ε

there exists a solution x∗ of the fixed point inclusion (2.25) such that

d(y∗, x∗) ≤ ψ(ε)

In particular, if ψ(t) = C · t, for each t ∈ Rm
+ (where C ∈Mmm (R+)), then (2.25) is said to be Ulam-Hyers

stable.

Definition 2.8. A subset U of a generalized metric space (X, d) is called proximinal if for each x ∈ X there
exists u ∈ U such that d(x, u) = Dd(x, U).

Theorem 2.9. Let (X, d) be a complete generalized metric space and let T : X → Pcl(X) be a multivalued
A-contraction with proximinal values. Then, the fixed point inclusion (2.25) is Ulam-Hyers stable.

Proof. Let ε := (ε1, ..., εm) with εi > 0, for each i ∈ {1, 2, · · ·m} and let y∗ ∈ X an ε-solution of (2.25), i.e.,

Dd(y∗, F (y∗)) ≤ ε

By the second conclusion of Theorem 2.6 we have that for any (x, y) ∈ Graph(T )

d(x, x∗(x, y)) ≤ (I −A)−1d(x, y), (2.26)

where x∗(x, y) denotes the fixed point of F which is obtained by Theorem 2.6 by successive approximations
starting from (x, y).

Since T (y∗) is proximinal there exists u∗ ∈ T (y∗) such that

d(y∗, u∗) = Dd(y∗, T (y∗))

Hence, by (2.26)
d(y∗, x∗(y∗, u∗)) ≤ (I −A)−1d(y∗, u∗) ≤ (I −A)−1ε.
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Theorem 2.10. Let (X, d) be a complete generalized metric space and let T : X → Pcl(X) be a multivalued
A-contraction such that there exists x∗ ∈ X with T (x∗) = {x∗} . Then the fixed point inclusion (2.25) is
Ulam-Hyers stable.

Proof. Let ε := (ε1, ..., εm) with εi > 0, for each i ∈ {1, 2, · · ·m} and let y∗ ∈ X an ε-solution of (2.25), i.e.,

Dd(y∗, T (y∗)) ≤ ε

By the A-contraction condition, for x := y∗, y := x∗ and u ∈ T (y∗) we get that

d(u, x∗) ≤ Ad(y∗, x∗).

Then, for any u ∈ T (y∗) we have

d(y∗, x∗) ≤ d(y∗, u) + d(u, x∗) ≤ d(y∗, u) +Ad(y∗, x∗)

Hence
d(y∗, x∗) ≤ (I −A)−1d(y∗, u), for any u ∈ T (y∗)

Thus
d(y∗, x∗) ≤ (I −A)−1Dd(y∗, T (y∗)) ≤ (I −A)−1ε.

Let (X, d) be a metric space. We will focus our attention to the following system of operatorial inclusions:{
x ∈ T1(x, y)
y ∈ T2(x, y)

(2.27)

where T1, T2 : X ×X → P (X) are two given multivalued operators.
By definition, a solution (x, y) ∈ X ×X of the above system is called a coupled fixed point for the pair

(T1, T2).

Definition 2.11. Let (X, d) be a metric space and let T1, T2 : X×X → P (X) are two multivalued operators.
Then the operatorial inclusions system (2.27) is said to be Ulam-Hyers stable if there exist c1, c2, c3, c4 > 0
such that for each ε1, ε2 > 0 and each pair (u∗, v∗) ∈ X ×X which satisfies the relations

d (u∗, w) ≤ ε1 , for all w ∈ T1 (u∗, v∗) (2.28)

d (v∗, z) ≤ ε2 , for all z ∈ T2 (u∗, v∗)

there exists a solution (x∗, y∗) ∈ X ×X of (2.27) such that

d (u∗, x∗) ≤ c1ε1 + c2ε2 (2.29)

d (v∗, y∗) ≤ c3ε1 + c4ε2

Definition 2.12. Let (X, d) be a metric space. By definition, we say that S : X×X → P (X) has proximinal
values with respect to the first variable if for any x, y ∈ X there exists u ∈ S(x, y) such that

d(x, u) = Dd(x, S(x, y))

Definition 2.13. Let (X, d) be a metric space. By definition we say that S : X×X → P (X) has proximinal
values with respect to the second variable if for any x, y ∈ X there exists v ∈ S(x, y) such that

d(y, v) = Dd(y, S(x, y))

Now we are in the position to give our next main results.
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Theorem 2.14. Let (X, d) be a complete metric space and let T1, T2 : X ×X → Pcl(X) be two multivalued
operators. Suppose that T1 has proximinal values with respect to the first variable and T2 with respect to the
second one. For each (x, y), (u, v) ∈ X ×X and each z1 ∈ T1(x, y), z2 ∈ T2(x, y) there exist w1 ∈ T1(u, v),
w2 ∈ T2(u, v) satisfying

d(z1, w1) ≤ k1d(x, u) + k2d(y, v)

d(z2, w2) ≤ k3d(x, u) + k4d(y, v)

We suppose that A :=

(
k1 k2
k3 k4

)
converges to zero. Then:

(i) there exists (x∗, y∗) ∈ X ×X a solution for (2.27).
(ii) the operatorial system (2.27) is Ulam-Hyers stable.

Proof. (i)-(ii) Let us define T : X ×X → Pcl(X)× Pcl(X) by

T (x, y) := T1(x, y)× T2(x, y).

Denote Z := X ×X and consider d̃ : Z × Z → R2
+,

d̃((x, y), (u, v)) :=

(
d(x, u)
d(y, v)

)
.

Then, from the hypotheses of the theorem, we get that for each s := (x, y), t := (u, v) ∈ X ×X and each
z := (z1, z2) ∈ T (x, y), there exists w := (w1, w2) ∈ T (u, v) satisfying the relation

d̃(z, w) ≤ A · d̃(s, t),

which proves that T is a multivalued A-contraction.
Since T1(x, y) ⊂ X is proximinal with respect to the first variable we have that, for any (x, y) ∈ X there
exists u ∈ T1(x, y) such that

d(x, u) = Dd(x, T1(x, y))

Since T2(x, y) ⊂ X is proximinal with respect to the second variable we get that, for any (x, y) ∈ X there
exists v ∈ T2(x, y) such that

d(y, v) = Dd(y, T2(x, y))

Then the set T (x, y) := T1(x, y)×T2(x, y) is proximinal, since for any (x, y) ∈ X there exists (u, v) ∈ T (x, y)
such that

d̃((x, y), (u, v)) = D
d̃
((x, y), T (x, y)).

The conclusions follow now from Theorem 2.6 and Theorem 2.9.

Theorem 2.15. Let (X, d) be a complete metric space and let T1, T2 : X ×X → Pcl(X) be two multivalued
operators. Suppose there exist x∗1, x

∗
2 ∈ X such that

T1(x
∗, y∗) = {x∗}, T2(x

∗, y∗) = {y∗}. (2.30)

For each (x, y), (u, v) ∈ X ×X and each z1 ∈ T1(x, y), z2 ∈ T2(x, y) there exist w1 ∈ T1(u, v), w2 ∈ T2(u, v)
satisfying

d(z1, w1) ≤ k1d(x, u) + k2d(y, v)

d(z2, w2) ≤ k3d(x, u) + k4d(y, v).

We suppose that A :=

(
k1 k2
k3 k4

)
converges to zero. Then:

(i) there exists (x∗, y∗) ∈ X ×X a solution for (2.27).
(ii) the operatorial system (2.27) is Ulam-Hyers stable.
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Proof. (i)-(ii) Let us define T : X ×X → Pcl(X)× Pcl(X) by

T (x, y) := T1(x, y)× T2(x, y).

Then from the hypotheses of the theorem we get that

T (x∗, y∗) = T1(x
∗, y∗)× T2(x∗, y∗) = {(x∗, y∗)}.

So, T has at least one strict fixed point.
We denote Z := X ×X and consider d̃ : Z × Z → R2

+,

d̃((x, y), (u, v)) :=

(
d(x, u)
d(y, v)

)
.

Then from the hypotheses of the theorem, we have that for each s := (x, y), t := (u, v) ∈ X ×X and each
z := (z1, z2) ∈ T (x, y), there exists w := (w1, w2) ∈ T (u, v) satisfying the relation

d̃(z, w) ≤ A · d̃(s, t),

which proves that T is a multivalued A-contraction.
The conclusions follow now from Theorem 2.6 and Theorem 2.9.

Remark 2.16. Notice again that, if (X, d) is a metric space and T : X×X → P (X) is a multivalued operator
and we define

T1(x, y) := T (x, y) and T2(x, y) := T (y, x),

then the above approach leads to some coupled fixed point theorems in the classical sense.
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