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Abstract

In this paper, we prove Banach fixed point theorem for digital images. We also give the proof of a theorem
which is a generalization of the Banach contraction principle. Finally, we deal with an application of Banach
fixed point theorem to image processing. c©2015 All rights reserved.
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1. Introduction

Digital topology is a developing area which is related to features of 2D and 3D digital images using
topological properties of objects. In this field, our aim is to obtain some significant results for image
processing and fixed point theory.

Fixed point theory consists of many fields of mathematics such as mathematical analysis, general topology
and functional analysis. In metric spaces, this theory begins with the Banach contraction principle. There
are various applications of fixed point theory in mathematics, computer science, engineering, game theory,
image processing, etc. Banach fixed point theorem is the most significant test for solution of some problems
in mathematics and engineering. The Banach Contraction Mapping Principle was firstly given in 1922 [1].
Its structure is so simple and useful, so it is used in existence problems in various fields of mathematical
analysis. In recent times, for important studies using the Banach contraction principle, see [16, 17, 22, 23].

Up to now, several developments have been occured in this area. Digital topology was first studied by
Rosenfeld [21]. Then Kong [19] introduce the digital fundamental group of a discrete object. Boxer [4] gives
the digital versions of several notions from topology and [6] studies a variety of digital continuous functions.
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Some results and characteristic properties on the digital homology groups of 2D digital images are given in
[9] and [18]. Ege and Karaca [10] construct Lefschetz fixed point theory for digital images and study the
fixed point properties of digital images. Ege and Karaca [11] give relative and reduced Lefschetz fixed point
theorem for digital images. They also calculate degree of the antipodal map for sphere-like digital images
using fixed point properties.

This paper is organized as follows. In the first part, we give the required background about the digital
topology and fixed point theory. In the next section, we state and prove main results on Banach fixed point
theorem for digital images. Finally, we give an important application of Banach fixed point theorem to
digital images. Lastly, we make some conclusions.

2. Preliminaries

Let X be a subset of Zn for a positive integer n where Zn is the set of lattice points in the n-dimensional
Euclidean space and κ be represent an adjacency relation for the members of X. A digital image consists
of (X,κ).

Definition 2.1. [5] Let l, n be positive integers, 1 ≤ l ≤ n and two distinct points

p = (p1, p2, . . . , pn), q = (q1, q2, . . . , qn) ∈ Zn

p and q are kl-adjacent if there are at most l indices i such that |pi− qi| = 1 and for all other indices j such
that |pj − qj | 6= 1, pj = qj .

There are some statements which can be obtained from Definition 2.1:
• Two points p and q in Z are 2-adjacent if |p− q| = 1 (see Figure 1).

Figure 1: 2-adjacent

• Two points p and q in Z2 are 8-adjacent if they are distinct and differ by at most 1 in each coordinate.
• Two points p and q in Z2 are 4-adjacent if they are 8-adjacent and differ in exactly one coordinate (see
Figure 2).

Figure 2: 4-adjacent and 8-adjacent

• Two points p and q in Z3 are 26-adjacent if they are distinct and differ by at most 1 in each coordinate.
• Two points p and q in Z3 are 18-adjacent if they are 26-adjacent and differ at most two coordinates.
• Two points p and q in Z3 are 6-adjacent if they are 18-adjacent and differ in exactly one coordinate (see
Figure 3).
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Figure 3: 6-adjacent, 18-adjacent and 26-adjacent

A κ-neighbor [5] of p ∈ Zn is a point of Zn that is κ-adjacent to p where κ ∈ {2, 4, 8, 6, 18, 26} and
n ∈ 1, 2, 3. The set

Nκ(p) = {q | q is κ− adjacent to p}

is called the κ-neighborhood of p. A digital interval [4] is defined by

[a, b]Z = {z ∈ Z | a ≤ z ≤ b}

where a, b ∈ Z and a < b.
A digital image X ⊂ Zn is κ-connected [15] if and only if for every pair of different points x, y ∈ X,

there is a set {x0, x1, . . . , xr} of points of a digital image X such that x = x0, y = xr and xi and xi+1 are
κ-neighbors where i = 0, 1, . . . , r − 1.

Definition 2.2. Let (X,κ0) ⊂ Zn0 , (Y, κ1) ⊂ Zn1 be digital images and f : X −→ Y be a function.
• If for every κ0-connected subset U of X, f(U) is a κ1-connected subset of Y , then f is said to be

(κ0, κ1)-continuous [5].
• f is (κ0, κ1)-continuous [5]⇔ for every κ0-adjacent points {x0, x1} of X, either f(x0) = f(x1) or f(x0)

and f(x1) are a κ1-adjacent in Y .
• If f is (κ0, κ1)-continuous, bijective and f−1 is (κ1, κ0)-continuous, then f is called (κ0, κ1)-isomorphism

[7] and denoted by X ∼=(κ0,κ1) Y .

A (2, κ)-continuous function f : [0,m]Z −→ X such that f(0) = x and f(m) = y is called a digital κ-path
[5] from x to y in a digital image X. In a digital image (X,κ), for every two points, if there is a κ-path,
then X is called κ-path connected. A simple closed κ-curve of m ≥ 4 points [8] in a digital image X is a
sequence {f(0), f(1), . . . , f(m − 1)} of images of the κ-path f : [0,m − 1]Z −→ X such that f(i) and f(j)
are κ-adjacent if and only if j = i± mod m.

A point x ∈ X is called a κ-corner [3] if x is κ-adjacent to two and only two points y, z ∈ X such that
y and z are κ-adjacent to each other. If y, z are not κ-corners and if x is the only point κ-adjacent to both
y, z, then we say that the κ-corner x is simple [2]. X is called a generalized simple closed κ-curve [20] if
what is obtained by removing all simple κ-corners of X is a simple closed κ-curve. For a κ-connected digital
image (X,κ) in Zn, there is a following statement [12]:

|X|x = N3n−1(x) ∩X.

κ ∈
{

2n (n ≥ 1), 3n − 1 (n ≥ 2), 3n −
r−2∑
t=0

Cnt 2n−t − 1(2 ≤ r ≤ n− 1, n ≥ 3)

}
, (2.1)

where Cnt = n!
(n−t)!t! .

Definition 2.3. [14] Let (X,κ) be a digital image in Zn, n ≥ 3 and X = Zn−X. Then X is called a closed
κ-surface if it satisfies the following.
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(1) In case that (κ, κ) ∈ {(κ, 2n), (2n, 3n − 1)}, where the κ-adjacency is taken from (2.1) with κ 6=
3n − 2n − 1 and κ is the adjacency on X, then

(a) for each point x ∈ X, |X|x has exactly one κ-component κ-adjacent to x;
(b) |X|x has exactly two κ-components κ-adjacent to x; we denote by Cxx and Dxx these two

components; and
(c) for any point y ∈ Nκ(x) ∩ X, Nκ(y) ∩ Cxx 6= ∅ and Nκ(y) ∩ Dxx 6= ∅, where Nκ(x) means the

κ-neighbors of x.
Further, if a closed κ-surface X does not have a simple κ-point, then X is called simple.

(2) In case that (κ, κ) = (3n − 2n − 1, 2n), then
(a) X is κ-connected,
(b) for each point x ∈ X, |X|x is a generalized simple closed κ-curve.

Moreover, if the image |X|x is a simple closed κ-curve, then the closed κ-surface X is called simple.

Example 2.4. [13] MSS
′
18 = {c0 = (1, 1, 0), c1 = (0, 2, 0), c2 = (−1, 1, 0), c3 = (0, 0, 0), c4 = (0, 1,−1),

c5 = (0, 1, 1)} ⊂ Z3 is a minimal simple closed 18-surface (see Figure 4).

Figure 4: MSS
′
18

Let (X,κ) be a digital image and its subset be (A, κ). (X,A) is called a digital image pair with κ-
adjacency and when A is a singleton set {x0}, then (X,x0) is called a pointed digital image.

3. Banach Fixed Point Theorem for Digital Images

Let (X,κ) be a digital image and f : (X,κ) −→ (X,κ) be any (κ, κ)-continuous function. We say the
digital image (X,κ) has the fixed point property [10] if for every (κ, κ)-continuous map f : X −→ X there
exists x ∈ X such that f(x) = x. The fixed point property is preserved by any digital isomorphism, i.e., it
is a topological invariant. Let (X, d, κ) denote the digital metric space with κ-adjacency where d is usual
Euclidean metric for Zn.

Definition 3.1. A sequence {xn} of points of a digital metric space (X, d, κ) is a Cauchy sequence if for all
ε > 0, there exists α ∈ N such that for all n,m > α, then

d(xn, xm) < ε.

Definition 3.2. A sequence {xn} of points of a digital metric space (X, d, κ) converges to a limit a ∈ X if
for all ε > 0, there exists α ∈ N such that for all n > α, then

d(xn, a) < ε.

Definition 3.3. A digital metric space (X, d, κ) is a complete digital metric space if any Cauchy sequence
{xn} of points of (X, d, κ) converges to a point a of (X, d, κ).
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Definition 3.4. Let (X,κ) be any digital image. A function f : (X,κ)→ (X,κ) is called right-continuous
if

f(a) = lim
x→a+

f(x)

where a ∈ X.

Definition 3.5. Let (X, d, κ) be any digital metric space and f : (X, d, κ) −→ (X, d, κ) be a self digital
map. If there exists λ ∈ (0, 1) such that for all x, y ∈ X,

d(f(x), f(y)) ≤ λd(x, y),

then f is called a digital contraction map.

Proposition 3.6. Every digital contraction map is digitally continuous.

Proof. Let (X, d, κ) be a digital metric space and f : X −→ X be a digital contraction map. Pick a ∈ X
and let ε > 0. Let δ = ε. Then if d(a, b) < δ, we have

d(f(a), f(b)) ≤ λd(a, b) < λε < ε

where λ ∈ (0, 1) for all a, b ∈ X. Then f is a (κ, κ)-continuous function.

Theorem 3.7. (Banach contraction principle)
Let (X, d, κ) be a complete digital metric space which has a usual Euclidean metric in Zn. Let

f : X −→ X be a digital contraction map. Then f has a unique fixed point, i.e. there exists a unique c ∈ X
such that f(c) = c.

Proof. Assume that a, b ∈ X are fixed points of f . Then we have the following:

d(a, b) = d(f(a), f(b)) ≤ λd(a, b) ⇒ (1− λ)d(a, b) ≤ 0

⇒ a = b.

Let x0 be any point of X. Consider the iterate sequence f(xn) = xn+1. Using induction on n, we obtain

d(xn+1, xn) ≤ λd(xn, xn−1) ≤ . . . ≤ λnd(f(x0), x0).

For natural numbers n ∈ N and m ≥ 1, we conclude that

d(xn+m, xn) ≤ d(xn+m, xn+m−1) + . . .+ d(xn+1, xn)

≤ [λn+m + . . .+ λn]d(f(x0), x0)

≤ λn

1− λ
d(f(x0), x0).

As a result, xn is a Cauchy sequence. There is a limit point of xn because (X, d, κ) is digital complete metric
space. Let c be the limit of xn. From the (κ, κ)-continuity of f , we get

f(c) = lim
n→∞

f(xn) = lim
n→∞

xn+1 = c.

Therefore, f has a unique fixed point.

Example 3.8. Let X = [0, 2]Z be a digital interval with 2-adjacency. Consider the map

f : X → X

defined by f(x) =
x

2
. It is clear that f has a fixed point.
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We note that the following theorem is a generalization of Theorem 3.7.

Theorem 3.9. (A generalization of the Banach contraction principle)
Let (X, d, κ) be a complete digital metric space which has a usual Euclidean metric d in Zn and let

f : X → X be a digital selfmap. Assume that there exists a right-continuous real function

γ : [0, u]→ [0, u]

where u is sufficiently large real number such that

γ(a) < a if a > 0, (3.1)

and let f satisfies
d(f(x1), f(x2)) ≤ γ(d(x1, x2)) (3.2)

for all x1, x2 ∈ (X, d, κ). Then f has a unique fixed point c ∈ (X, d, κ) and the sequence fn(x) converges to
c for every x ∈ X.

Proof. We first prove the uniqueness. Let u1, u2 be two fixed points of f . By (3.1) and (3.2), we get

d(u1, u2) = d(f(u1), f(u2)) ≤ γ(d(u1, u2)) ⇒ u1 = u2.

Now let’s prove the existence. For this purpose, we take a point x0 ∈ (X, d, κ) and define the sequence
f(xn) = xn+1. For n ∈ N, define the following sequence:

an = d(xn, xn−1).

Using (3.1) and (3.2), we obtain

an+1 = d(xn+1, xn) ≤ γ(d(xn, xn−1))

< d(xn, xn−1) = an

for all n ∈ N. Thus the sequence an is decreasing and so it has a limit a. If we assume that a > 0, we have

an+1 ≤ γ(an)

from (3.2). Since γ is right continuous, we get

a ≤ γ(a)

but it contradicts with (3.1). As a result, an → 0 as n→∞.
We would like to show xn is a Cauchy sequence. Suppose that xn is not a Cauchy sequence. Then there

exists ε > 0 and integers m > n ≥ k for every k ≥ 1 such that

d(xm, xn) ≥ ε.

For a smallest m, we can suppose that d(xm−1, xn) < ε. If we use the triangle inequality, we obtain

ε ≤ d(xm, xn) ≤ d(xm, xm−1) + d(xm−1, xn)

< ε+ d(xm, xm−1).

Since d(xn, xn−1)→ 0 as n→∞, we conclude that

ε ≤ d(xm, xn) < ε ⇒ d(xm, xn)→ ε as n→∞.

From the fact that
m > n ⇒ d(xm+1, xm) ≤ d(xn+1, xn)

and (3.2), we have
ε ≤ d(xm, xn) ≤ d(xm, xm+1) + d(xm+1, xn+1) + d(xn+1, xn)

≤ 2d(xn+1, xn) + γ(d(xm, xn)).

Taking the limit as n→∞, from these inequalities we get ε ≤ γ(ε) but this contradicts with (3.1) because
ε > 0. As a result, xn is a Cauchy sequence and since (X, d, κ) is a complete digital metric space, fn(x)
converges in (X, d, κ).
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4. An Application of Banach Fixed Point Theorem to Digital Images

In this section, we give an application of Banach fixed point theorem to image compression. The aim of
image compression is to reduce redundant image information in the digital image. There are some problems
in the storing an image. Memory data is usually too large and sometimes stored image has not more
information than original image. It’s known that the quality of compressed image can be poor. For this
reason, we must pay attention to compress a digital image. Fixed point theorem can be used to image
compression of a digital image. Let’s show this process by an example.

Example 4.1. Let F0 be a digital image as in the figure 5.

Figure 5: F0

Starting from the digital image F0, we can construct the following procedure:

(i) We make a copy of F0 and glue it on the lower left vertex.

(ii) We create a copy of F0 and glue it on lower right vertex.

(iii) So we have a new digital image which is denoted by F1 (see figure 6).

Figure 6: F1

If the same procedure is applied to F1, we have again a new digital image F2 which is identical to F1 (see
figure 7).
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Figure 7: F2

As a result, F2 is the fixed point for this process. We would like to give the upper procedure in the
mathematical sense. Let V be the function which takes Fi to V (Fi). So we observe that V (F2) = F2, i.e.
F2 is a fixed point of this function. If we continue the process indefinitely, we obtain an infinite sequence
of sets {Fn}. The sequence {Fn} converges to F2. It cannot be distinguished F5 from F2. As a result, the
computer programme use F5 instead of F2 to better resolution. At the same time, the programme could use
F2 in place of F5 to determine easily some properties of digital image.

Example 4.1 shows that the fixed point theory can be used for some digital imaging applications.

5. Conclusion

Our aim is to give the digital version of Banach fixed point theorem. We hope that this work will be
useful for digital topology and fixed point theory. All results in this paper will help us to understand better
the structure of digital images. We give an important application and use the fixed point theory to solve
some problems in digital imaging. In the future, we will research other fixed point properties of digital
images.
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