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Abstract

In this paper, we will show that a2b + b2a + r (ab(a− b))2 ≤ 1 holds for all 0 ≤ a and 0 ≤ b with a + b = 1
and all 0 ≤ r ≤ 1/2. This gives the first example of a stronger inequality of a2b + b2a ≤ 1. c©2015 All rights
reserved.
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1. Introduction

The study of inequalities with power exponential functions is one of the active areas of research in the
mathematical analysis. V. Ĉırtoaje et al. [1, 2, 3, 4, 5, 6] studied some inequalities with power exponential
functions. These problems of inequalities are very simple formula, but these proof are not as simple as it
seems. It is noted that

a2b + b2a +

(
a− b

2

)2

≤ 2 (1.1)

and

a3b + b3a +

(
a− b

2

)4

≤ 2 (1.2)

holds for all 0 ≤ a and 0 ≤ b with a+ b = 2. These inequalities (1.1) and (1.2) are proved by V. Ĉırtoaje et
al. [2, 6], respectively. In this paper, we will show that

a2b + b2a + r (ab(a− b))2 ≤ 1 (1.3)
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holds for all 0 ≤ a and 0 ≤ b with a + b = 1 and all 0 ≤ r ≤ 1/2, which is a stronger inequality of

a2b + b2a ≤ 1. (1.4)

The above inequality (1.4) is Conjecture 4.8 in [2] and proved by V. Ĉırtoaje [3]. The following is our main
theorem.

Theorem 1.1. For all 0 ≤ a and 0 ≤ b with a + b = 1 and all 0 ≤ r ≤ 1/2, the inequality (1.3) holds.

This gives the first example of a stronger inequality of (1.4).

2. Proof of Theorem 1.1

Proof. Without loss of generically, we assume that

0 ≤ b ≤ 1

2
≤ a ≤ 1.

Applying Lemma 7.1 in [3], we have

a2b ≤ 1− 4ab2 − 2ab(a− b)ln a

and since the inequality (1.3) is strictly increasing for 0 ≤ r ≤ 1/2, it suffices to show that

b2a +
1

2
(ab(a− b))2 ≤ 4ab2 + 2ab(a− b)ln a. (2.1)

We assume that a = (1 + t)/2 and b = (1− t)/2, where 0 ≤ t ≤ 1. Here, the inequality (2.1) is equivalent to(
1− t

2

)t+1

+
1

32
(−1 + t)2(1 + t)

(
−16 + t2 + t3

)
+

1

2
(1− t)t(1 + t)(ln (1 + t)− ln 2) ≤ 0.

Moreover, from Lemma 2.1 in [6], we have

(1− t)1+t ≤ 1

4
(1− t)2(2− t2)(2 + 2t + t2)

and by the well known fact we have

2−t = e−t ln 2

= 1− (ln 2)t +
((ln 2)t)2

2
− ((ln 2)t)3

3!
+

((ln 2)t)4

4!
− · · ·

≤ 1− (ln 2)t +
((ln 2)t)2

2
− ((ln 2)t)3

3!
+

((ln 2)t)4

4!
.

Therefore, it suffices to show that

F (t) :=
1

2

(
1− (ln 2)t +

((ln 2)t)2

2
− ((ln 2)t)3

3!
+

((ln 2)t)4

4!

)
× 1

4
(1− t)2(2− t2)(2 + 2t + t2) +

1

32
(−1 + t)2(1 + t)

(
−16 + t2 + t3

)
+

1

2
(1− t)t(1 + t)(ln (1 + t)− ln 2) ≤ 0.

We have the fourth derivated function

F (4)(t) =
d4

dt4
F (t) =

f(t)

(t + 1)3
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of F (t), where

f(t) =62 + 126t− 33t2 − 375t3 − 405t4 − 135t5

+ 12(1 + t)3
(
−2− 15t + 35t3

)
(ln 2)

− 6(1 + t)3
(
4− 10t− 45t2 + 70t4

)
(ln 2)2

+ 2(1 + t)3
(
4 + 20t− 30t2 − 105t3 + 126t5

)
(ln 2)3

− (1 + t)3
(
−2 + 10t + 30t2 − 35t3 − 105t4 + 105t6

)
(ln 2)4.

Then, we have derivatives

f (6)(t) =− 5040
(
− 60− 78(ln 2)2 − 756t(ln 2)2 − 1008t2(ln 2)2 − 35(ln 2)3

+ 180(ln 2) + 420t(ln 2) + 210t(ln 2)3 + 1260t2(ln 2)3 + 1260t3(ln 2)3
)

Since
69

100
< ln 2 <

7

10
,

we have

− 60− 78(ln 2)2 − 756t(ln 2)2 − 1008t2(ln 2)2 − 35(ln 2)3

+ 180(ln 2) + 420t(ln 2) + 210t(ln 2)3 + 1260t2(ln 2)3 + 1260t3(ln 2)3

> −60− 78

(
7

10

)2

− 756t

(
7

10

)2

− 1008t2
(

7

10

)2

− 35

(
7

10

)3

+ 180

(
69

100

)
+ 420t

(
69

100

)
+ 210t

(
69

100

)3

+ 1260t2
(

69

100

)3

+ 1260t3
(

69

100

)3

=
1

100000
(1397500− 1165311t− 7999866t2 + 41392134t3)

>
1

100000
(1300000− 1200000t− 8000000t2 + 40000000t3)

= 13− 12t− 80t2 + 400t3.

We set
f̃(t) = 13− 12t− 80t2 + 400t3

then we have
f̃ ′(t) = 4

(
−3− 40t + 300t2

)
.

Since

f̃ ′

(
2−
√

13

30

)
= 0 and f̃ ′

(
2 +
√

13

30

)
= 0,

we have

f̃(t) ≥ f̃

(
2 +
√

13

30

)
∼= 10.5742.

Hence, we can get
f (6)(t) < 0.

Thus, f (5)(t) is strictly decreasing for 0 < t < 1. We have

f (5)(t) = −16200 + 151200(1 + 2t)(ln 2)

− 10800
(
11 + 84t + 98t2

)
(ln 2)2

+ 720
(
−73 + 546t + 2646t2 + 2352t3

)
(ln 2)3

− 3600
(
−13− 49t + 147t2 + 588t3 + 441t4

)
(ln 2)4,
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f (5)(0) = −16200 + 151200(ln 2)− 118800(ln 2)2 − 52560(ln 2)3 + 46800(ln 2)4

∼= 24825.3,

and

f (5)(1) = −16200 + 453600(ln 2)− 2084400(ln 2)2 + 3939120(ln 2)3 − 4010400(ln 2)4

∼= −317162.

Since f (5)(t) is strictly decreasing for 0 < t < 1, there exists uniquely a real number 0 < t1 < 1 such that
f (5)(t1) = 0. Since f (5)(t) > 0 for 0 < t < t1 and f (5)(t) < 0 for t1 < t < 1, f (4)(t) is strictly increasing for
0 < t < t1 and f (4)(t) is strictly decreasing for t1 < t < 1. We have

f (4)(t) = −9720− 16200t

+ 4320
(
6 + 35t + 35t2

)
(ln 2)

− 3600
(
−3 + 33t + 126t2 + 98t3

)
(ln 2)2

+ 240
(
−77− 219t + 819t2 + 2646t3 + 1764t4

)
(ln 2)3

− 120
(
−22− 390t− 735t2 + 1470t3 + 4410t4 + 2646t5

)
(ln 2)4,

f (4)(0) = −9720 + 25920(ln 2) + 10800(ln 2)2 − 18480(ln 2)3 + 2640(ln 2)4

∼= 7890.38

and

f (4)(1) = −25920 + 328320(ln 2)− 914400(ln 2)2 + 1183920(ln 2)3 − 885480(ln 2)4

∼= −47797.5.

Since f (4)(t) is strictly increasing for 0 < t < t1 and f (4)(t) is strictly decreasing for t1 < t < 1, there exists
uniquely a real number t1 < t2 < 1 such that f (4)(t2) = 0. Since f (4)(t) > 0 for 0 < t < t2 and f (4)(t) < 0
for t2 < t < 1, f (3)(t) is strictly increasing for 0 < t < t2 and f (3)(t) is strictly decreasing for t2 < t < 1. We
have

f (3)(t) = −2250− 9720t− 8100t2

+ 144
(
−6 + 180t + 525t2 + 350t3

)
(ln 2)

− 36
(
−161− 300t + 1650t2 + 4200t3 + 2450t4

)
(ln 2)2

+ 12
(
−131− 1540t− 2190t2 + 5460t3 + 13230t4 + 7056t5

)
(ln 2)3

− 6
(
83− 440t− 3900t2 − 4900t3 + 7350t4 + 17640t5 + 8820t6

)
(ln 2)4

f (3)(0) = −2250− 864(ln 2) + 5796(ln 2)2 − 1572(ln 2)3 − 498(ln 2)4

∼= −702.644

and

f (3)(1) = −20070 + 151056(ln 2)− 282204(ln 2)2 + 262620(ln 2)3 − 147918(ln 2)4

∼= 2362.55.

Since f (3)(t) is strictly decreasing for 0 < t < t2 and f (3)(t) is strictly decreasing for t2 < t < 1, there exists
uniquely a real number 0 < t3 < t2 such that f (3)(t3) = 0. Since f (3)(t) < 0 for 0 < t < t3 and f (3)(t) > 0
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for t3 < t < 1, f (2)(t) is strictly decreasing for 0 < t < t3 and f (2)(t) is strictly increasing for t3 < t < 1. We
have

f (2)(t) = −66− 2250t− 4860t2 − 2700t3

+ 72(1 + t)
(
−17 + 5t + 175t2 + 175t3

)
(ln 2)

− 36(1 + t)
(
−21− 140t− 10t2 + 560t3 + 490t4

)
(ln 2)2

+ 12(1 + t)
(
14− 145t− 625t2 − 105t3 + 1470t4 + 1176t5

)
(ln 2)3

− 6(1 + t)
(
18 + 65t− 285t2 − 1015t3 − 210t4 + 1680t5 + 1260t6

)
(ln 2)4

f (2)(0) = −66− 1224(ln 2) + 756(ln 2)2 + 168(ln 2)3 − 108(ln 2)4

∼= −520.172

and

f (2)(1) = −9876 + 48672(ln 2)− 63288(ln 2)2 + 42840(ln 2)3 − 18156(ln 2)4

∼= 3529.68

Since f (2)(t) is strictly decreasing for 0 < t < t3 and f (2)(t) is strictly increasing for t3 < t < 1, there exists
uniquely a real number t3 < t4 < 1 such that f (2)(t4) = 0. Since f (2)(t) < 0 for 0 < t < t4 and f (2)(t) > 0
for t4 < t < 1, f ′(t) is strictly decreasing for 0 < t < t4 and f ′(t) is strictly increasing for t4 < t < 1. We
have

f ′(t) = 126− 66t− 1125t2 − 1620t3 − 675t4

+ 36(1 + t)2
(
−7− 20t + 35t2 + 70t3

)
(ln 2)

− 6(1 + t)2
(
2− 130t− 225t2 + 280t3 + 490t4

)
(ln 2)2

+ 2(1 + t)2
(
32 + 20t− 465t2 − 630t3 + 630t4 + 1008t5

)
(ln 2)3

− (1 + t)2
(
4 + 100t + 45t2 − 630t3 − 735t4 + 630t5 + 945t6

)
(ln 2)4,

f ′(0) = 126− 252(ln 2)− 12(ln 2)2 + 64(ln 2)3 − 4(ln 2)4

∼= −34.0483,

and

f ′(1) = −3360 + 11232(ln 2)− 10008(ln 2)2 + 4760(ln 2)3 − 1436(ln 2)4

∼= 870.774.

Since f ′(t) is strictly decreasing for 0 < t < t4 and f ′(t) is strictly increasing for t4 < t < 1, there exists
uniquely a real number t4 < t5 < 1 such that f ′(t5) = 0. Since, f ′(t) < 0 for 0 < t < t5 and f ′(t) > 0 for
t5 < t < 1, f(t) is strictly decreasing for 0 < t < t5 and f(t) is strictly increasing for t5 < t < 1. Since

f(0) = 2
(
31− 12(ln 2)− 12(ln 2)2 + 4(ln 2)3 + (ln 2)4

) ∼= 36.9595,

f(1) = −8
(
95− 216(ln 2) + 114(ln 2)2 − 30(ln 2)3 + 3(ln 2)4

) ∼= 73.9711,

and

f

(
1

2

)
=

1

512

(
20656− 106272(ln 2) + 81648(ln 2)2 − 9288(ln 2)3 − 2079(ln 2)4

)
∼= −33.889.
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Since f(t) is strictly decreasing for 0 < t < t5 and f(t) is strictly increasing for t5 < t < 1, we have only
two real numbers a1 and a2 with 0 < a1 < 1/2 < a2 < 1 such that f(a1) = 0 and f(a2) = 0. Since f(t) > 0
for all 0 < t < a1, a2 < t < 1 and f(t) < 0 for all a1 < t < a2, F

(3)(t) is strictly increasing for 0 < t < a1,
a2 < t < 1 and F (3)(t) is strictly decreasing for a1 < t < a2. We have

F (3)(t) =
g(t)

(t + 1)2
,

where

g(t) =200t + 304t2 − 60t3 − 360t4 − 180t5

+ 12t(1 + t)2
(
−8− 30t + 35t3

)
(ln 2)

− 24(1 + t)2
(
1 + 4t− 5t2 − 15t3 + 14t5

)
(ln 2)2

+ 2(1 + t)2
(
−4 + 16t + 40t2 − 40t3 − 105t4 + 84t6

)
(ln 2)3

− t(1 + t)2
(
−8 + 20t + 40t2 − 35t3 − 84t4 + 60t6

)
(ln 2)4

+ 48(1 + t)2ln (1 + t).

We have

F (3)(0) = −1

2
(ln 2)2(3 + ln 2) ∼= −0.887192,

F (3)(1) =
1

16

(
−24 + 12(ln 2) + 24(ln 2)2 − 18(ln 2)3 + 7(ln 2)4

) ∼= −0.533122

and

F (3)

(
1

2

)
=

1

4608
(17968− 46008(ln 2)− 2160(ln 2)2

+ 2160(ln 2)3 − 477(ln 2)4 + 13824(ln 3)) ∼= 0.181499.

Since we have only two real numbers a3 and a4 with 0 < a3 < 1/2 and 1/2 < a4 < 1 such that F (3)(a3) = 0
and F (3)(a4) = 0, F (3)(t) < 0 for all 0 < t < a3, a4 < t < 1 and F (3)(t) > 0 for all a3 < t < a4. Therefore,
F (2)(t) is strictly decreasing for 0 < t < a3, a4 < t < 1 and F (2)(t) is strictly increasings for a3 < t < a4.
We have

F (2)(t) =
h(t)

96(t + 1)
,

where

h(t) =− 6
(
15 + 15t− 76t2 − 60t3 + 45t4 + 45t5

)
+ 24(1 + t)

(
4− 12t2 − 30t3 + 21t5

)
(ln 2)

− 12(1 + t)
(
−4 + 12t + 24t2 − 20t3 − 45t4 + 28t6

)
(ln 2)2

+ 4t(1 + t)
(
−12 + 24t + 40t2 − 30t3 − 63t4 + 36t6

)
(ln 2)3

− t2(1 + t)
(
−24 + 40t + 60t2 − 42t3 − 84t4 + 45t6

)
(ln 2)4

+ 288t(1 + t) ln (1 + t).

We have

F (2)(0) =
1

16

(
−15 + 16(ln 2) + 8(ln 2)2

) ∼= −0.00412631,

F (2)(1) =
1

96

(
48− 120(ln 2) + 60(ln 2)2 − 20(ln 2)3 + 5(ln 2)4

) ∼= −0.123508
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and

F (2)

(
1

2

)
=

1

24576
(−224− 49728(ln 2)− 9600(ln 2)2

+ 1472(ln 2)3 − 77(ln 2)4 + 36864(ln 3)) ∼= 0.0678104.

Since we have only two real numbers a5 and a6 with 0 < a5 < 1/2 and 1/2 < a6 < 1 such that F (2)(a5) = 0
and F (2)(a6) = 0, F (2)(t) < 0 for all 0 < t < a5, a6 < t < 1 and F (2)(t) > 0 for all a5 < t < a6. Therefore,
F ′(t) is strictly decreasing for 0 < t < a5, a6 < t < 1 and F ′(t) is strictly increasing for a5 < t < a6. We
have

F ′(t) =
p(t)

96
,

where

p(t) =− 6(−1 + t)2t
(
7 + 18t + 9t2

)
+ 12t(8− 8t2 − 15t3 + 7t5)(ln 2)

− 12(−1 + t)t
(
4− 2t− 10t2 − 5t3 + 4t4 + 4t5

)
(ln 2)2

+ 2(−1 + t)t2
(
12− 4t− 24t2 − 12t3 + 9t4 + 9t5

)
(ln 2)3

− (−1 + t)t3
(
8− 2t− 14t2 − 7t3 + 5t4 + 5t5

)
(ln 2)4

+ 48
(
−1 + 3t2

)
ln (1 + t)

We have
F ′(0) = 0

and
F ′(1) = 0.

Since there exists uniquely a real number a7 with 0 < a7 < 1 such that F ′(a7) = 0, F (t) is strictly decreasing
for 0 < t < a7 and F (t) is strictly increasing for a7 < t < 1 Hence, we can get

F (t) ≤ max{F (0), F (1)}.

Since F (0) = F (1) = 0, we have F (t) ≤ 0 for all 0 ≤ t ≤ 1. Therefore, the proof of Theorem 1.1 is
completed.

Problem 2.1. What is the maximum value of a nonnegative real number r in the inequality a2b + b2a +
r (ab(a− b))2 ≤ 1 for all nonnegative real numbers a and b with a + b = 1 ?
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[2] V. Ĉırtoaje, On some inequalities with power-exponential functions, JIPAM. J. Inequal. Pure Appl. Math., 10
(2009), 6 pages. 1, 1, 1
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