Existence and nonexistence of solutions for nonlinear second order q-integro-difference equations with non-separated boundary conditions

Ravi P. Agarwal ${ }^{\text {a,c,* }}$, Guotao Wang ${ }^{\text {b }}$, Aatef Hobiny ${ }^{\text {c }}$, Lihong Zhang ${ }^{\text {b }}$, Bashir Ahmad ${ }^{\text {c }}$
${ }^{a}$ Department of Mathematics, Texas A\&M University, Kingsville, TX 78363-8202, USA.
${ }^{b}$ School of Mathematics and Computer Science, Shanxi Normal University, Linfen, Shanxi 041004, People's Republic of China.
${ }^{\text {c Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia. }}$

Abstract

In this paper, we investigate a nonlinear second order boundary value problem of q-integro-difference equations supplemented with non-separated boundary conditions. Sufficient conditions for the existence and nonexistence of solutions are presented. Examples are provided for explanation of the obtained work. © 2015 All rights reserved.

Keywords: q-integro-difference equations, non-separated boundary conditions, existence, nonexistence. 2010 MSC: 93C30, 93B18, 93A30, 39A99.

1. Introduction

Consider the following nonlinear second order q-integro-difference equation with non-separated boundary conditions:

$$
\left\{\begin{array}{l}
D_{q}^{2} u(t)=f(t, u(t))+I_{q} g(t, u(t)), \quad t \in I_{q}, \tag{1.1}\\
u(0)=\eta u(T), \quad D_{q} u(0)=\eta D_{q} u(T),
\end{array}\right.
$$

where $f, g \in C\left(I_{q} \times \mathbb{R}, \mathbb{R}\right), I_{q}=[0, T] \cap q^{\bar{N}}, q^{\bar{N}}:=\left\{q^{n}: n \in \mathbb{N}\right\} \cup\{0\}, T \in q^{\bar{N}}$ is a fixed constant and $\eta \neq 1$ is a fixed real number.

[^0]The study of q-difference equations, initiated with the works of Jackson [18, 19], Carmichael [14], Mason $[22]$ and Adams [1], has recently gained a considerable interest. The subject of q-calculus is also known as quantum calculus and distinguishes itself from the classical calculus in the sense that the notion of q-derivative is independent of the concept of limit and that q-difference equations are always completely controllable. The tools of q-calculus are found to be of a great value in studying q-optimal control problems [10]. The q-analogue of continuous variational calculus is variational q-calculus, where the extra-parameter q accounts for a physical or economical situation. In fact, the variational calculus on q-uniform lattice helps to find the extremum of the functional involved in Lagrange problems of q-Euler equations rather than solving the Euler-Lagrange equation itself [11]. The q-difference equations have potential applications in several fields such as special functions, super-symmetry, operator theory, combinatorics, etc. For examples and details, see a series of books ($[7,[8,46,20])$ and papers ($[2,42,23])$ and the references cited therein. Concerning the theory of initial and boundary value problems of q-difference equations, we refer the reader to the works obtained in papers $([3,4,4,6,19,13,15,17, ~ 24])$.

In the sequel, we use the following conditions and notation:
$\left(H_{1}\right) \lim _{|u| \rightarrow \infty} \frac{f(t, u)}{|u|}=a(t)$ and $\lim _{|u| \rightarrow \infty} \frac{g(t, u)}{|u|}=b(t)$ uniformly on I_{q}.
$\left(H_{2}\right) \lim _{|u| \rightarrow 0^{+}} \frac{f(t, u)}{|u|}=0$ and $\lim _{|u| \rightarrow \infty} \frac{f(t, u)}{|u|}=0$ uniformly on I_{q}.
$\left(H_{3}\right) \lim _{|u| \rightarrow 0^{+}} \frac{g(t, u)}{|u|}=0$ and $\lim _{|u| \rightarrow \infty} \frac{g(t, u)}{|u|}=0$ uniformly on I_{q}.

$$
\begin{aligned}
\Lambda= & \sup _{t \in I_{q}}\left\{\int_{0}^{t}|t-q s||a(s)| d_{q} s+\int_{0}^{t}\left|\frac{t^{2}}{1+q}-q r t+\frac{q^{3} r^{2}}{1+q} \| b(r)\right| d_{q} r\right. \\
& \left.+\frac{|\eta|}{(\eta-1)^{2}} \int_{0}^{T}|T+(1-\eta)(t-q s)| a(s) \right\rvert\, d_{q} s \\
& \left.+\frac{|\eta|}{(\eta-1)^{2}} \int_{0}^{T}\left|[T+(1-\eta) t](T-q r)+(1-\eta) \frac{q^{3} r^{2}-q T^{2}}{1+q} \| b(r)\right| d_{q} r\right\} \\
\mathcal{M}= & \frac{T^{2}}{1+q}+\frac{T^{3}}{(1+q)\left(1+q+q^{2}\right)}+\frac{|\eta| T^{2}}{(\eta-1)^{2}}+\frac{|\eta| T^{2}}{|\eta-1|(1+q)} \\
& +\frac{|\eta|(T+|1-\eta| T) T^{2}}{(\eta-1)^{2}(1+q)}+\frac{|\eta| q}{|\eta-1|\left(1+q+q^{2}\right)}
\end{aligned}
$$

The main objective of the present paper is to establish the following results which deal with the existence and nonexistence of solutions for the problem (1.1).

Theorem 1.1. Assume that the condition $\left(H_{1}\right)$ holds. Then the problem (1.1) has at least one solution provided that $0<\Lambda<1$.

Theorem 1.2. Assume that the conditions $\left(H_{2}\right)$ and $\left(H_{3}\right)$ hold. If there exists a constant $\mathcal{B}>0$ such that $\mathcal{M}<\mathcal{B}$, then the non-separated boundary value problem (1.1) has no solution.

2. Preliminaries

Let us describe some basic concepts of q-calculus [7, 16].
For $0<q<1$, the q-derivative of a real valued function f is defined as

$$
D_{q} f(t)=\frac{f(t)-f(q t)}{(1-q) t}, \quad D_{q} f(0)=\lim _{t \rightarrow 0} D_{q} f(t)
$$

The q-integral of a function f is defined as

$$
\int_{a}^{x} f(t) d_{q} t:=\sum_{n=0}^{\infty} x(1-q) q^{n} f\left(x q^{n}\right)-a(1-q) q^{n} f\left(a q^{n}\right), \quad x \in[a, b]
$$

and for $a=0$, we denote

$$
I_{q} f(x)=\int_{0}^{x} f(t) d_{q} t=\sum_{n=0}^{\infty} x(1-q) q^{n} f\left(x q^{n}\right)
$$

provided the series converges. If $a \in[0, b]$ and f is defined on the interval $[0, b]$, then

$$
\int_{a}^{b} f(t) d_{q} t=\int_{0}^{b} f(t) d_{q} t-\int_{0}^{a} f(t) d_{q} t
$$

Similarly, we have

$$
I_{q}^{0} f(t)=f(t), \quad I_{q}^{n} f(t)=I_{q} I_{q}^{n-1} f(t), \quad n \in \mathbb{N}
$$

Observe that

$$
\begin{equation*}
D_{q} I_{q} f(x)=f(x) \tag{2.1}
\end{equation*}
$$

and if f is continuous at $x=0$, then $I_{q} D_{q} f(x)=f(x)-f(0)$. In q-calculus, the product rule and integration by parts formula are

$$
\begin{align*}
D_{q}(g h)(t) & =D_{q} g(t) h(t)+g(q t) D_{q} h(t) \tag{2.2}\\
\int_{0}^{x} f(t) D_{q} g(t) d q t & =[f(t) g(t)]_{0}^{x}-\int_{0}^{x} D_{q} f(t) g(q t) d_{q} t \tag{2.3}
\end{align*}
$$

We introduce the Banach space $X=C\left(I_{q}, \mathbb{R}\right)=\left\{u: I_{q} \rightarrow \mathbb{R} \mid u \in C\left(I_{q}\right)\right\}$ equipped with a topology of uniform convergence with respect to the norm $\|u\|=\sup _{t \in I_{q}}|u(t)|$.

Lemma 2.1 ([4]). The linear problem of a second order q-difference equation supplemented with nonseparated boundary conditions:

$$
\left\{\begin{array}{lc}
D_{q}^{2} u(t)=y(t), & t \in I_{q} \tag{2.4}\\
u(0)=\eta u(T), & D_{q} u(0)=\eta D_{q} u(T)
\end{array}\right.
$$

has a unique solution given by

$$
\begin{equation*}
u(t)=\int_{0}^{t}(t-q s) y(s) d_{q} s+\frac{\eta}{(\eta-1)^{2}} \int_{0}^{T}[T+(1-\eta)(t-q s)] y(s) d_{q} s \tag{2.5}
\end{equation*}
$$

To transform the problem (1.1) into a fixed point problem we use Lemma 2.1 to define an operator $T: X \rightarrow X$ as

$$
\begin{align*}
(T u)(t)= & \int_{0}^{t}(t-q s)\left[f(s, u(s))+I_{q} g(s, u(s))\right] d_{q} s \\
& +\frac{\eta}{(\eta-1)^{2}} \int_{0}^{T}[T+(1-\eta)(t-q s)]\left[f(s, u(s))+I_{q} g(s, u(s))\right] d_{q} s \\
= & \int_{0}^{t}(t-q s) f(s, u(s)) d_{q} s+\int_{0}^{t}(t-q s) \int_{0}^{s} g(r, u(r)) d_{q} r d_{q} s \tag{2.6}\\
& +\frac{\eta}{(\eta-1)^{2}} \int_{0}^{T}[T+(1-\eta)(t-q s)] f(s, u(s)) d_{q} s \\
& +\frac{\eta}{(\eta-1)^{2}} \int_{0}^{T}[T+(1-\eta)(t-q s)] \int_{0}^{s} g(r, u(r)) d_{q} r d_{q} s
\end{align*}
$$

which can alternatively be written as

$$
\begin{align*}
(T u)(t)= & \int_{0}^{t}(t-q s) f(s, u(s)) d_{q} s+\int_{0}^{t}\left(\frac{t^{2}}{1+q}-q r t+\frac{q^{3} r^{2}}{1+q}\right) g(r, u(r)) d_{q} r \\
& +\frac{\eta}{(\eta-1)^{2}} \int_{0}^{T}[T+(1-\eta)(t-q s)] f(s, u(s)) d_{q} s \tag{2.7}\\
& +\frac{\eta}{(\eta-1)^{2}} \int_{0}^{T}\left[[T+(1-\eta) t](T-q r)+(1-\eta) \frac{q^{3} r^{2}-q T^{2}}{1+q}\right] g(r, u(r)) d_{q} r .
\end{align*}
$$

Observe that the problem (1.1) has a solution if and only if the operator T has a fixed point.

3. The Proof of Main Results

In order to obtain the proof of Theorem 1.1, we need the following fixed point theorem.
Theorem 3.1 (21]). Let X be a Banach Space. Let $T: X \rightarrow X$ be a completely continuous mapping and let $L: X \rightarrow X$ be a bounded linear mapping such that 1 is not an eigenvalue of L. Suppose that

$$
\lim _{\|u\| \rightarrow \infty} \frac{\|T u-L u\|}{\|u\|}=0 .
$$

Then T has a fixed point in X.

Proof of Theorem 1.1.

In the first step, we show that T is a completely continuous operator. Obviously, the operator T is continuous in view of continuity of functions f and g.

Let $\Omega \subset C\left(I_{q}, \mathbb{R}\right)$ be bounded. Then, for any $t \in I_{q}$, there exist positive constants L_{1} and L_{2} such that $|f(t, u)| \leq L_{1}$ and $|g(t, u)| \leq L_{2}, \forall u \in \Omega$. Then, we have

$$
\begin{aligned}
|(T u)(t)|= & \left\lvert\, \int_{0}^{t}(t-q s) f(s, u(s)) d_{q} s+\int_{0}^{t}\left(\frac{t^{2}}{1+q}-q r t+\frac{q^{3} r^{2}}{1+q}\right) g(r, u(r)) d_{q} r\right. \\
& +\frac{\eta}{(\eta-1)^{2}} \int_{0}^{T}[T+(1-\eta)(t-q s)] f(s, u(s)) d_{q} s \\
& \left.+\frac{\eta}{(\eta-1)^{2}} \int_{0}^{T}\left[[T+(1-\eta) t](T-q r)+(1-\eta) \frac{q^{3} r^{2}-q T^{2}}{1+q}\right] g(r, u(r)) d_{q} r \right\rvert\, \\
\leq & \int_{0}^{t}|t-q s||f(s, u(s))| d_{q} s+\int_{0}^{t}\left|\frac{t^{2}}{1+q}-q r t+\frac{q^{3} r^{2}}{1+q}\right||g(r, u(r))| d_{q} r \\
& +\frac{|\eta|}{(\eta-1)^{2}} \int_{0}^{T}|T+(1-\eta)(t-q s)||f(s, u(s))| d_{q} s \\
& +\frac{|\eta|}{(\eta-1)^{2}} \int_{0}^{T}\left|[T+(1-\eta) t](T-q r)+(1-\eta) \frac{q^{3} r^{2}-q T^{2}}{1+q} \| g(r, u(r))\right| d_{q} r \\
\leq & \int_{0}^{t}|t-q s| L_{1} d_{q} s+\int_{0}^{t}\left|\frac{t^{2}}{1+q}-q r t+\frac{q^{3} r^{2}}{1+q}\right| L_{2} d_{q} r \\
& +\frac{|\eta|}{(\eta-1)^{2}} \int_{0}^{T}|T+(1-\eta)(t-q s)| L_{1} d_{q} s \\
& +\frac{|\eta|}{(\eta-1)^{2}} \int_{0}^{T}\left|[T+(1-\eta) t](T-q r)+(1-\eta) \frac{q^{3} r^{2}-q T^{2}}{1+q}\right| L_{2} d_{q} r \\
\leq & \sup _{t \in I_{q}}\left\{\frac{t^{2}}{1+q} L_{1}+\frac{t^{3}}{(1+q)\left(1+q+q^{2}\right)} L_{2}+\frac{|\eta| T^{2}}{(\eta-1)^{2}} L_{1}+\frac{|\eta| T^{2}}{|\eta-1|(1+q)} L_{1}\right. \\
& \left.+\frac{|\eta|(T+|1-\eta| t) T^{2}}{(\eta-1)^{2}(1+q)} L_{2}+\frac{|\eta| q}{|\eta-1|\left(1+q+q^{2}\right)} L_{2}\right\}
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{T^{2}}{1+q} L_{1}+\frac{T^{3}}{(1+q)\left(1+q+q^{2}\right)} L_{2}+\frac{|\eta| T^{2}}{(\eta-1)^{2}} L_{1}+\frac{|\eta| T^{2}}{|\eta-1|(1+q)} L_{1} \\
& +\frac{|\eta|(T+|1-\eta| T) T^{2}}{(\eta-1)^{2}(1+q)} L_{2}+\frac{|\eta| q}{|\eta-1|\left(1+q+q^{2}\right)} L_{2}:=L
\end{aligned}
$$

which implies that $\|T u\| \leq L$. Moreover, for $\forall t_{1}, t_{2} \in I_{q}, t_{1}<t_{2}$, we obtain

$$
\begin{aligned}
&\left|(T u)\left(t_{2}\right)-(T u)\left(t_{1}\right)\right| \\
&= \mid \int_{0}^{t_{2}}\left(t_{2}-q s\right) f(s, u(s)) d_{q} s-\int_{0}^{t_{1}}\left(t_{1}-q s\right) f(s, u(s)) d_{q} s \\
&+\int_{0}^{t_{2}}\left(\frac{t_{2}^{2}}{1+q}-q r t_{2}+\frac{q^{3} r^{2}}{1+q}\right) g(r, u(r)) d_{q} r-\int_{0}^{t_{1}}\left(\frac{t_{1}^{2}}{1+q}-q r t_{1}+\frac{q^{3} r^{2}}{1+q}\right) g(r, u(r)) d_{q} r \\
& \left.+\frac{\eta\left(t_{2}-t_{1}\right)}{(1-\eta)} \int_{0}^{T} f(s, u(s)) d_{q} s+\frac{\eta\left(t_{2}-t_{1}\right)}{(1-\eta)} \int_{0}^{T}(T-q r) g(r, u(r)) d_{q} r \right\rvert\,, \\
& \leq \mid\left(t_{2}-t_{1}\right) \int_{0}^{t_{1}} f(s, u(s)) d_{q} s+\int_{t_{1}}^{t_{2}}\left(t_{2}-q s\right) f(s, u(s)) d_{q} s \\
&+\left(t_{2}-t_{1}\right) \int_{0}^{t_{1}}\left(\frac{t_{1}+t_{2}}{1+q}-q r\right) g(r \cdot u(r)) d_{q} r+\int_{t_{1}}^{t_{2}}\left(\frac{t_{2}^{2}}{1+q}-q r t_{2}+\frac{q^{3} r^{2}}{1+q}\right) g(r, u(r)) d_{q} r \\
& \left.+\frac{\eta\left(t_{2}-t_{1}\right)}{(1-\eta)} \int_{0}^{T} f(s, u(s)) d_{q} s+\frac{\eta\left(t_{2}-t_{1}\right)}{(1-\eta)} \int_{0}^{T}(T-q r) g(r, u(r)) d_{q} r \right\rvert\,
\end{aligned}
$$

which tends to zero independent of u as $t_{2}-t_{1} \rightarrow 0$. Thus, the operator T is relatively compact on Ω. Hence, by the Arzela-Ascoli Theorem, the operator T is compact on Ω. Hence, the operator T is completely continuous.

Next, we show that T has a fixed point. Define an operator $L: X \rightarrow X$ as

$$
\begin{align*}
(L u)(t)= & \int_{0}^{t}(t-q s) a(s)|u(s)| d_{q} s+\int_{0}^{t}\left(\frac{t^{2}}{1+q}-q r t+\frac{q^{3} r^{2}}{1+q}\right) b(r)|u(r)| d_{q} r \\
& +\frac{\eta}{(\eta-1)^{2}} \int_{0}^{T}[T+(1-\eta)(t-q s)] a(s)|u(s)| d_{q} s \tag{3.1}\\
& +\frac{\eta}{(\eta-1)^{2}} \int_{0}^{T}\left[[T+(1-\eta) t](T-q r)+(1-\eta) \frac{q^{3} r^{2}-q T^{2}}{1+q}\right] b(r)|u(r)| d_{q} r
\end{align*}
$$

Thus L is a bounded linear operator. In addition, we have

$$
\begin{align*}
|(L u)(t)|= & \left.\left|\int_{0}^{t}(t-q s) a(s)\right| u(s)\left|d_{q} s+\int_{0}^{t}\left(\frac{t^{2}}{1+q}-q r t+\frac{q^{3} r^{2}}{1+q}\right) b(r)\right| u(r) \right\rvert\, d_{q} r \\
& +\frac{\eta}{(\eta-1)^{2}} \int_{0}^{T}[T+(1-\eta)(t-q s)] a(s)|u(s)| d_{q} s \\
& \left.+\frac{\eta}{(\eta-1)^{2}} \int_{0}^{T}\left[[T+(1-\eta) t](T-q r)+(1-\eta) \frac{q^{3} r^{2}-q T^{2}}{1+q}\right] b(r)|u(r)| d_{q} r \right\rvert\, \tag{3.2}\\
\leq & \int_{0}^{t}|t-q s||a(s)| d_{q} s+\int_{0}^{t}\left|\frac{t^{2}}{1+q}-q r t+\frac{q^{3} r^{2}}{1+q}\right||b(r)| d_{q} r \\
& +\frac{|\eta|}{(\eta-1)^{2}} \int_{0}^{T}|T+(1-\eta)(t-q s) \| a(s)| d_{q} s \\
& +\frac{|\eta|}{(\eta-1)^{2}} \int_{0}^{T}\left|[T+(1-\eta) t](T-q r)+(1-\eta) \frac{q^{3} r^{2}-q T^{2}}{1+q} \| b(r)\right| d_{q} r
\end{align*}
$$

$$
\begin{aligned}
\leq & \sup _{t \in I_{q}}\left\{\int_{0}^{t}\left|t-q s\left\|a(s)\left|d_{q} s+\int_{0}^{t}\right| \frac{t^{2}}{1+q}-q r t+\frac{q^{3} r^{2}}{1+q}\right\| b(r)\right| d_{q} r\right. \\
& +\frac{|\eta|}{(\eta-1)^{2}} \int_{0}^{T}|T+(1-\eta)(t-q s) \| a(s)| d_{q} s \\
& \left.+\frac{|\eta|}{(\eta-1)^{2}} \int_{0}^{T}\left|[T+(1-\eta) t](T-q r)+(1-\eta) \frac{q^{3} r^{2}-q T^{2}}{1+q} \| b(r)\right| d_{q} r\right\}\|u\| \\
= & \Lambda\|u\|
\end{aligned}
$$

This, together with $0<\Lambda<1$, for any u such that $u=L u$, implies that

$$
\|u\|=\|L u\| \leq \Lambda\|u\|<\|u\|
$$

which is a contradiction. This means that $\lambda=1$ is not an eigenvalue of the linear operator L.
In view of $\left(H_{1}\right)$, for any $\varepsilon>0$, there exists a positive constant M such that for any $|u|>M$, we have $\left|\frac{f(t, u)}{|u|}-a(t)\right|<\varepsilon$ and $\left|\frac{g(t, u)}{|u|}-b(t)\right|<\varepsilon$ for any $t \in I_{q}$.
Thus $|f(t, u)-a(t)| u||<\varepsilon| u|$ and $|g(t, u)-b(t)| u||<\varepsilon| u|$ for any $t \in I_{q}$.
Thus, for $\varepsilon>0$ and $|u|>M$, we have

$$
\begin{aligned}
& \mid(T u)(t)-(L u)(t) \mid \\
& \leq \int_{0}^{t}|t-q s||f(s, u(s))-a(s)| u(s) \| d_{q} s \\
&+\int_{0}^{t}\left|\frac{t^{2}}{1+q}-q r t+\frac{q^{3} r^{2}}{1+q} \| g(r, u(r))-b(r)\right| u(r)| | d_{q} r \\
&+\frac{|\eta|}{(\eta-1)^{2}} \int_{0}^{T}|T+(1-\eta)(t-q s)||f(s, u(s))-a(s)| u(s)| | d_{q} s \\
&+\frac{|\eta|}{(\eta-1)^{2}} \int_{0}^{T}\left|[T+(1-\eta) t](T-q r)+(1-\eta) \frac{q^{3} r^{2}-q T^{2}}{1+q} \| g(r, u(r))-b(r)\right| u(r)| | d_{q} r \\
& \leq\left\{\int_{0}^{t}|t-q s| d_{q} s+\int_{0}^{t}\left|\frac{t^{2}}{1+q}-q r t+\frac{q^{3} r^{2}}{1+q}\right| d_{q} r\right. \\
&+\frac{|\eta|}{(\eta-1)^{2}} \int_{0}^{T}|T+(1-\eta)(t-q s)| d_{q} s \\
& \leq\left.\frac{|\eta|}{(\eta-1)^{2}} \int_{0}^{T}\left|[T+(1-\eta) t](T-q r)+(1-\eta) \frac{q^{3} r^{2}-q T^{2}}{1+q}\right| d_{q} r\right\} \varepsilon\|u\| \\
& t \in I_{q} \\
&+\frac{|\eta|(T+|1-\eta| t) T^{2}}{(\eta-1)^{2}(1+q)}+\frac{t^{2}}{(1+q)\left(1+q+q^{2}\right)}+\frac{|\eta| T^{2}}{(\eta-1)^{2}}+\frac{|\eta| T^{2}}{|\eta-1|(1+q)} \\
&=\left\{\frac{T^{2}}{\left.1+q+\frac{|\eta| q}{(1+q}+q+q+q^{2}\right)}\right\} \varepsilon\|u\| \\
&\left.+\frac{|\eta|(T+|1-\eta| T) T^{2}}{(\eta-1)^{2}(1+q)}+\frac{\mid \eta+T^{2}}{|\eta-1|\left(1+q+q^{2}\right)}\right\} \varepsilon\|u\| \\
&= \mathcal{M} \varepsilon\|u\|
\end{aligned}
$$

This yields $\|T u-L u\| \leq \mathcal{M} \varepsilon\|u\|$, that is, $\lim _{\|u\| \rightarrow \infty} \frac{\|T u-L u\|}{\|u\|}=0$. Therefore, all the conditions of Theorem 3.1 are satisfied. Hence, by the conclusion of Theorem 3.1, there exists a fixed point u of the operator T
which corresponds to a solution the problem (1.1). This completes the proof.

The Proof of Theorem 1.2

Proof. In view of $\left(H_{2}\right)$, we have

$$
\left\{\begin{array}{l}
\forall \varepsilon_{1}>0 \text { there is } \delta_{1}>0 \text { such that if } 0<|u|<\delta_{1} \text { then }\left|\frac{f(t, u)}{|u|}-0\right|<\varepsilon_{1} \text {, i.e. }|f(t, u)|<\varepsilon_{1}|u|, \tag{3.3}\\
\forall \varepsilon_{2}>0 \text { there is } N_{1}>0 \text { such that if }|u|>N_{1} \text { then }\left|\frac{f(t, u)}{|u|}-0\right|<\varepsilon_{2} \text {, i.e. }|f(t, u)|<\varepsilon_{2}|u|
\end{array}\right.
$$

Without loss of generality, let $\delta_{1}<N_{1}$ and

$$
\varepsilon^{\prime}=\max \left\{\varepsilon_{1}, \varepsilon_{2}, \max \left\{\frac{f(t, u)}{|u|}: \delta_{1} \leq|u| \leq N_{1}, t \in I_{q}\right\}\right\} .
$$

Then, for all $t \in I_{q}$ and $u \in \mathbb{R}$, we have $|f(t, u)|<\varepsilon^{\prime}|u|$.
Similarly, using $\left(H_{3}\right)$, we get

$$
\left\{\begin{array}{l}
\forall \varepsilon_{3}>0 \text { there is } \delta_{2}>0 \text { such that if } 0<|u|<\delta_{2} \text { then }\left|\frac{g(t, u)}{|u|}-0\right|<\varepsilon_{3} \text {, i.e. }|g(t, u)|<\varepsilon_{3}|u|, \tag{3.4}\\
\forall \varepsilon_{4}>0 \text { there is } N_{2}>0 \text { such that if }|u|>N_{2} \text { then }\left|\frac{g(t, u)}{|u|}-0\right|<\varepsilon_{4} \text {, i.e. }|g(t, u)|<\varepsilon_{4}|u| .
\end{array}\right.
$$

Let $\delta_{2}<N_{2}$ and

$$
\varepsilon^{\prime \prime}=\max \left\{\varepsilon_{3}, \varepsilon_{4}, \max \left\{\frac{g(t, u)}{|u|}: \delta_{2} \leq|u| \leq N_{2}, t \in I_{q}\right\}\right\} .
$$

Thus, for all $t \in I_{q}$ and $u \in \mathbb{R}$, we have $|g(t, u)|<\varepsilon^{\prime \prime}|u|$.
Let us pick $\varepsilon=\max \left\{\varepsilon^{\prime}, \varepsilon^{\prime \prime}\right\}$. Then, for any $t \in I_{q}$ and $u \in \mathbb{R}$, we obtain $|f(t, u)|<\varepsilon|u|,|g(t, u)|<\varepsilon|u|$ and

$$
\begin{aligned}
|(T u)(t)| \leq & \int_{0}^{t}|t-q s||f(s, u(s))| d_{q} s+\int_{0}^{t}\left|\frac{t^{2}}{1+q}-q r t+\frac{q^{3} r^{2}}{1+q}\right||g(r, u(r))| d_{q} r \\
& +\frac{|\eta|}{(\eta-1)^{2}} \int_{0}^{T}|T+(1-\eta)(t-q s)||f(s, u(s))| d_{q} s \\
& +\frac{|\eta|}{(\eta-1)^{2}} \int_{0}^{T}\left|[T+(1-\eta) t](T-q r)+(1-\eta) \frac{q^{3} r^{2}-q T^{2}}{1+q} \| g(r, u(r))\right| d_{q} r \\
\leq & \int_{0}^{t}|t-q s| \varepsilon|u(s)| d_{q} s+\int_{0}^{t}\left|\frac{t^{2}}{1+q}-q r t+\frac{q^{3} r^{2}}{1+q}\right| \varepsilon|u(r)| d_{q} r \\
& +\frac{|\eta|}{(\eta-1)^{2}} \int_{0}^{T}|T+(1-\eta)(t-q s)| \varepsilon|u(s)| d_{q} s \\
& +\frac{|\eta|}{(\eta-1)^{2}} \int_{0}^{T}\left|[T+(1-\eta) t](T-q r)+(1-\eta) \frac{q^{3} r^{2}-q T^{2}}{1+q}\right| \varepsilon|u(r)| d_{q} r \\
\leq & \left\{\int_{0}^{t}|t-q s| d_{q} s+\int_{0}^{t}\left|\frac{t^{2}}{1+q}-q r t+\frac{q^{3} r^{2}}{1+q}\right| d_{q} r\right. \\
& \left.+\frac{|\eta|}{(\eta-1)^{2}} \int_{0}^{T} \right\rvert\, T+(1-\eta)(t-q s) d_{q} s \\
& \left.+\frac{|\eta|}{(\eta-1)^{2}} \int_{0}^{T}\left|[T+(1-\eta) t](T-q r)+(1-\eta) \frac{q^{3} r^{2}-q T^{2}}{1+q}\right| d_{q} r\right\} \varepsilon\|u\|
\end{aligned}
$$

$$
\begin{aligned}
\leq & \sup _{t \in I_{q}}\left\{\frac{t^{2}}{1+q}+\frac{t^{3}}{(1+q)\left(1+q+q^{2}\right)}+\frac{|\eta| T^{2}}{(\eta-1)^{2}}+\frac{|\eta| T^{2}}{|\eta-1|(1+q)}\right. \\
& \left.+\frac{|\eta|(T+|1-\eta| t) T^{2}}{(\eta-1)^{2}(1+q)}+\frac{|\eta| q}{|\eta-1|\left(1+q+q^{2}\right)}\right\} \varepsilon\|u\| \\
= & \mathcal{M} \varepsilon\|u\|
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\|T u\| \leq \mathcal{M} \varepsilon\|u\| \tag{3.5}
\end{equation*}
$$

Take $\mathcal{B}=\frac{1}{\varepsilon}(\mathcal{B}>\mathcal{M})$. If u is a solution of the non-separated boundary value problem 1.1 , then u is a fixed point of operator T. Thus, $\|u\|=\|T u\|$. This, together with (3.5) and $\mathcal{M}<\mathcal{B}$, yields

$$
\|u\|=\|T u\| \leq \mathcal{M} \varepsilon\|u\|<\|u\|
$$

which is a contradiction. That is, u is not a solution of the non-separated boundary value problem 1.1). This completes the proof.

4. Examples

Example 4.1. Consider the following non-separated boundary value problem given by

$$
\left\{\begin{array}{l}
D_{\frac{1}{2}} u(t)=3 t^{3}+t^{2} \sin u(t)+\frac{t^{2}}{7}|u(t)|+\int_{0}^{t}\left(2 s^{3}+\frac{s^{5}}{u^{2}(s)}+\frac{s^{2}}{4}|u(s)|\right) d_{\frac{1}{2}} s, \quad t \in[0,1]_{\frac{1}{2}} \tag{4.1}\\
u(0)=-2 u(1), \quad D_{\frac{1}{2}} u(0)=-2 D_{\frac{1}{2}} u(1)
\end{array}\right.
$$

Here, $q=\frac{1}{2}, \eta=-2, T=1, f(t, u)=3 t^{3}+t^{2} \sin u+\frac{t^{2}}{7}|u|$ and $g(t, u)=2 t^{3}+\frac{t^{5}}{u^{2}}+\frac{t^{2}}{4}|u|$.
Obviously,

$$
\begin{aligned}
& \lim _{|u| \rightarrow \infty} \frac{f(t, u)}{|u|}=\lim _{|u| \rightarrow \infty} \frac{3 t^{3}+t^{2} \sin u+\frac{t^{2}}{7}|u|}{|u|}=\frac{t^{2}}{7} \\
& \lim _{|u| \rightarrow \infty} \frac{g(t, u)}{|u|}=\lim _{|u| \rightarrow \infty} \frac{2 t^{3}+\frac{t^{5}}{u^{2}}+\frac{t^{2}}{4}|u|}{|u|}=\frac{t^{2}}{4}
\end{aligned}
$$

For $a(t)=\frac{t^{2}}{7}, b(t)=\frac{t^{2}}{4}$, we have

$$
\begin{aligned}
\Lambda= & \sup _{t \in I_{q}}\left\{\int_{0}^{t}|t-q s| \frac{s^{2}}{7} d_{q} s+\int_{0}^{t}\left|\frac{t^{2}}{1+q}-q r t+\frac{q^{3} r^{2}}{1+q}\right| \frac{r^{2}}{4} d_{q} r\right. \\
& +\frac{|\eta|}{(\eta-1)^{2}} \int_{0}^{T}|T+(1-\eta)(t-q s)| \frac{s^{2}}{7} d_{q} s \\
& \left.+\frac{|\eta|}{(\eta-1)^{2}} \int_{0}^{T}\left|[T+(1-\eta) t](T-q r)+(1-\eta) \frac{q^{3} r^{2}-q T^{2}}{1+q}\right| \frac{r^{2}}{4} d_{q} r\right\} \\
\leq & \sup _{t \in[0,1]_{\frac{1}{2}}}\left\{\frac{1}{7} \int_{0}^{t}\left|t-\frac{1}{2} s\right| s^{2} d_{\frac{1}{2}} s+\frac{1}{4} \int_{0}^{t}\left|\frac{2 t^{2}}{3}-\frac{1}{2} r t+\frac{r^{2}}{12}\right| r^{2} d_{\frac{1}{2}} r\right. \\
& \left.+\frac{2}{63} \int_{0}^{1}\left|1+3\left(t-\frac{1}{2} s\right)\right| s^{2} d_{\frac{1}{2}} s+\frac{1}{18} \int_{0}^{1}\left|3\left(1-\frac{r}{2}\right) t+\frac{r}{2}\left(\frac{r}{2}-1\right)\right| r^{2} d_{\frac{1}{2}} r\right\} \\
< & \frac{2}{21}+\frac{1}{7}+\frac{2}{21}+\frac{8}{21}=\frac{15}{21}
\end{aligned}
$$

Thus, all the conditions of Theorem 1.1 are satisfied. Hence, we conclude that the problem (4.1) has at least one solution.

Example 4.2. Consider the following non-separated boundary value problem

$$
\left\{\begin{array}{l}
D_{\frac{1}{3}} u(t)=t^{3} \sin u(t)(1-\cos u(t))+\int_{0}^{t}\left(s^{2} u^{2}(s) e^{-|u(s)|}\right) d_{\frac{1}{3}} s, \quad t \in[0,1]_{\frac{1}{3}}, \tag{4.2}\\
u(0)=\frac{1}{5} u(1), \quad D_{\frac{1}{3}} u(0)=\frac{1}{5} D_{\frac{1}{3}} u(1) .
\end{array}\right.
$$

Here, $q=\frac{1}{3}, \eta=\frac{1}{5}, T=1, f(t, u)=t^{3}(1-\cos u) \sin u$ and $g(t, u)=t^{2} u^{2} e^{-|u|}$.
Note that

$$
\left\{\begin{align*}
\lim _{|u| \rightarrow 0^{+}} \frac{f(t, u)}{|u|} & =\lim _{|u| \rightarrow 0^{+}} \frac{t^{3}(1-\cos u) \sin u}{|u|}=0 \tag{4.3}\\
\lim _{|u| \rightarrow \infty} \frac{f(t, u)}{|u|} & =\lim _{|u| \rightarrow \infty} \frac{t^{3}(1-\cos u) \sin u}{|u|}=0 \\
\lim _{|u| \rightarrow 0^{+}} \frac{g(t, u)}{|u|} & =\lim _{|u| \rightarrow 0^{+}} \frac{t^{2}|u|}{e^{|u|}}=0 \\
\lim _{|u| \rightarrow \infty} \frac{g(t, u)}{|u|} & =\lim _{|u| \rightarrow \infty} \frac{t^{2}|u|}{e^{|u|}}=0
\end{align*}\right.
$$

Clearly all the conditions of Theorem 1.2 hold. Consequently, the non-separated boundary value problem (4.2) has no solution.

Acknowledgment

The project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, under grant no. $65-130-35-\mathrm{HiCi}$. The authors, therefore, acknowledge with thanks DSR technical and financial support.

References

[1] C. R. Adams, On the linear ordinary q-difference equation, Ann. Math., 30 (1928), 195-205. 1
[2] O. Agrawal, Some generalized fractional calculus operators and their applications in integral equations, Fract. Calc. Appl. Anal., 15 (2012), 700-711. 1
[3] B. Ahmad, S. K. Ntouyas, Boundary value problems for q-difference inclusions, Abstr. Appl. Anal., 2011 (2011), 15 pages. 1
[4] B. Ahmad, A. Alsaedi, S. K. Ntouyas, A study of second-order q-difference equations with boundary conditions, Adv. Difference Equ., 2012 (2012), 10 pages. 1.2 .1
[5] B. Ahmad, J. J. Nieto, Basic theory of nonlinear third-order q-difference equations and inclusions, Math. Model. Anal., 18 (2013), 122-135. 1
[6] B. Ahmad, S. K. Ntouyas, Boundary value problems for q-difference equations and inclusions with nonlocal and integral boundary conditions, Math. Model. Anal., 19 (2014), 647-663. 1
[7] M. H. Annaby, Z. S. Mansour, q-Fractional Calculus and Equations, Lecture Notes in Mathematics 2056, SpringerVerlag, (2012). 1.2
[8] A. Aral, V. Gupta, R .P. Agarwal, Applications of q-Calculus in Operator Theory, Springer, New York, (2013). 1
[9] I. Area, N. Atakishiyev, E. Godoy, J. Rodal, Linear partial q-difference equations on q-linear lattices and their bivariate q-orthogonal polynomial solutions, Appl. Math. Comput., 223 (2013), 520-536. 1
[10] G. Bangerezako, q-difference linear control systems, J. Difference Equ. Appl., 17 (2011), 1229-1249. 1
[11] G. Bangerezako, Variational q-calculus, J. Math. Anal. Appl., 289 (2004), 650-665. 1
[12] Z. Bartosiewicz, E. Pawluszewicz, Realizations of linear control systems on time scales, Control Cybernet., $\mathbf{3 5}$ (2006), 769-786.1
[13] M. Bohner, R. Chieochan, Floquet theory for q-difference equations, Sarajevo J. Math., 8 (2012), 355-366. 1
[14] R. D. Carmichael, The general theory of linear q-difference equations, Amer. J. Math., 34 (1912), 147-168.1
[15] M. El-Shahed, H. A. Hassan, Positive solutions of q-difference equation, Proc. Amer. Math. Soc., 138 (2010), 1733-1738. 1
[16] G. Gasper, M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, (1990). 1,2
[17] M. E. H. Ismail, P. Simeonov, q-difference operators for orthogonal polynomials, J. Comput. Appl. Math., 233 (2009), 749-761.1
[18] F. H. Jackson, On q-functions and a certain difference operator, Trans. Roy. Soc. Edinburgh, 46 (1909), $253-281$. 1
[19] F. H. Jackson, On q-difference equations, Amee. J. Math., 32 (1910), 305-314. 1
[20] V. Kac, P. Cheung, Quantum Calculus, Springer, New York, (2002). 1
[21] M. A. Krasnosel'ski, P. P. Zabreiko, Geometrical Methods of Nonlinear Analysis, Springer-Verlag, Berlin, (1984). 3.1
[22] T. E. Mason, On properties of the solutions of linear q-difference equations with entire function coefficients, Amer. J. Math., 37 (1915), 439-444. 1
[23] D. Mozyrska, Z. Bartosiewicz, On Observability of Nonlinear Discrete-Time Fractional-Order Control Systems, New Trends in Nanotechnology and Fractional Calculus Applications, (2010), 305-312. 1
[24] N. Pongarm, S. Asawasamrit, J. Tariboon, Sequential derivatives of nonlinear q-difference equations with threepoint q-integral boundary conditions, J. Appl. Math., 2013 (2013), 9 pages. 1

[^0]: *Corresponding author
 Email addresses: ravi.agarwal@tamuk.edu (Ravi P. Agarwal), wgt2512@163.com (Guotao Wang), t.aatef@hotmail.com (Aatef Hobiny), zhanglih149@126.com (Lihong Zhang), bashirahmad_qau@yahoo.com (Bashir Ahmad)

