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Abstract

Recently, Shagholi et al. [S. Shagholi, M. Eshaghi Gordji, M. B. Savadkouhi, J. Comput. Anal. Appl.,
13 (2011), 1097–1105] defined ternary quadratic derivations on ternary Banach algebras and proved the
Hyers-Ulam stability of ternary quadratic derivations on ternary Banach algebras. But the definition was
not well-defined.

Using the fixed point method, Bodaghi and Alias [A. Bodaghi, I. A. Alias, Adv. Difference Equ., 2012
(2012), 9 pages] proved the Hyers-Ulam stability and the superstability of ternary quadratic derivations
on ternary Banach algebras and C∗-ternary rings. There are approximate C-quadraticity conditions in the
statements of the theorems and the corollaries, but the proofs for the C-quadraticity were not completed. In
this paper, we correct the definition of ternary quadratic derivation and complete the proofs of the theorems
and the corollaries. c©2015 All rights reserved.
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1. Introduction

The study of stability problems for functional equations is related to a question of Ulam [9] concerning the
stability of group homomorphisms and affirmatively answered for Banach spaces by Hyers [4]. Subsequently,
the result of Hyers was generalized by Aoki [1] for additive mappings and by Th. M. Rassias [6] for linear
mappings by considering an unbounded Cauchy difference.
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The functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y) (1.1)

is called a quadratic functional equation. In particular, every solution of the quadratic equation (1.1) is said
to be a quadratic mapping. The Hyers-Ulam stability problem for the quadratic functional equation (1.1)
was proved by Skof for mappings f : A→ B, where A is a normed space and B is a Banach space (see [8]).

In [7], Shagholi et al. defined a ternary quadratic derivation D from a ternary Banach algebra A into a
ternary Banach algebra B such that

D[x, y, z] = [D(x), y2, z2] + [x2, D(y), z2] + [x2, y2, D(z)]

for all x, y, z ∈ A. But x2, y2, z2 are not defined and the brackets of the right side are not defined, since A
is not an algebra and D(x) ∈ B and y2, z2 ∈ A. So we correct them as follows.

Definition 1.1. Let A be a complex algebra-ternary Banach algebra with norm ‖ · ‖ or a complex algebra-
C∗-ternary ring with norm ‖ · ‖. A C-linear mapping D : A → A is called a ternary quadratic derivation
if

(1) D is a quadratic mapping,

(2) D[x, y, z] = [D(x), y2, z2] + [x2, D(y), z2] + [x2, y2, D(z)] for all x, y, z ∈ A.

There are approximate C-quadraticity conditions in the statements of the theorems and the corollaries
in [2], but the proofs for the C-quadraticity were not completed.

In this paper, we complete the proofs of the theorems and the corollaries given in [2].
Throughout this paper, let A be a complex algebra-ternary Banach algebra with norm ‖ · ‖ or a complex

algebra-C∗-ternary ring with norm ‖ · ‖.

2. Stability of ternary quadratic derivations

We need the following lemma to obtain the main results.

Lemma 2.1. Let f : A → A be a quadratic mapping such that f(µx) = µ2f(x) for all x ∈ A and
µ ∈ T1 := {λ ∈ C : |λ| = 1}. If f(tx) is continuous in t ∈ R for each fixed x ∈ A, then the mapping
f : A→ A satisfies f(µx) = µ2f(x) for all x ∈ A and all µ ∈ C.

The proof is similar to the proof of the corresponding lemma given in [5].

Proof. Let r be a rational number. it is easy to show that f(rx) = r2f(x) for all x ∈ A.
By the same reasoning as in the proof of main theorem of [6], one can show that f(rx) = r2f(x) for all

x ∈ A and all r ∈ R. So

f(µx) = f

(
|µ| µ
|µ|
x

)
= |µ|2f

(
µ

|µ|
x

)
= |µ|2 · µ

2

|µ|2
f (x) = µ2f(x)

for all µ ∈ C \ {0} and all x ∈ A. Since f(0) = 0, f(µx) = µ2f(x) for all x ∈ A and all µ ∈ C.

We recall a fundamental result in fixed point theory.

Theorem 2.2. ([3]) Let (X, d) be a complete generalized metric space and let J : X → X be a strictly
contractive mapping with Lipschitz constant L < 1. Then, for each given element x ∈ X, either

d(Jnx, Jn+1x) =∞

for all nonnegative integers n or there exists a positive integer n0 such that
(1) d(Jnx, Jn+1x) <∞ for all n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) <∞};
(4) d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ Y .
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Theorem 2.3. Let A be a complex algebra-C∗-ternary ring. Let f : A → A be a mapping with f(0) = 0
and let ϕ : A5 → [0,∞) be a function such that∥∥∥∥2f

(
µ
a+ b

2

)
+ 2f

(
µ
a− b

2

)
− µ2(f(a) + f(b))

∥∥∥∥ ≤ ϕ(a, b, 0, 0, 0), (2.1)

‖f([x, y, z])− [f(x), y2, z2]− [x2, f(y), z2]− [x2, y2, f(z)])‖ ≤ ϕ(0, 0, x, y, z) (2.2)

for all µ ∈ T1 and all a, b, x, y, z ∈ A. Assume that there exists a constant M ∈ (0, 1) such that

ϕ(2a, 2b, 2x, 2y, 2z) ≤ 4Mϕ(a, b, x, y, z) (2.3)

for all a, b, x, y, z ∈ A. If f(tx) is continuous in t ∈ R for each fixed x ∈ A, then there exists a unique
ternary quadratic derivation D : A→ A such that

‖f(a)−D(a)‖ ≤ M

1−M
ϕ(a, 0, 0, 0, 0) (2.4)

for all a ∈ A.

Proof. It follows from (2.3) that

lim
j→∞

ϕ(2ja, 2jb, 2jx, 2jy, 2jz)

4j
= 0

for all a, b, x, y, z ∈ A.
Putting b = 0 and µ = 1 and replacing a by 2a in (2.1), we get

‖4f(a)− f(2a)‖ ≤ ϕ(2a, 0, 0, 0, 0) ≤ 4Mϕ(a, 0, 0, 0, 0)

and so∥∥∥∥f(a)− 1

4
f(2a)

∥∥∥∥ ≤Mϕ(a, 0, 0, 0, 0) (2.5)

for all a ∈ A.
We consider the set Ω := {h : A→ A | h(0) = 0} and introduce the generalized metric d on Ω as follows:

d(h1, h2) := inf{K ∈ [0,∞) : ‖h1(a)− h2(a)‖ ≤ Kϕ(a, 0, 0, 0, 0),∀a ∈ A}

if there exists such constant K, and d(h1, h2) =∞, otherwise. One can easily show that (Ω, d) is complete.
We define the linear mapping J : Ω→ Ω by

J(h)(a) =
1

4
h(2a) (2.6)

for all a ∈ A.
Given h1, h2 ∈ Ω, let K ∈ R+ be an arbitrary constant with d(h1, h2) ≤ K, that is

‖h1(a)− h2(a)‖ ≤ Kϕ(a, 0, 0, 0, 0) (2.7)

for all a ∈ A. Replacing a by 2a in (2.7))and using (2.3) and (2.6), we have

‖(Jh1)(a)− (Jh2)(a)‖ =
1

4
‖h1(2a)− h2(2a)‖ ≤ 1

4
Kϕ(2a, 0, 0, 0, 0) ≤ KMϕ(a, 0, 0, 0, 0)

for all a ∈ A and so d(Jh1, Jh2) ≤ KM . Thus we conclude that d(Jh1, Jh2) ≤Md(h1, h2) for all h1, h2 ∈ Ω.
It follows from (2.5) that

d(Jf, f) ≤M. (2.8)
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By Theorem 2.2, the sequence {Jnf} converges to a unique fixed point D : A → A in the set Ω1 := {h ∈
Ω, d(f, h) <∞}, i.e.,

lim
n→∞

f(2na)

4n
= D(a)

for all a ∈ A. By Theorem 2.2 and (2.8), we have

d(f,D) ≤ d(Jf, f)

1−M
≤ M

1−M
.

The last inequality shows that (2.4) holds for all a ∈ A. Replacing a, b by 2na, 2nb in (2.1), respectively,
and dividing both sides of the resulting inequality by 4n, and letting n tend to infinity, we obtain

2D

(
µ
a+ b

2

)
+ 2D

(
µ
a− b

2

)
= µ2D(a) + µ2D(b) (2.9)

for all a, b ∈ A and all µ ∈ T1. Putting µ = 1 in (2.9), we have

2D

(
a+ b

2

)
+ 2D

(
a− b

2

)
= D(a) +D(b)

for all a, b ∈ A. Hence D is a quadratic mapping. It follows from (2.9) that D(µa) = µ2D(a) for all a ∈ A
and µ ∈ T1. By Lemma 2.1 and the same reasoning as in the proof of main theorem of [6], one can show
that D(µa) = µ2D(a) for all a ∈ A and µ ∈ C.

Replacing x, y, z by 2nx, 2ny, 2nz in (2.2), respectively, and dividing by 43n, we obtain∥∥f([2nx, 2ny, 2nz])− [f(2nx), 4ny2, 4nz2]− [4nx2, f(2ny), 4nz2]− [4nx2, 4ny2, f(2nz)])
∥∥

≤ ϕ(0, 0, 2nx, 2ny, 2nz)

43n
≤ ϕ(0, 0, 2nx, 2ny, 2nz)

4n
,

which tends to zero as n→∞. So

D([x, y, z]) = [D(x), y2, z2] + [x2, D(y), z2] + [x2, y2, D(z)]

for all x, y, z ∈ A. So D is a ternary quadratic derivation.

Corollary 2.4. Let p, θ be nonnegative real numbers with p < 2 and let A be a complex algebra-C∗-ternary
ring. Let f : A→ A be a mapping such that∥∥∥∥2f

(
µ
a+ b

2

)
+ 2f

(
µ
a− b

2

)
− µ2(f(a) + f(b))

∥∥∥∥ ≤ θ(‖a‖p + ‖b‖p), (2.10)

‖f([x, y, z])− [f(x), y2, z2]− [x2, f(y), z2]− [x2, y2, f(z)]‖ ≤ θ(‖x‖p + ‖y‖p + ‖z‖p) (2.11)

for all µ ∈ T1 and all a, b, x, y, z ∈ A. If f(tx) is continuous in t ∈ R for each fixed x ∈ A, then there exists
a unique ternary quadratic derivation D : A→ A such that

‖f(a)−D(a)‖ ≤ 2pθ

4− 2p
‖a‖p

for all a ∈ A.

Proof. The result follows from Theorem 2.3 by putting ϕ(a, b, x, y, z) = θ(‖a‖p + ‖b‖p + ‖x‖p + ‖y‖p +
‖z‖p).

Now we prove the superstability of ternary quadratic derivations on complex algebra-C∗-ternary rings.
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Corollary 2.5. Let p, θ be nonnegative real numbers with p < 2
3 and let A be a complex algebra-C∗-ternary

ring. Let f : A→ A be a mapping such that∥∥∥∥2f

(
µ
a+ b

2

)
+ 2f

(
µ
a− b

2

)
− µ2(f(a) + f(b))

∥∥∥∥ ≤ θ(‖a‖p · ‖b‖p), (2.12)

‖f([x, y, z])− [f(x), y2, z2]− [x2, f(y), z2]− [x2, y2, f(z)]‖ ≤ θ(‖x‖p · ‖y‖p · ‖z‖p) (2.13)

for all µ ∈ T1 and all a, b, x, y, z ∈ A. If f(tx) is continuous in t ∈ R for each fixed x ∈ A, then f : A→ A
is a ternary quadratic derivation.

Proof. Putting a = b = 0 in (2.12), we get f(0) = 0. Letting b = 0, µ = 1 and replacing a by 2a in (2.13), we

get f(2a) = 4f(a) for all a ∈ A. It is easy to show that f(2na) = 4nf(a) and so f(a) = f(2na)
4n for all a ∈ A.

It follows from Theorem 2.3 that f : A → A is a quadratic mapping. The result follows from Theorem 2.3
by putting ϕ(a, b, x, y, z) = θ(‖a‖p · ‖b‖p + ‖x‖p · ‖y‖p · ‖z‖p).

Theorem 2.6. Let A be a complex algebra-ternary Banach algebra. Let f : A → A be a mapping with
f(0) = 0 and let ϕ : A5 → [0,∞) be a function satisfying (2.2) and∥∥f (µ(a+ b)) + f (µ(a− b))− 2µ2(f(a) + f(b))

∥∥ ≤ ϕ(a, b, 0, 0, 0) (2.14)

for all µ ∈ T1 and all a, b, x, y, z ∈ A. Assume that there exists a constant M ∈ (0, 1) such that

ϕ(2a, 2b, 2x, 2y, 2z) ≤ 4Mϕ(a, b, x, y, z) (2.15)

for all a, b, x, y, z ∈ A. If f(tx) is continuous in t ∈ R for each fixed x ∈ A, then there exists a unique
ternary quadratic derivation D : A→ A such that

‖f(a)−D(a)‖ ≤ 1

4(1−M)
ϕ(a, a, 0, 0, 0)

for all a ∈ A.

Proof. It follows from (2.15) that

lim
j→∞

ϕ(2ja, 2jb, 2jx, 2jy, 2jz)

4j
= 0

for all a, b, x, y, z ∈ A.
Putting b = a and µ = 1 in (2.14), we get

‖4f(a)− f(2a)‖ ≤ ϕ(a, a, 0, 0, 0)

and so∥∥∥∥f(a)− 1

4
f(2a)

∥∥∥∥ ≤ 1

4
ϕ(a, a, 0, 0, 0)

for all a ∈ A.
We consider the set Ω := {h : A→ A | h(0) = 0} and introduce the generalized metric d on Ω as follows:

d(h1, h2) := inf{K ∈ [0,∞) : ‖h1(a)− h2(a)‖ ≤ Kϕ(a, a, 0, 0, 0),∀a ∈ A}

if there exists such constant K, and d(h1, h2) =∞, otherwise. One can easily show that (Ω, d) is complete.
We define the linear mapping J : Ω→ Ω by

J(h)(a) =
1

4
h(2a)

for all a ∈ A.
The rest of the proof is similar to the proof of Theorem 2.3.
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Corollary 2.7. Let p, θ be nonnegative real numbers with p < 2 and let A be a complex algebra-ternary
Banach algebra. Let f : A→ A be a mapping satisfying (2.11) and∥∥f (µ(a+ b)) + f (µ(a− b))− 2µ2(f(a) + f(b))

∥∥ ≤ θ(‖a‖p + ‖b‖p) (2.16)

for all µ ∈ T1 and all a, b, x, y, z ∈ A. If f(tx) is continuous in t ∈ R for each fixed x ∈ A, then there exists
a unique ternary quadratic derivation D : A→ A such that

‖f(a)−D(a)‖ ≤ 2θ

4− 2p
‖a‖p

for all a ∈ A.

Proof. The result follows from Theorem 2.6 by putting ϕ(a, b, x, y, z) = θ(‖a‖p + ‖b‖p + ‖x‖p + ‖y‖p +
‖z‖p).

Remark 2.8. Bodaghi and Alias [2] provided the conditions (2.1), (2.10), (2.12), (2.14) and (2.16), which are
approximate C-quadraticity conditions. But they only proved the quadraticity of the resulting mappings.
In this paper, the C-quadraticity has been proved for each case.
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