Available online at www.tjnsa.com
J. Nonlinear Sci. Appl. 8 (2015), 224-230

Research Article

Nonlincar Sciences
4 B3 Rooc son:

l"_ﬂ""ﬁ’j Journal of Nonlinear Science and Applications

Print: ISSN 2008-1898 Online: ISSN 2008-1901

A stronger inequality of Cirtoaje’s one with power
exponential functions

Mitsuhiro Miyagi, Yusuke Nishizawa*
General Education, Ube National College of Technology, Tokiwadai 2-14-1, Ube, Yamaguchi 755-8555, Japan.

Communicated by R. Saadati

Abstract

In this paper, we will show that a2 4 b2 + r (ab(a — b))? < 1 holds for all 0 < a and 0 < b with a +b = 1
and all 0 < r < 1/2. This gives the first example of a stronger inequality of a?® + b** < 1. ©2015 All rights
reserved.
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1. Introduction

The study of inequalities with power exponential functions is one of the active areas of research in the
mathematical analysis. V. Cirtoaje et al. [I, 2 B 4 [ [6] studied some inequalities with power exponential
functions. These problems of inequalities are very simple formula, but these proof are not as simple as it
seems. It is noted that

2
ab 4 p2a 4 <a2 b> <9 (1.1)

and

—b\*
a3b+b3a+<a2 > <92 (1.2)

holds for all 0 < a and 0 < b with a 4+ b = 2. These inequalities (1.1]) and (1.2)) are proved by V. Cirtoaje et
al. [2 [6], respectively. In this paper, we will show that

a® + 0% + 7 (abla —b))? < 1 (1.3)
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holds for all 0 < a and 0 < b with a+b =1 and all 0 < r < 1/2, which is a stronger inequality of
a® + % < 1. (1.4)

The above inequality (1.4]) is Conjecture 4.8 in [2] and proved by V. Cirtoaje [3]. The following is our main
theorem.

Theorem 1.1. For all0 <a and 0 < b witha+b=1 and all 0 < r < 1/2, the inequality (1.3) holds.

This gives the first example of a stronger inequality of (|1.4)).

2. Proof of Theorem [1.1]

Proof. Without loss of generically, we assume that

0<b<

N =
IA
S
IA
—

Applying Lemma 7.1 in [3], we have
a®® <1 — 4ab® — 2ab(a — b)lna
and since the inequality is strictly increasing for 0 < r < 1/2, it suffices to show that
b2 + % (ab(a — b))? < 4ab® + 2ab(a — b)lna. (2.1)

We assume that a = (1+1¢)/2 and b = (1 —¢)/2, where 0 < t < 1. Here, the inequality (2.1)) is equivalent to

<1_t>t+1+1(_1+t)2(1—|—t) (_16+t2+t3)+1(1—t)t(1—|—t)(] (1+t)—1 2) <0
2 32 9 n n2) <0.

Moreover, from Lemma 2.1 in [6], we have

(1-t)" < (1 -1)2(2 —t3)(2+ 2t +17)

=

and by the well known fact we have
2725 — 67t1n2

(In2)t)?  ((In2)t)3 ((1n2)t)4_

=1—(n2)t+ 5 T + 1
1 g 20 (207 (@2

Therefore, it suffices to show that

n 2 n 3 n 4
P = (1 oy 207 (@20 (@02 )

x}{1—ﬂ%2—ﬂﬂ2+2ﬂ+ﬂ)+j%—1+ﬂ%1+ﬂ(—m+¢2+ﬁ)

4 32
(=04 (i (14~ 2) <0,

We have the fourth derivated function
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of F(t), where
f(t) =62 4 126t — 33t> — 375> — 405t* — 135t°
+12(1 + ) (=2 — 15t + 35¢%) (In 2)
—6(1+t)3 (4 — 10t — 45¢* + 70t*) (In2)?
+2(1+1¢)% (4 + 20t — 30> — 105t + 126¢°) (In 2)*
— (1 +1)* (=2 + 10t + 30£% — 35¢> — 105¢t* + 105t°) (In2)*.

Then, we have derivatives

FO(t) = — 5040( — 60 — 78(In 2)? — 756t(In 2)* — 1008t(In 2)? — 35(In 2)*
+180(In 2) + 420¢(In 2) + 210¢(In 2)® + 1260¢*(In 2)* + 1260¢*(In 2)*)

Since

we have

— 60 — 78(In2)? — 756t(In 2)? — 1008¢*(In 2)? — 35(In 2)?
+ 180(In 2) + 420¢(In 2) + 210¢(In 2)3 + 1260t*(In 2)® + 1260t (In 2)*

7\? 7\?
—60 — — ) = ) -1 2 —
> —60 78<10> 75675(10) 008t <1> 35( >

69 69 69 \° 69 69
180 420t 210t 12602 12603
+ <100>+ <100>jL (100) + (100) + (100)

(1397500 — 1165311t — 799986612 + 41392134+%)

~ 100000

_ _ 2 3
> 50000 (1300000 — 1200000¢ — 8000000¢* + 40000000¢°)
= 13 — 12t — 80t% 4 400t3.

We set )
f(t) =13 — 12t — 80t + 400t*

then we have

F(t) =4 (=3 — 40t + 300¢%) .

Since
5 [2—+/13 5 [ 2++/13
_— = d =
f ( 20 0 and f 30 0,
we have
~ ~ (2 1
i =72 VAED NPT
30
Hence, we can get
FO@) <o.

Thus, f©)(t) is strictly decreasing for 0 < t < 1. We have

FON(t) = —16200 + 151200(1 + 2¢)(In 2)
— 10800 (11 + 84¢ + 98t*) (In 2)?
+ 720 (—73 + 546t + 2646t + 2352t°) (In 2)*
— 3600 (—13 — 49t + 147t> + 588> + 441¢*) (In 2)*,
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F5)(0) = —16200 4 151200(In 2) — 118800(In 2)? — 52560(In 2)* + 46800(In 2)*
=~ 94825.3,

and

)

—16200 + 453600(In 2) — 2084400(In 2)? + 3939120(In 2)® — 4010400(In 2)*
>~ _317162.

Since f®)(t) is strictly decreasing for 0 < t < 1, there exists uniquely a real number 0 < ¢; < 1 such that
O (t;) = 0. Since fO)(t) >0 for 0 <t < t; and fO(t) <0 for t; <t < 1, fA(t) is strictly increasing for
0 <t <t and f®(t) is strictly decreasing for t; < t < 1. We have
F@ () = —9720 — 16200t

+ 4320 (6 + 35t + 35t°) (In2)

— 3600 (—3 + 33t + 126t + 98¢%) (In2)?

+ 240 (=77 — 219t + 819> + 2646t° + 1764t") (In 2)?

— 120 (—22 — 390t — 735t + 1470¢® + 4410t* + 2646t°) (In2)*,

F@(0) = —9720 + 25920(In 2) 4 10800(In 2) — 18480(In 2)3 + 2640(In 2)*
= 7890.38

and

FH(1) = —25920 4 328320(In 2) — 914400(In 2)2 + 1183920(In 2)® — 885480 (In 2)*
= _47797.5.

Since f™)(t) is strictly increasing for 0 < ¢t < t; and f®)(¢) is strictly decreasing for t; < ¢t < 1, there exists
uniquely a real number ¢; < t5 < 1 such that f®(t3) = 0. Since f®(t) > 0 for 0 <t <ty and f¥(t) <0
for to < t < 1, f®)(t) is strictly increasing for 0 < t < to and f©)(t) is strictly decreasing for ty < t < 1. We
have

FO) () = —2250 — 9720t — 810042
+ 144 (—6 + 180t + 525t 4 350t") (In 2)
— 36 (—161 — 300t + 1650t* + 4200t + 2450t*) (In 2)*
+ 12 (—131 — 1540t — 2190t + 5460t + 13230t* + 7056t°) (In 2)*
— 6 (83 — 440t — 3900t — 4900¢> + 7350t* + 17640t + 8820t°) (In2)*

73 (0) = —2250 — 864(In 2) + 5796(In 2) — 1572(In 2)® — 498(In 2)*
>~ _702.644

and

F3(1) = —20070 4 151056(In 2) — 282204(In 2)? + 262620(1n 2) — 147918(In 2)*
= 9362.55.

Since f()(t) is strictly decreasing for 0 < ¢ < to and f®)(t) is strictly decreasing for to < t < 1, there exists
uniquely a real number 0 < t3 < ty such that f(®(t3) = 0. Since f®)(t) < 0 for 0 <t < t3 and f®(t) >0
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for t3 < t < 1, f)(t) is strictly decreasing for 0 < t < t3 and f(?)(t) is strictly increasing for t3 < t < 1. We
have
FA(t) = —66 — 2250t — 4860t — 270043
+72(1 +t) (=17 + 5t + 175¢* + 175¢%) (In 2)
—36(1 +t) (=21 — 140t — 10¢* + 560t + 490t*) (In 2)*
+12(1 4 t) (14 — 145t — 625t — 105t + 1470t + 1176t°) (In 2)*
—6(1 +1t) (18 + 65¢ — 285t* — 1015¢t° — 210t + 1680¢> + 1260¢°) (In 2)*

F3(0) = —66 — 1224(In 2) 4 756(In 2)? + 168(In 2)> — 108(In 2)*
—520.172

and

F3(1) = —9876 + 48672(In 2) — 63288(In 2)% + 42840(In 2)® — 18156(In 2)*
= 3529.68

Since f(?)(t) is strictly decreasing for 0 < t < t3 and f()(t) is strictly increasing for t3 < ¢t < 1, there exists
uniquely a real number t3 < t4 < 1 such that f®(t;) = 0. Since f@(t) < 0 for 0 <t < t4 and fP(t) >0
for t4 <t <1, f/(t) is strictly decreasing for 0 < ¢ < t4 and f’(t) is strictly increasing for t4 < t < 1. We
have
f(t) = 126 — 66t — 1125t% — 1620¢> — 675t

+36(1 +1)% (=7 — 20t + 35¢* + 70t*) (In 2)

—6(1+1t)% (2 — 130t — 225¢> + 280t + 490¢*) (In 2)*

+2(1 + )% (32 + 20t — 465t — 630t + 630t* + 1008¢°) (In 2)*

— (1 +1)? (4 + 100t + 45¢* — 630t> — 735t* + 630t> + 945t°) (In2)*,

F(0) = 126 — 252(In 2) — 12(In 2)% + 64(In 2)® — 4(In 2)*
>~ _34.0483,

and

f'(1) = —3360 + 11232(In 2) — 10008(In 2)* 4 4760(In 2)* — 1436(In 2)*
>~ 870.774.

Since f’(t) is strictly decreasing for 0 < t < t4 and f’(t) is strictly increasing for ¢4 < t < 1, there exists
uniquely a real number ¢4 < t5 < 1 such that f’(¢5) = 0. Since, f'(t) < 0 for 0 < ¢t < t5 and f/(t) > 0 for
ts <t <1, f(t) is strictly decreasing for 0 < t < t5 and f(t) is strictly increasing for ¢5 < ¢t < 1. Since

£(0) =2 (31— 12(In2) — 12(In2)* + 4(In 2)® + (In2)*) = 36.9595,
f(1) = —8(95 — 216(In2) + 114(In2)* — 30(In2)* + 3(In2)*) = 73.9711,

and

1 1
f () =13 (20656 — 106272(In 2) + 81648(1n 2)° — 9288(1n.2)° ~ 2079(In2)")

= —33.889.
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Since f(t) is strictly decreasing for 0 < ¢t < t5 and f(¢) is strictly increasing for t5 < t < 1, we have only
two real numbers a; and az with 0 < a1 < 1/2 < as < 1 such that f(a;) =0 and f(az2) = 0. Since f(t) >0
for all 0 < t < ay, ap <t < 1and f(t) <0 for all a1 <t < ag, FO)(t) is strictly increasing for 0 < t < ay,
ag <t <1 and F®)(t) is strictly decreasing for a; < t < az. We have

O = 20

where

g(t) =200t + 304t% — 60t> — 360t* — 180t°
+12¢(1 + t)? (-8 — 30t + 35¢%) (In2)
—24(1+¢)% (1 + 4t — 5¢* — 15t + 14¢°) (In2)?
+2(1+ )% (—4 + 16t + 40t* — 40> — 105¢* + 84¢5) (In 2)?
—t(1+1)% (=8 + 20t + 40> — 35¢> — 84¢* + 60¢°) (In2)*
+48(1 +)2In (1 + t).

We have 1
F®(0) = —5(In 2)%(3 +1n2) = —0.887192,

F®(1) = 116 (=24 +12(In2) + 24(In 2)? — 18(In 2)* + 7(In 2)*) = —0.533122

and

1 1
@ ((Ly__1 _ _ 2
F <2> T (17968 — 46008 (In 2) — 2160(In2)

+2160(In 2)* — 477(In 2)* 4 13824(In 3)) 22 0.181499.

Since we have only two real numbers a3 and a4 with 0 < a3 < 1/2 and 1/2 < a4 < 1 such that F®) (a3) =0
and F®)(ay) =0, F®)(t) <0 forall 0 <t < ag, ag <t <1and FO(t) > 0 for all a3 < t < as. Therefore,
F®)(t) is strictly decreasing for 0 < t < a3, ag < t < 1 and F)(t) is strictly increasings for a3 < t < a4.
We have

FO () = &’
96(t + 1)
where
h(t) = — 6 (15 + 15t — 76t* — 60> + 45t* + 451°)
+24(1 +t) (4 — 12¢* — 30£* + 21¢°) (In 2)
—12(1 +t) (=4 + 12t + 24¢% — 20¢® — 45¢* + 28t°) (In2)?
+ 4t(1 +t) (=12 + 24t + 40£* — 30t — 63t* + 36t°) (In2)®
—t2(1+t) (—24 + 40t + 602 — 42¢3 — 84t* + 45¢5) (In 2)*
+288t(1 +t)In (1 4 t).
We have

1
FP(0) = 1 (=15 + 16(In2) + 8(In 2)?) = —0.00412631,

FA(1) = % (48 — 120(In 2) + 60(In 2)* — 20(In 2)* + 5(In 2)*) = —0.123508
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and
1 1
FO (Z) = ——(—224 — 49728(In 2) — In2)>2
<2) T 9728(In 2) — 9600(In 2)
4 1472(In 2)% — 77(In 2)* + 36864(In 3)) = 0.0678104.

Since we have only two real numbers a5 and ag with 0 < a5 < 1/2 and 1/2 < ag < 1 such that F®) (a5) =0
and F®(ag) =0, FA(t) <0 forall 0 <t < as, ag < t < 1 and F®(t) > 0 for all a5 < t < ag. Therefore,
F'(t) is strictly decreasing for 0 < t < as, ag < t < 1 and F'(t) is strictly increasing for a5 < t < ag. We
have

where

p(t) = — 6(—1+1)% (7 + 18t + 9t%)
+ 12¢(8 — 8t2 — 15¢3 + 7t°)(In 2)
— 12(—1+ t)t (4 — 2t — 10> — 5t + 4t* + 4¢°) (In 2)*
+2(—1 4 t)t% (12 — 4t — 242 — 1263 + 9t* + 9¢°) (In 2)®
— (=1 +0)t* (8 — 2t — 144> — 7¢% + 5¢* + 5°) (In2)*
+48 (=1 +3t%) In (1 +¢)

We have
F’ 0)=0

and
F'(1)=0.

Since there exists uniquely a real number a7 with 0 < a7 < 1 such that F'(a7) = 0, F(t) is strictly decreasing
for 0 < ¢t < ay and F(t) is strictly increasing for a7 < t < 1 Hence, we can get

F(t) <max{F(0),F(1)}.

Since F'(0) = F(1) = 0, we have F(t) < 0 for all 0 < ¢t < 1. Therefore, the proof of Theorem is
completed. 0

Problem 2.1. What is the maximum value of a nonnegative real number r in the inequality a?® + b** +
r (ab(a — b))* < 1 for all nonnegative real numbers a and b with a +b =1 ?
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