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Abstract

In this study, we introduce the notion of double fuzzy uniform space as a view point of the entourage
approach in a strictly two-sided commutative quantale based on powersets of the form LX*X . We investigate
the relations between double fuzzy preuniformity, double fuzzy topology, double fuzzy interior operator, and
double fuzzy preproximity. (©2013 All rights reserved.
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1. Introduction

Since Chang [3] and Goguen [I1] introduced the fuzzy theory into topology, many authors have discussed
various aspects of fuzzy topology|[ll, 12]. In a Chang-Goguen topology (L-topology), open sets were fuzzy,
but the topology comprising those open sets was a crisp subset of LX. Fuzzification of openness was initiated
by Hohle [13] in 1980 and later developed to L-subset of LX (namely, L-fuzzy topology) independently by
Kubiak [22] and Sostak [30] in 1985.

In 1983 Atanassov introduced the concept of intuitionistic fuzzy set [2]. Using this type of generalized
fuzzy set, Coker [0] and Coker and Demirci [7] defined the notion of intuitionistic fuzzy topological space.
Samanta and Mondal [27], 28], introduced the notion of intuitionistic gradation of openness as a generalization
of intuitionistic fuzzy topological spaces [7] and L-fuzzy topological spaces.

Working under the name ”intuitionistic” did not continue because doubts were thrown about the suitabil-
ity of this term, especially when working in the case of complete lattice L. These doubts were quickly ended
in 2005 by Gutierrez Garcia and Rodabaugh [8]. They proved that this term is unsuitable in mathematics
and applications. They concluded that they work under the name ”double”.
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It is well-known that (quasi-) uniformity is a very important concept close to topology and a convenient
tool for investigating topology. Uniformities in fuzzy sets, different approaches as follows the entourage
approach of Lowen [24] and Hohle [15, [16] based on powersets of the form LX*X | the uniform covering of
Kotze [2I], the uniform operator approach of Rodabaugh [26] as a generalization of Hutton [I7] based on
the powersets of the form (LX )LX, the unification approach of Gutierrez Garcia et al. [J, [10]. Recently,
Gutierrez Garcia et al.[10] introduced L-valued Hutton uniformity where a quadruple (L, <, ®, *) is defined
by a GL-monoid (L, *) dominated by ®, a cl-monoid (L, <,®) as an extension of a completely distributive
lattice [17), 19, 2], 23] or the unit interval |25 29] or t-norms [15].

In this paper, we introduce the notion of lattice valued double fuzzy uniform spaces as a view point
of the entourage approach of Lowen [24] and Hoéhle [I5] [16] in a strictly two-sided commutative quantale
(stsc-quantale, for short) based on powersets of the form LX*X. We investigate the relations between double
fuzzy uniformity, double fuzzy topology, double fuzzy interior operator and double fuzzy preproximity.

2. Preliminaries

Throughout this paper, let X be a nonempty set and L = (L, <,V,A,0r,11) be a completely distributive
lattice with the bottom element 0y, and the top element 1. For each o € L, let & and a denote the constant
fuzzy subsets of X and X x X with value «, respectively. The second lattice belonging to the context of
our work is denoted by M and My = M \ {Op} and M7 = M \ {1}

Definition 2.1. [I4, 16 26] A triple L = (L,<,®) is called a strictly two-sided, commutative quantale
(stsc-quantale, for short) iff it satisfies the following properties:

(L1) (L, ®) is a commutative semigroup.

(L2) a®1p =a and a ® 0, =0y, for all a € L.

(L3) ® is distributive over arbitrary joins:

a® (\/ bi) = \/(a © b;),Va € L,¥{b;i}icr € L.
iel iel
Remark [14] [16] 26](1) A complete lattice satisfying the infinite distributive law is a stsc-quantale. In
particular, the unit interval ([0,1],<,A,0,1) is a stsc-quantale.
(2) Every left-continuous t-norm T on ([0, 1], <,¢) with ® =t is a stsc-quantale.

(3) Every GL-monoid is a stsc-quantale.
(4) Let (L, <,®) be a stsc-quantale. For each x,y € L, we define

x>—>y:\/{z€L|x®z§y}.
Then it satisfies Galois correspondence;i.e.
r@zLly<=z<zrr—y,Vr,y,z € L.

In this paper, we always assume that (L, <,®,®, %) is a stsc-quantale with an order-reversing involution *
defined by
r@y= (@ 0y), 2z =x— 0

unless otherwise specified.

Lemma 2.2. [2()] For each x,y, z,w,z;,y; € L, we have the following properties:
(1) Ify<z, thenzQy<z@z xzdy<zd®z,r—y<z+—zandyr x> 2 T.
2)xoy<zAhy<zVy<zdy.
(3) @ (Nicr vi) = Nicr(x @ ui)-
(4) © = (Nier vi) = Nier(z = 9i).
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(5) (vielxl) Yy = /\ie[(wi = y).

(6) x = (Vicr vi) = Vier(@ = yi).

(7) (/\ze[xl) =y > \/ el (xl Hy)

(8) Nier z7 = (Vier zi)* and ey 7 = (Niey )™

(9) (x@y)l—>z:1‘»—>(yl—>z)—yl—>(xr—>z).

(10) (xVy)©(zVw) < (zV2)V(yow) < (x®z2)V(yoOw).
(11) 2O (z—y) <y andzx—y < (y—z)— (x— 2).
(12) yoz<zr— (z0y0z) andz® (z Oy 2) <y 2.
(13) x =y =y* — x*.

(14) 2O (x* @ y*) < y*.

(15) z0y=(x—y ) cdy=a"+—1y.

(16) (z@2) Oy <z ® (y © 2).
(17)z0yo(z0w) < (202)® (yOw).
(18):Ur—>(y@z)§(:c»—>y)*»—>z

(19) (x> y) & (2= w) < (z02)— (ydw).
(20) (x = y)© (2= w) < (z®2) > (ydw).
(21) (x> y) O (= w) <(z02) (yOw).
(22) (:L‘r—>y)\/(21—>w)§(ac/\z)»—)(y\/w)g(x/\z)&%(y@w).
(23) (x—=y)V(z—w) < (xGz)— (yVuw).
(24) (x—yY)Nz—w) < (zVz)—=(yVw) < (zVz)— (ydw).
(25) (x—=y)A(z—w) < (zAz)—= (yAw).
(26) c—y<(zOz2)—~(yoz)and (x—y) O (y—2) <z~ 2

All algebraic operations on L can be extended to the set LX (resp., LX*X) by pointwisely, for all z € X,
(resp., for all (z,y) € X x X)

() A< piff Az) < pla)  (resp, w < 0 iff ule,y) < v(z,))

(2) Ao p)(z)=Az)ou)  (resp., (u©v)(z,y) =u(z,y) ©v(z,y) )

(3) (A= p)(@) = Mz) = () (resp., (u — v)( y) = u(z,y) = o(z,y) )
Definition 2.3. [4] The pair (7,7*) of maps 7,7* : LX — M is called a double fuzzy topology on X if it
satisfies the following conditions:

(01) 7(A\) < (7%(\) = 0p1), YA € LX.

(02) 7(0) = 7(1) = 1ar, 7(0) = 7°(1) = Ons-

(03) ()\1 ® )\2) > 7'()\1) @7’()\2) and 7 ()\1 ® )\2) <rT ()\ )@T*()\Q), for each A1, A\g € X,
(04) 7(Ver Ai) = Nier 7(As) and 7 (Vyep M) < Vier 7F(N), for each A; € LY i € T

The triplet (X, 7, 7*) is called a double fuzzy topological space. 7 and 7" may be interpreted as gradation
of openness and gradation of nonopenness, respectively.

Let (X, 71,7) and (Y, 72,75) be two double fuzzy topological spaces. A map ¢ : X — Y is called
LF-continuous if

T1(¢ (1) = 2(p) and 7 (0% (1)) < 75 (w), Vi € LY.

Definition 2.4. [4] A map Z : LX x My x M; — L is called a double fuzzy interior operator if it satisfies
the following conditions: Vr € My, s € Mj such that r < (s — 0p),

(1) Z(1Lr.5) = 1.

(I12) Z(\, 1, s) < A

(I3) If X < p, then Z(\, 7, s) < Z(u,r,s).

(I4) If r < 7" and s > &', then Z(\, ', ") < Z(\ 1, s).

() ZANOpu,ror,ses)>T(\rs)OIL(ur,s).

The pair (X,7) is called a double fuzzy interior space.

A double fuzzy interior space (X,Z) is called topological if

T(Z(\, 7, 5),7,8) =LZ(\71,8), YA€ L r e My, s € My with r < (s — 0p).
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Let (X,Z;) and (Y,Z2) be two double fuzzy interior spaces. A map ¢ : X — Y is called I-map iff
O (Ta(p, 7, 8)) < Ty (0 (), 7, 8),Yu € LY ;7 € My and s € M;.

Theorem 2.5. [/ Let (X, 7,7*) be a double fuzzy topological space. For each A € LX,r e My and s € M,
with v < (s = Opr), we define an operator I« : L x My x My — L% as follows:

(A, 8) = \/{,u e LX | p< A\ 7(p) > 7 and 7 (p) < s}

Then (X,Z;.+) is a topological double fuzzy interior space and if r = \/{r' € My | Z(\,7',s") = A} and
s= N € My |Z(\ ', s") =)}, then Z(A\, 1, s) = A

Theorem 2.6. [/] Let (X,Z) be a double fuzzy interior space. Define the mappings 77,75 : LX — M by
() = \/{r € My | Z(\,r,s) = A}

7N = A\{s € My | Z(\,r,s) = A}
Then the pair (17,7F) is a double fuzzy topology on X .

Definition 2.7. [5] The pair (§,6*) of maps 6,6* : LX x LX — M is called a double fuzzy preproximity
on X if it satisfies the following conditions:

(P1) 8(A, 1) > 6*(A, ) ¥ Oar

(P2) 6(1,0) =6(0,1) = 0p7 and 6*(0,1) = 6*(1,0) = 1.

(P3) If 6(\, p) # 1pr and 0% (A, p) # Opz, then A < pr+— 0.

(P4) If Ay < Ay, then (A1, 1) < 5(Aeg, 1) and 6*(A1, p) > (Ao, ).

(P5) (A1 © Ag, p1 @ p2) < (A1, p1) ® 0(A2, p2) and

(M © A2, p1 @ p2) > (A1, p1) © 8% (A2, p2).

The triplet (X,6,6%) is called a double fuzzy preproximity space. Also, we call 6(\, ) a gradation of
nearness and 6*(\, u) a gradation of non-nearness between A and p. A double fuzzy preproximity (6,0%) is
called a double fuzzy quasi-proximity if

(P6) 5\ 1) = Aepx {0(A, ) @ 6(v > 0, )} and

5*(>‘7 M) < \/VGLX {5*()‘7 V) © 5*(V =0, :u)}

A double fuzzy preproximity space is called principal provided that

(P7) 6(Vier Ais 1) < Vier 0(Xi, 1) and 6% (Vep Ais 1) 2 Njep 6% (Ai, ).

A double fuzzy quasi-proximity is called double fuzzy proximity if

(P8) (A, p) = d(p, A) and 6% (A, p) = 0% (i, A).

Definition 2.8. [5] Let (X,01,6]) and (Y, d2,95) be two double fuzzy preproximity spaces. A map ¢ :
(X,01,07) — (Y, 02,03) is called double fuzzy preproximally continuous if

01(A, ) < d2(7 (A), 07 (1)
and
ST (A1) = 83(97 (N, 97 (), VA, p € LX.
or equivalently
d2(v,p) = 01(¢" (v), 9" (p))
and
03 (v,p) < 81 (0 (), 0" (p), Vrp € LY.
T)l(leorem 2.9. [5] Let (X, 6,0*) be a double fuzzy preprozimity space. Define a map s g+ : LX x Mox My —
L™ by
Iss+ (A1, 8) = \/{p e LX | 5(p, A = 0) < r = 0y and 6*(p, A — 0) > 5+ Opr}
Then it satisfies the following properties:
(1) The pair (X,Zss<) is a double fuzzy interior space.
(2) If (X, 9,0%) is a double fuzzy quasi-prozimity space and L is a chain, then (X, Zss+) is topological.
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3. Lattice valued double fuzzy uniformity

Definition 3.1. The pair (U,U*) of maps U,U* : LX*X — M is called a double fuzzy preuniformity on
X if it satisfies the following conditions:

(U1) U(u) <U*(u) — Opr, Vu € LXK,

(U2) U(1) = 1p7 and U*(1) = 0y;.

(U3) If uw < v, then U(u) <U(v) and U*(u) > U*(v).

(U4) U(u ®v) > U(u) ©@U(v) and U*(u © v) < U*(u) S U*(v), Yu,v € LX*X,

(Ub) If U(u) # 0pr and U*(u) # 1as, then 1o < u, where

1, ifr =y,
1A($,y) - { 0r, if 7é Y.
The preuniformity (U,U*) is called quasi-uniformity if
(QU) U(u) < V{UW) |vov <u} and U*(u) > AN{U*(v) |vov < u},Vu € LX*X

where, vouv(z,y) = \/ (v(z,2) Ov(z,y)),Vz,y € X.
zeX

A quasi-uniformity (U,U*) is called uniformity if
(U) U(u) <U(u®) and U*(u) > U*(u®), where u’(x,y) = u(y, z).
The triplet (X,U,U*) is called double fuzzy uniform space.

Remark. Let (U,U*) be a double fuzzy quasi-uniformity on X.

(1) Since u Av > u ® v, by (U3) and (U4), U(u Av) >U(u) ©U(v) and U* (u A v) < U*(u) & U (v).

(2) Define U*(u) = U(u*) and (U*)*(u) = U*(u®) for all u € LX*X. Then (U, (U*)?) is a double fuzzy
quasi-uniformity on X.

(3) Let (U,U*) be a double fuzzy uniformity on X. Since U(u) <U(u®) <U((u®)®) = U(u) and U*(u) >
U (u®) > U ((u®)®) = U*(u), we have U(u) = U(u®) and U*(u) = U* (u®), for all u € LX*X,

Example. Let X = {z,y,2} be a set and L = M = [0, 1]. Define binary operations ®,®,— on [0, 1]
(where the operation ® is called a Lukasiewicz t-norm and the operation @ is called a Lukasiewicz t-conorm)
by x @y =maz{x +y— 1,0}, Dy =min{r +y,1},z— y =min{l —x +y,1}.

Define w,v € [0,1]%*X as follows:

w(z,x) =w(y,y) =w(z2) =1Lw(z,y) =05 w(y,z) =0.6,w(r,z) =0.6

w(y,z) = 0.7, w(z,z) = 0.6,w(z,y) = 0.8,v(x,z) =v(y,y) =v(z,2) =1,

x ) =
v(z,y) =0.5,0(y, 2) = v(z,2) = v(y,z) = v(z,x) = 0.6,v(z,y) = 0.4.
Define maps Uy, Us, Uz, Us - [0,1]5%X [0, 1] as follows:
(1y, ifu=1 Oy, ifu=1
06, ifl#u>w . 04, ifl#u>w
U = ’ U = ’
1(w) 03, fwow<uupw 1) 0.7, fwow<uu}w
Opr, otherwise, 1p7, otherwise.
1y, ifu=1 Op, ifu=1
06, ifl#£u>v . 04, ifl#u>v
Z/{ = ’ — u — ) -
2(u) 0.5, fvov<uutwv 2(u) 0.5, ifvov<uutv
0p7, otherwise, 1p7, otherwise.

Then (Uy,UT) is a double fuzzy quasi-uniformity on X, but (Us,Us) is not a double fuzzy quasi-uniformity
on X because

Opr =Us(vOvEOV) #Us(v©®v) OUs(v) =0.530.6=0.1

Iy =Us(vOVOV) LU (VO V) BU(v) =048 0.5 =0.9.
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Definition 3.2. The pair (B, B*) of maps B, B* : LX*X — M is called a double fuzzy uniform base on X
if it satisfies the following conditions:
(B1) B(u ) < B*(u) — 0y, Yu € LXXX,
(B2) B(1) = 1 and B*(1) = 0.
(B3) ( ©v) > B(u) ® B(v) and B*(u ®v) < B*(u) ® B*(v).
(B4) If B(u) # Opr and B*(u) # 17, then 14 < .
(B5) B(u) < V{B() | vov <wu} and B*(u) > N{B*(v) |vov < u},Vu € LX*X,
(B6) B(u) < \V/{B(v) | v < u®} and B*(u) > A{B*(v) | v < u®},Vu € LX*X,

Trivially, every uniformity is a uniform base.

Theorem 3.3. Let (B,B*) be a double fuzzy uniform base on X. Define the maps Up,Up. : LX*X — M

as
= \/ B(v) and Up-(u /\ B*(v

v<u v<u

Then the pair (Up,Ug.) is a double fuzzy uniformity on X.

Proof. (U1)-(U3) are trivial from (B1)-(B3).
(U4) is obtained from the following inequalities.

Us(ur) OUs(uz) = (\/ B)o(\/ Bw))

v <us va<us
= V{B(v1) © B(vs) | v1 < w1, vz < uz}
\/{B(Ul Ovg) [ v1 ©v2 < up ©ug}
\/{B(U) | v <up ©ug} =Up(up © ug).

IN

IN

Up-(u1) ©Ug(uz) = (N Bu) @ ( N\ B*(w2)

v1 <uq vo<uz
= A{B*(v1) ® B*(v2) | v1 < u, vz < u}
/\{B ’U1®v2)\v1®’02§u1®m}
> A{B*(v) |v < w1 ©ug} = U (w1 © ug).

v

(U5) Let Up(u) # Opr and Up.(u) # 1, then there exists v < w such that Up(u) > B(v) # 0p and
Ug. (u) < B*(v )#lMandby (B4), 1o <v < u.

(QU) Since \/{Up(v) |vov <u} > \{B()|vov <u} > B(v) and

MUz (v) |vov <u} < A{B*(v) |vov <u} < B*(v), then we have

Us(w) = \/{Bw)|w <u}
\/{\/{L{B(v) |vov <w}|w<u} < \/{UB(U) |vov < u}.

IN

and

Us-(w) = NBw) |w <)
AA@E- (@) | vor < w} | w < up = AU (0) [vov < u}.

v
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(U) is obtained from the following inequalities.
VA{B(v) | v<u}
< VIVIBw) |w <o’} [v<u} < \/{Bw) | w < u’} = Us(u).

and
Upe(u) = NIB'() v <u}
NAB @) [ <0} [0 < u} 2 B @) |0 < '} = U ().

v

O

Lemma 3.4. [18] Let (U,U*) be a double fuzzy uniformity on X. For each u € LX*X and X\ € LX, the
image u[\ of A with respect to u is the L-subset of X defined by:

uN(@) =\ (@) © uly,2)), Ve € X.
yeX

For each u,uy,us € LX*X and X\, p, \j € L, we have following properties.
(1) If U(u) # Opr and U*(u) # 1ar, then A < uf)].
(2) If U(u) # Opr and U (u) # 1ar, then u < wowu.
(3) (u1 o u2)[A] = w1 [uz[A]].
(4) ulV; Mi] = V;u[Ai].
(5) (u1 ® uz)[M © Xa] < up[M] ® ualAa).
(6) (u1 © uz)[A1 ® Ao] < ui[A] ® ual[Ag).
(7) ul(w’[p]) = 0] < p 0.

A lattice L is called s—compact if \/ .. ;¢; > a for all ¢j,a € L, there ezists jo € J such that c;, > a.

jeJ
Theorem 3.5. Let (U,U*) be a double fuzzy preuniformity on X and L be an s—compact lattice. Define
the maps Ty, T - LX — L by:

= N{\@) —~op)v \/ Uw)

rzeX ufz] <A

and

(N =\ @A N\ U ()

zeX u[z]<A

where u[z](y) = u(y,x). Then (14, 7+) is a double fuzzy topology on X.

Proof. (O1) Since by (U1), it is trivial that 74(\) < 775 (A) — Of.
(02) It is trivial by (U2).
(0O3) By Lemma 2.2 (10),we have

Tu()\l) @Tu(/\g) = (/\ {()\1( — OL \/ I/I u1 )@ ( /\ {()\2( — OL \/ U UQ

zeX uy [z] <A1 yeX uz[y]<A2
< A@ —=o)v \/ Uw)}o{(a@) =0 v \/ Ulu)}
zeX ui[z]<Aq uz[z]<A2
< A A{((@) = 0r) @ (o (2) = 0p)) V ( V U(ur © ug))}
z€X u1 Qua[z] <A1 OA2

= A{iox) 0@V V U(ur © ug)} < (M © Az)
z€X w1 Qua[z] <A1 OA2
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) eme0e) = (\/ u@a A\ U)o

rzeX uy [2] <A1

v

reX uy [:v]<)\1

> VA{wox)@a( A

zeX ul[:v}<)\1

A

> /{0 X)(@)A(

yeX

V @A N\ U)o e

zeX w1 Qua[z] <A1 OA2

(O4) Since L is completely distributive and s—compact, then we have:

VA = AL x@)=o)v

U(u)}

el zeX €l ulz]<V;ep Mi

= /\{/\ z) +— 0r)) Vv \/

Uu)}

reX €l u[z]<Ver A

= N Ai@ =o)v

zeX i€l ula)<Vier Ai

= AA (i@ = o)y

el zeX wlz] <Vep A

> ACA (@) = o) v/ Uw)

i€l zeX u[z]<\;

= A

el

U(u)))

U(u)))

(VA = VAN N@pa - A wwy

el zeX i€l u[z]<Vep Mi

= VV @A A u@)

i€l zeX ula)<Vier Ai

< VIV Q@A N uw)

el zeX ulz]<A\;
= /-

el

Let A € LX. We define uy € LX*X by

| 1, ifz=y,
o y) = { @) ©Ay),  ifay.

(V D) A /\ U (uz)})

/\ U (u2)}

u2[$]<)\2
Uu)® N U(u)}
uz[z]<A2

U (ur ©u2))} = 1 (A1 © o)

Theorem 3.6. Let (U,U*) be a double fuzzy uniformity on X. Define the maps Ty, Tjj« : LX — M by:

- (i 3 e

Then (Ty, T;j+) is a double fuzzy topology on X.

Oar, ifA=0

U (uyr), if A #0
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Proof. (O1) It is trivial. N _
(02) 7?/1(9):1M,7Z{(l):u(ul):u(1):1M and T**( )—OM,T*( ) L{*( ) U*(l)zOM.
(03) Let A1, Ay € LX be given. Since U(n 0Ag) = Uy © Upy, We have
Tu(A © A2) = U(un ony)) = Ulun, ©uyy) = Uluy,) ©OU(uN,) = Tu(A) © Tyu(A2)
T (A1 © Ag) = UM (un, © uy,) SU(un,) BU (ur,) = Ty (A1) Ty (A2)
(04) Since (V; Aj(z)) © (V;Ai(y) = (V; Aj(z) © Aj(y)), we have uy; < Vjuy; < uy,s;. So,

Tu(\/ M) =U(uy 5,) > U(uy,) = Ty(N), Viel.

ier
Hence, Tu/(Vicr Ai) = Nier Tu(Xi).-
Ti-(\) ) = U (uy,»,) SU(ur,) = T (\i), VieT.
el
Hence, Ty (Vier Ai) < Vier Ty=(X)- O

Theorem 3.7. Let the pair (U,U*) be a double fuzzy preuniformity on X. Define the maps &y, -
LX x LX — M as follows:

S el o

and

. (MU (W) [w €O\ = 0n,  if O, # 0,
5],{* (A,M) - { 0]\47 K 'lf @)\,:: @

where Oy, = {w € LX*X | w[A] < p+ 0}. Then the pair (5y, ;) is a double fuzzy preprozimity on X.

Proof. (P1) Since by (Ul), U(w) < U*(w) +— Oz, we have oy (A, 1) > 65+ (A, i) — Oz

(P2) By the definitions, d&,(1,0) = &,(0,1) = 0pr and &} (L,0) = &+ (0,1) = 1.

(P3) Let 0y¢(A, i) # 1as and 85 (A, 1) # Opr, then by the definition there exist w € ©, , such that
U(w) # 0p and U*(w) # 1. By Lemma 3.4 (1), A < w[\] < p+— 0.

(P4) Let A1, A2 € LX be given with A\; < Xg. Then, ©(X\a, 1) € O(A1, p). Thus, dpr(A1, 1) < (A2, 1)
and 0y (A1, i) > 8 (A2, ).

(P5) Since by Lemma 3.4 (5), (w1 ® w2)[A1 © A2] < wi[Ai] ® wa[A2], we have

S, ) @ (o, pa) = [(\/{U(w1) | wi € Ox, 4, }) = Oad]
& [(\/{U(ws) | ws € O, p,}) = O]
= (A\{U@w) = 0y [ wi[M] < g - 0})
2 /\{U(w2) = Oar [ wa[Ag] < pg > 0})

= A{Uw1) = 0n) & U(wz) = 0nr) | wil\i] < pi = 0, = 1,2}
= N{Uw1) ©U(wy)) = Onr) [ wilXi] < pi = 0,4 = 1,2}

N\ U1 © wz) = 0ar | (w1 © wa)[Ar © Ao] < @i 2(pi = 0)}
AN {Uw) = 0y | w[h © Ao] < (11 © p2) + 0}

(\/{L{(w) ’ w e @)\1®)\27#1®/—L2}) = O
(M © Ao, pi1 @ p2).

[ AVARN Y,
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and

0 (M, 1) © 0 Mgy p2) = [(ANLU(wr) [ w1 € O,y }) = O]
O [(A\{U(w2) [ wa € Oxy iy }) — On]
= (\/{U*(’wl) = On | wi[M] < pn > 0})
© (VAU (wa) = Oar | walAo] < o = 0})
= VAU (w1) = 0ar) © U*(w2) = Oar) [ wilhi] < ps = 0,0 = 1,2}
= VAW (w) @ U (w2)) = Onr) | wilXi] < s v 0,1 = 1,2}
< \/{Z/l (w1 ®wa) — O0ar | (w1 @ wa)[A1 © Aa] < ®j=1,2(ti — 0)}
< \{U (W) = 0 [ why © Ag) < (1 @ pp2) > 0}

= /\{U* w ‘ w e 6)\16))\2,/1169/12}) = Oy = 5;{* ()‘1 © A2, p1 D N2)'

Therefore, the pair (0y, &) is a double fuzzy preproximity on X induced by the preuniformity (U,U*).
O

Theorem 3.8. Let (U,U*) be a double fuzzy preuniformity on X. Define a map Ty g4+ : LX x My x M; —
LX by
Tuu(A\,r,s) = \/{MELX\ \/Z/l ) >r and /\L{*(u)gs}
u[p]<A
Then we have the following properties:
(1) The map Ty~ is a double fuzzy interior operator on X.

(2) Loy.s7,. = Tuaae

Proof. (I1) Since u[l] <1, then Tp+(1,7,s) = 1.

(I2) Since r € My and s € My, there exists u € LX*X such that U(u) # 0y and U*(u) # 157 Then by
Lemma 3.4 (1), p < u[p] < X. Hence, Ty g4+ (A, 7, 5) < A

(I3) and (I4) are trivial from the definition.

(I5) is clear from the following inequality.

Tuu-(A,r1,51) O Ty (g s2) = (V| U(w) =r, N\ U (w) < 1))
up[p1]<A ut[p1]<A

o Ml V Ulw)=r, N U(u) < s0})

uz [pu2]<A2 uz[pu2]<A2

= \/{M@MQ! \/ U(ug) > 1y, /\ U (u;) < 83,1 = 1,2}

wiui] <N wipi] <N

\/{m@#z \/ U(ur)) © ( \/ U(uz)) > 11 O 12

w1 [p1]<A uz[p2] <2

and (N W@)E( N Uw) <5 @)

w1 [p1] <M uz[p2]<A2
= \/{M1®,u2| \/ U(ur ©ug) > 11 O 12
wi[p] <A
and /\ U (up ©ug) < s1® 82,0 =1,2}
g [ <A

IN
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Hence we have

Ty (Mo, 51) © Ty (Mo, r,s2) - <\l U =ronrn
u[p] <A1 OA2
and /\ U (u) < s1@ sa}
u[p]<A1OA2
= Tuyu-(M O A, 11 ©ra, 51D s2).

(2) It is trivial from the following implication:
Su(p, A= 0) <r = 0p and 0. (u, A= 0) > s+ Oy if and only if \/{U/(w) | w[u] < A} > r and
AU (w) | wla] < A} < s. .

Theorem 3.9. Let (U,U*) be a double fuzzy preuniformity on X. Define a map Ty LX x My x M; —
LX by
Lo+ (A, 1y s) \/{,uGLX|u[ | < NUw) > 7 and U (u) < s}

Then, the operator Ty~ is a double fuzzy interior operator on X. Furthermore, if L is s—compact, then
Theorems 3.8 and 3.9 are coincided.

Proof. (I1) Since u[l] <1, then Zyy4+(1,r,s) = 1.

(I2) Since r € My and s € M, then U(u) # 0pr and U*(u) # 1p7. By Lemma 3.4 (1), p < u[p] < X and
hence Zyg 4+ (A, 7, 8) < A

(I3) Let Ay < A2 be given. By the definition, Ty 14+ (A1, 7, 8) < Ly (A2, 7, 5).

(I4) Let r <1',s > &' be given. Since, ulp] < A, U(u) >7r">r, U (u) <5 <s,then Ty (N1, 8) <
TN, 1, s).

(15)

\/{1/ | ui[v] < N U(up) > r and U (ur) < s})

(Vi | ualp] < jU(ua) > v and U*(uz) < ')
V{rop|(wou)yop <A U ©u) >ror
and  U*(ug Oug) <sds'}

< \/{’Y|u’y | <AOpUu) >ror and U (u) < sd s’}
Tuw-AoOu,ror,sds).

Tuu (N1, 8) © Ty (p, 7', 8")

N ©

Hence, Zj4 4+ is a double fuzzy interior operator on X.
The second part of the proof can be seen easily. O

Theorem 3.10. Let (X,U,U*) be a double fuzzy preuniformity on X. Define the maps TIM’M*,TEM o
LX — M as follows:

TTyu* ()‘) = \/{T € My ’ IU,U* ()‘a T S) = A},
e V) = Nds € Mu | Typ- (A7, 5) = A},
Then the pair (TZU,M*,T%M M*) is a double fuzzy topology on X.
Proof. 1t is straightforward from Theorem 2.6 and Theorems 3.8-3.9. O

Definition 3.11. Let (X,U,U*) and (Y, V,V*) be two double fuzzy preuniform spaces and ¢ : X — Y be
a function. Then ¢ is said to be double fuzzy preuniformly continuous iff

U(p x )" ) 2 V) and  U((p x 9) () <V (), Voe LY.
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Lemma 3.12. Let p : X — Y be a function. For each v,v1,v2 € LY*Y and A € LX, we have the following
properties:

(1) If ¢ is surjective, then o (v[p™(A)]) = (¢ X ©)(v)[A].

(2) (p x ) (v")[A] = ((¢ x )™ ())*[A].

(3) (e x )" (01 ©v2) = (@ X p) (1) © (¢ X ) (v2).

(4) (e x )T (v) o (p x )7 (v) < (p x )T (vou).

Theorem 3.13. Let p : (X, U, U*) — (Y, V,V*) be a double fuzzy uniformly continuous map and surjective.
Then, ¢ : (X, Ty ) — (Y, Zy y+) is an I-map.

Proof. Put A = ¢ () from Lemma 3.12 (1), v[y] < p implies

(p x @) ()™ (V)] =" (e (™ ()] < e () <™ (p)

Since, U((p x )T (v)) > V(v) and U*((¢ x )T (v)) < V*(v), we have

o (Tuy-(pr9) = e (\{y e LY |vh] < p,V(v) > 7 and V*(v) < 5})
= \V{e“ () v < p, V() > 7 and V*(v) < s})
< Vi) e x @) )e" ()] <o (p),U((p x 9)(v) =7
and U ((p x )" (v)) < s}
< VP eLY (e x o) )N <o (). U(p x9)(v) =7
and U ((¢ x ¢)" (v)) < s}
= Tuyu-(¢“(p),r,3).
O

Theorem 3.14. Let (X, U,U*), (Y,V,V*) be two double fuzzy preuniform spaces and ¢ : X — Y be
an injective double fuzzy uniformly continuous function. Then ¢ : (X, Ty, Ty.) — (Y, Ty, Ty.) is LF-
continuous.

Proof. If A =0, it is trivial. Let A # 0. Since ¢ is injective, we obtain the following;:

. {1 () = ()
(px @) (w)(@1,22) = { @ (21)) © Mp(a2)), if (1) # plaz).

- 1, ifx =
(p x @) (ur) (21, 22) = { e\ (21) © 9= (\)(32), if 21 # 0.,

(px @) (ur)(@1,22) = upe(n)(T1,72).

So, (¢ x ¢) " (uy) = Up—(N)- Then, we have

Tu(p™ (N) = Ulupe(n) = U((p x ©) 7 (un)) = V(ur) = Ty(})
Ti- (9 (N) = U (ug(n)) =U((p x )7 (un)) <V (ur) = Ty ()
O

Theorem 3.15. Let ¢ : (X,U,U*) — (Y, V,V*) be double fuzzy preuniformly continuous function, then
o (X, 1y, ) — (Y, 1, m5.) is LF-continuous.
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Proof. First, we show that ¢ (v[p(x)]) = (¢ X ¢)* (v)[z] from:
T (le@)(z) = vip)(p(2)

= v(p(z), p(z))
= (ex )T W)(z,7) = (px )" (v)[z](z), VzeX.
]

() = ANQw~o)v \/ V)

IA
>
-~
>
6
\%j/
1
o
=
<
<
<
=
——

U((p x )" (v))}

IA
8 > s
iy

S

"
=
<

IN
2
6
"
s

and

) = VA A Vi)

v[y]<A

Vide@)a A Vi)

vfp(z)]<A

A U ((p x ) ()}

(pxp)* (v)[z] <= (M)

AV

(Y2

s < &
——
S

> 1 (T (V)
O

Theorem 3.16. Let ¢ : (X,U,U*) — (Y, V,V*) be double fuzzy preuniformly continuous function, then
@ (X, 00, 6+) — (Y, 0y, %) is preproximally continuous.

Proof. Let v,p € LY be given. If ©,, = 0, it is trivial. Let ©,, # 0. If w € ©,,,, then (¢ x )" (w) €
O(¢™ (v),#" (p)). Hence,

5V(V7 p)

(VV() [ weB,,}) = On
(V{U((p x @) (w)) | (¢ x )" (w) € O (1), o (p)}) = Onr

\V{U®) [ve (™ @), ¢ (p)}) = Om
du (e (), 9" (p)).

v v

and

5 (v,p) =

|
>
—~—
~

w) |weB,,}) = 0u
(e x )" (W) | (¢ x )" (w) € O(p™ (v), 9" (p))}) = Oum
(), 9" (p)}) = Onr

(N

IA A
SF >
~—
S
3/—\
-
m
9
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O

Theorem 3.17. Let (Y,V,V*) be a double fuzzy uniform space and ¢ : X — Y be a function. We define,
for each u € LX*X

= V) | (¢ x9)(v) < u}
=AD" ) | (¢ x9)(v) < u}

Then we have the following properties.

(1) The pair (U,U*) is the coarsest double fuzzy uniformity on X for which ¢ is double fuzzy uniformly
continuous.

(2) A function tp : (Z, W, W*) — (X, U, U*) is double fuzzy uniformly continuous iff ¢ o1 is double

fuzzy uniformly continuous.

Proof. (1) First we will show that (U,U*) is a double fuzzy uniformity on X.

(U1) Since (V, V") is a double fuzzy uniformity on Y, then U (u) <U*(u) — O

(U2) Since (¢ x )< (1) =1, then U(1) = 1 and U*(1) = 0y;.

(U3) Let u; < ug be given. Then by the definition, U(u1) < U(uz) and U*(uy) > U*(uz).

(U4)

U)oU) = (\/{V(01) ] (e x @) (1) <u}) © (\/{V(v2) | (¢ x ) (v2) < ug})

= V{V(01) ©V(v2) | (¢ x 9) (01) < ur, (p % @) (v2) < w2}
< VIV ow) | (exe) (o) <u ©u}
< \V{VO) [ (¢ x9) () <ur®ug} =Uluy © uy)

Similarly,

Z/{*(U1 © U2) < U*(ul) EBLI*(U2).

(U5) Let U(u) # 0pr and U*(u) # 1y, then there exists v € LX*X with (p x )< (v) < u such that
U(u) > V(v) # 0pr and U*(u) < V*(v) # 1. Since V(v) # 0pr and V*(v) # 1y, then 14 < v. Hence,

Ian<(pxp) (1a) < (px @)™ (v) <u

(QU) Suppose that there exists u € LX*¥ such that
w) £ \{U(w) | wow <u}
u) # N {U(w1) | ur ouy < u}

By the definition of (U,U*), there exists v € LY*Y with (¢ x ) (v) < u such that
v) £ \/{U(w) | urour < u}

v) # N\ U () [y 0wy < u}
Since (Y, V,V*) is a double fuzzy uniform space, \/{V(w) | wow < v} > V(v) and A{V*(w) | wow < v} <
V*(v). Hence,
VAU (u) [urour <u} #\/{V(w) |wow < v}

and

NU () [wg ouy <u} £ AV (w) |wow < v}
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Then there exists w € LY*Y with w o w < v such that

\/{Z/I(ul) | uious <u}l ¥ V(w)
and
AU (1) [ur ouy < u} £V (w)
On the other hand, since

(P x @) (w)o(px @)™ (w) < (pxp) " (wow) < (¢ x )™ (v) <u,

we have

V{U(w) [urour < u} 2U(( x ) (w)) 2 V(w).

AU () [urour < u} SUH(( x ) () <V (w).

It is a contradiction.

(U) Suppose that there exists u € LX*¥ such that U(u®) # U(u and U (u®) £ U*( by the deﬁmtlon
of (U,U*), there exists v € LY *Y with (p x ©)<(v) < u such that L{ ) 2 V(v and L{* ) £ V* Slnce
(V,V¥) is a double fuzzy uniformity on Y, V(v®) > V(v) and V*(v*) < V*(v). It follows that U(u 2 V(v
and U*(u®) £ V*(v®). Since (¢ x ©)*(v*) = ((¢ X ) (v))* < u®, we have U(u®) > V(v°) and Ll*( ) <
V*(v®). Thus U, Z/{ *) is a double fuzzy uniformity on X.

Second, it is easily proved that, by the definition of (U,U*)

U((e x ) (v) = V() and U*((¢ x )" (v)) < V*(v), Yoe LY.

Hence, ¢ : (X, U, U*) — (Y, V,V*) is double fuzzy uniformly continuous.
If o: (X, W, W*) — (Y,V,V*) is double fuzzy uniformly continuous, then it is proved that W > U and
W* <U* from the following:

Uw) = \{Vw) | (exe @) <u}
< VW@ x9)7 ) | (¢ x9)(v) < u} < W(u)

Similarly, U*(u) > W*(u),Yu € LX*X,

(2) Tt is clear that the composition of double fuzzy uniformly continuous maps is double fuzzy uniformly
continuous.

Conversely, suppose that ¢ : (Z, W, W*) — (X,U,U*) is not double fuzzy uniformly continuous. Then
there exists v € LX*X such that

W((¥ x ) () £ U(u) and W*((¢p x ¢) (u)) £ U (u)
By the definition of (U,U*), there exists v € LY*Y with (¢ x ) (v) < u such that
W((¥ x ¥)* (u)) 2 V(v) and W*((1) x 1)7 (u)) £ V*(v)
On the other hand, since @ o9 : (Z, W, W*) — (¥, V,V*) is double fuzzy uniformly continuous, we have
V() <W(((pot) x (o)) (v) = W((¥ x ¥)T o (v x )" (v))

and
Vi (v) 2 W (((pod)) x (p o) (v) =W (¥ x ¥)™ o (¢ x ¢)" (v))

It follows that V(v) < W((¥x¢) (u)) and V*(v) > W*((¢x1)* (u)). This contradicts with the assumption.
O
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