Journal of Nonlinear Science and Applications

Approximate ternary quadratic derivation on ternary Banach algebras and C^{*}-ternary rings: revisited

Choonkill Parka ${ }^{\text {a }}$ Jung Rye Lee ${ }^{\mathrm{b}, *}$
${ }^{a}$ Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea
${ }^{b}$ Department of Mathematics, Daejin University, Kyeonggi 487-711, Korea
Communicated by P. Găvruta

Abstract

Recently, Shagholi et al. [S. Shagholi, M. Eshaghi Gordji, M. B. Savadkouhi, J. Comput. Anal. Appl., 13 (2011), 1097-1105] defined ternary quadratic derivations on ternary Banach algebras and proved the Hyers-Ulam stability of ternary quadratic derivations on ternary Banach algebras. But the definition was not well-defined.

Using the fixed point method, Bodaghi and Alias [A. Bodaghi, I. A. Alias, Adv. Difference Equ., 2012 (2012), 9 pages] proved the Hyers-Ulam stability and the superstability of ternary quadratic derivations on ternary Banach algebras and C^{*}-ternary rings. There are approximate \mathbb{C}-quadraticity conditions in the statements of the theorems and the corollaries, but the proofs for the \mathbb{C}-quadraticity were not completed. In this paper, we correct the definition of ternary quadratic derivation and complete the proofs of the theorems and the corollaries. © 2015 All rights reserved.

Keywords: Hyers-Ulam stability; algebra- C^{*}-ternary ring, fixed point, quadratic functional equation, algebra-ternary Banach algebra, ternary quadratic derivation.
2010 MSC: 39B52, 13N15, 47H10, 47B47.

1. Introduction

The study of stability problems for functional equations is related to a question of Ulam [9] concerning the stability of group homomorphisms and affirmatively answered for Banach spaces by Hyers [4]. Subsequently, the result of Hyers was generalized by Aoki [1] for additive mappings and by Th. M. Rassias [6] for linear mappings by considering an unbounded Cauchy difference.

[^0]The functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) \tag{1.1}
\end{equation*}
$$

is called a quadratic functional equation. In particular, every solution of the quadratic equation (1.1) is said to be a quadratic mapping. The Hyers-Ulam stability problem for the quadratic functional equation (1.1) was proved by Skof for mappings $f: A \rightarrow B$, where A is a normed space and B is a Banach space (see [8]).

In [7], Shagholi et al. defined a ternary quadratic derivation D from a ternary Banach algebra A into a ternary Banach algebra B such that

$$
D[x, y, z]=\left[D(x), y^{2}, z^{2}\right]+\left[x^{2}, D(y), z^{2}\right]+\left[x^{2}, y^{2}, D(z)\right]
$$

for all $x, y, z \in A$. But x^{2}, y^{2}, z^{2} are not defined and the brackets of the right side are not defined, since A is not an algebra and $D(x) \in B$ and $y^{2}, z^{2} \in A$. So we correct them as follows.
Definition 1.1. Let A be a complex algebra-ternary Banach algebra with norm $\|\cdot\|$ or a complex algebra-C^{*}-ternary ring with norm $\|\cdot\|$. A \mathbb{C}-linear mapping $D: A \rightarrow A$ is called a ternary quadratic derivation if
(1) D is a quadratic mapping,
(2) $D[x, y, z]=\left[D(x), y^{2}, z^{2}\right]+\left[x^{2}, D(y), z^{2}\right]+\left[x^{2}, y^{2}, D(z)\right]$ for all $x, y, z \in A$.

There are approximate \mathbb{C}-quadraticity conditions in the statements of the theorems and the corollaries in [2], but the proofs for the \mathbb{C}-quadraticity were not completed.

In this paper, we complete the proofs of the theorems and the corollaries given in [2].
Throughout this paper, let A be a complex algebra-ternary Banach algebra with norm $\|\cdot\|$ or a complex algebra- C^{*}-ternary ring with norm $\|\cdot\|$.

2. Stability of ternary quadratic derivations

We need the following lemma to obtain the main results.
Lemma 2.1. Let $f: A \rightarrow A$ be a quadratic mapping such that $f(\mu x)=\mu^{2} f(x)$ for all $x \in A$ and $\mu \in \mathbb{T}^{1}:=\{\lambda \in \mathbb{C}:|\lambda|=1\}$. If $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in A$, then the mapping $f: A \rightarrow A$ satisfies $f(\mu x)=\mu^{2} f(x)$ for all $x \in A$ and all $\mu \in \mathbb{C}$.

The proof is similar to the proof of the corresponding lemma given in [5].
Proof. Let r be a rational number. it is easy to show that $f(r x)=r^{2} f(x)$ for all $x \in A$.
By the same reasoning as in the proof of main theorem of [6, one can show that $f(r x)=r^{2} f(x)$ for all $x \in A$ and all $r \in \mathbb{R}$. So

$$
f(\mu x)=f\left(|\mu| \frac{\mu}{|\mu|} x\right)=|\mu|^{2} f\left(\frac{\mu}{|\mu|} x\right)=|\mu|^{2} \cdot \frac{\mu^{2}}{|\mu|^{2}} f(x)=\mu^{2} f(x)
$$

for all $\mu \in \mathbb{C} \backslash\{0\}$ and all $x \in A$. Since $f(0)=0, f(\mu x)=\mu^{2} f(x)$ for all $x \in A$ and all $\mu \in \mathbb{C}$.
We recall a fundamental result in fixed point theory.
Theorem 2.2. (3) Let (X, d) be a complete generalized metric space and let $J: X \rightarrow X$ be a strictly contractive mapping with Lipschitz constant $L<1$. Then, for each given element $x \in X$, either

$$
d\left(J^{n} x, J^{n+1} x\right)=\infty
$$

for all nonnegative integers n or there exists a positive integer n_{0} such that
(1) $d\left(J^{n} x, J^{n+1} x\right)<\infty$ for all $n \geq n_{0}$;
(2) the sequence $\left\{J^{n} x\right\}$ converges to a fixed point y^{*} of J;
(3) y^{*} is the unique fixed point of J in the set $Y=\left\{y \in X \mid d\left(J^{n_{0}} x, y\right)<\infty\right\}$;
(4) $d\left(y, y^{*}\right) \leq \frac{1}{1-L} d(y, J y)$ for all $y \in Y$.

Theorem 2.3. Let A be a complex algebra- C^{*}-ternary ring. Let $f: A \rightarrow A$ be a mapping with $f(0)=0$ and let $\varphi: A^{5} \rightarrow[0, \infty)$ be a function such that

$$
\begin{align*}
& \left\|2 f\left(\mu \frac{a+b}{2}\right)+2 f\left(\mu \frac{a-b}{2}\right)-\mu^{2}(f(a)+f(b))\right\| \leq \varphi(a, b, 0,0,0) \tag{2.1}\\
& \left.\| f([x, y, z])-\left[f(x), y^{2}, z^{2}\right]-\left[x^{2}, f(y), z^{2}\right]-\left[x^{2}, y^{2}, f(z)\right]\right) \| \leq \varphi(0,0, x, y, z) \tag{2.2}
\end{align*}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $a, b, x, y, z \in A$. Assume that there exists a constant $M \in(0,1)$ such that

$$
\begin{equation*}
\varphi(2 a, 2 b, 2 x, 2 y, 2 z) \leq 4 M \varphi(a, b, x, y, z) \tag{2.3}
\end{equation*}
$$

for all $a, b, x, y, z \in A$. If $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in A$, then there exists a unique ternary quadratic derivation $D: A \rightarrow A$ such that

$$
\begin{equation*}
\|f(a)-D(a)\| \leq \frac{M}{1-M} \varphi(a, 0,0,0,0) \tag{2.4}
\end{equation*}
$$

for all $a \in A$.
Proof. It follows from (2.3) that

$$
\lim _{j \rightarrow \infty} \frac{\varphi\left(2^{j} a, 2^{j} b, 2^{j} x, 2^{j} y, 2^{j} z\right)}{4^{j}}=0
$$

for all $a, b, x, y, z \in A$.
Putting $b=0$ and $\mu=1$ and replacing a by $2 a$ in 2.1), we get

$$
\|4 f(a)-f(2 a)\| \leq \varphi(2 a, 0,0,0,0) \leq 4 M \varphi(a, 0,0,0,0)
$$

and so

$$
\begin{equation*}
\left\|f(a)-\frac{1}{4} f(2 a)\right\| \leq M \varphi(a, 0,0,0,0) \tag{2.5}
\end{equation*}
$$

for all $a \in A$.
We consider the set $\Omega:=\{h: A \rightarrow A \mid h(0)=0\}$ and introduce the generalized metric d on Ω as follows:

$$
d\left(h_{1}, h_{2}\right):=\inf \left\{K \in[0, \infty):\left\|h_{1}(a)-h_{2}(a)\right\| \leq K \varphi(a, 0,0,0,0), \forall a \in A\right\}
$$

if there exists such constant K, and $d\left(h_{1}, h_{2}\right)=\infty$, otherwise. One can easily show that (Ω, d) is complete. We define the linear mapping $J: \Omega \rightarrow \Omega$ by

$$
\begin{equation*}
J(h)(a)=\frac{1}{4} h(2 a) \tag{2.6}
\end{equation*}
$$

for all $a \in A$.
Given $h_{1}, h_{2} \in \Omega$, let $K \in \mathbb{R}_{+}$be an arbitrary constant with $d\left(h_{1}, h_{2}\right) \leq K$, that is

$$
\begin{equation*}
\left\|h_{1}(a)-h_{2}(a)\right\| \leq K \varphi(a, 0,0,0,0) \tag{2.7}
\end{equation*}
$$

for all $a \in A$. Replacing a by $2 a$ in (2.7) and using 2.3) and 2.6), we have

$$
\left\|\left(J h_{1}\right)(a)-\left(J h_{2}\right)(a)\right\|=\frac{1}{4}\left\|h_{1}(2 a)-h_{2}(2 a)\right\| \leq \frac{1}{4} K \varphi(2 a, 0,0,0,0) \leq K M \varphi(a, 0,0,0,0)
$$

for all $a \in A$ and so $d\left(J h_{1}, J h_{2}\right) \leq K M$. Thus we conclude that $d\left(J h_{1}, J h_{2}\right) \leq M d\left(h_{1}, h_{2}\right)$ for all $h_{1}, h_{2} \in \Omega$. It follows from (2.5) that

$$
\begin{equation*}
d(J f, f) \leq M \tag{2.8}
\end{equation*}
$$

By Theorem 2.2, the sequence $\left\{J^{n} f\right\}$ converges to a unique fixed point $D: A \rightarrow A$ in the set $\Omega_{1}:=\{h \in$ $\Omega, d(f, h)<\infty\}$, i.e.,

$$
\lim _{n \rightarrow \infty} \frac{f\left(2^{n} a\right)}{4^{n}}=D(a)
$$

for all $a \in A$. By Theorem 2.2 and 2.8 , we have

$$
d(f, D) \leq \frac{d(J f, f)}{1-M} \leq \frac{M}{1-M}
$$

The last inequality shows that (2.4) holds for all $a \in A$. Replacing a, b by $2^{n} a, 2^{n} b$ in (2.1), respectively, and dividing both sides of the resulting inequality by 4^{n}, and letting n tend to infinity, we obtain

$$
\begin{equation*}
2 D\left(\mu \frac{a+b}{2}\right)+2 D\left(\mu \frac{a-b}{2}\right)=\mu^{2} D(a)+\mu^{2} D(b) \tag{2.9}
\end{equation*}
$$

for all $a, b \in A$ and all $\mu \in \mathbb{T}^{1}$. Putting $\mu=1$ in (2.9), we have

$$
2 D\left(\frac{a+b}{2}\right)+2 D\left(\frac{a-b}{2}\right)=D(a)+D(b)
$$

for all $a, b \in A$. Hence D is a quadratic mapping. It follows from 2.9 that $D(\mu a)=\mu^{2} D(a)$ for all $a \in A$ and $\mu \in \mathbb{T}^{1}$. By Lemma 2.1 and the same reasoning as in the proof of main theorem of [6], one can show that $D(\mu a)=\mu^{2} D(a)$ for all $a \in A$ and $\mu \in \mathbb{C}$.

Replacing x, y, z by $2^{n} x, 2^{n} y, 2^{n} z$ in 2.2 , respectively, and dividing by $4^{3 n}$, we obtain

$$
\begin{aligned}
& \left.\| f\left(\left[2^{n} x, 2^{n} y, 2^{n} z\right]\right)-\left[f\left(2^{n} x\right), 4^{n} y^{2}, 4^{n} z^{2}\right]-\left[4^{n} x^{2}, f\left(2^{n} y\right), 4^{n} z^{2}\right]-\left[4^{n} x^{2}, 4^{n} y^{2}, f\left(2^{n} z\right)\right]\right) \| \\
& \quad \leq \frac{\varphi\left(0,0,2^{n} x, 2^{n} y, 2^{n} z\right)}{4^{3 n}} \leq \frac{\varphi\left(0,0,2^{n} x, 2^{n} y, 2^{n} z\right)}{4^{n}}
\end{aligned}
$$

which tends to zero as $n \rightarrow \infty$. So

$$
D([x, y, z])=\left[D(x), y^{2}, z^{2}\right]+\left[x^{2}, D(y), z^{2}\right]+\left[x^{2}, y^{2}, D(z)\right]
$$

for all $x, y, z \in A$. So D is a ternary quadratic derivation.
Corollary 2.4. Let p, θ be nonnegative real numbers with $p<2$ and let A be a complex algebra-C*-ternary ring. Let $f: A \rightarrow A$ be a mapping such that

$$
\begin{align*}
& \left\|2 f\left(\mu \frac{a+b}{2}\right)+2 f\left(\mu \frac{a-b}{2}\right)-\mu^{2}(f(a)+f(b))\right\| \leq \theta\left(\|a\|^{p}+\|b\|^{p}\right) \tag{2.10}\\
& \left\|f([x, y, z])-\left[f(x), y^{2}, z^{2}\right]-\left[x^{2}, f(y), z^{2}\right]-\left[x^{2}, y^{2}, f(z)\right]\right\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right) \tag{2.11}
\end{align*}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $a, b, x, y, z \in A$. If $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in A$, then there exists a unique ternary quadratic derivation $D: A \rightarrow A$ such that

$$
\|f(a)-D(a)\| \leq \frac{2^{p} \theta}{4-2^{p}}\|a\|^{p}
$$

for all $a \in A$.
Proof. The result follows from Theorem 2.3 by putting $\varphi(a, b, x, y, z)=\theta\left(\|a\|^{p}+\|b\|^{p}+\|x\|^{p}+\|y\|^{p}+\right.$ $\left.\|z\|^{p}\right)$.

Now we prove the superstability of ternary quadratic derivations on complex algebra- C^{*}-ternary rings.

Corollary 2.5. Let p, θ be nonnegative real numbers with $p<\frac{2}{3}$ and let A be a complex algebra-C*-ternary ring. Let $f: A \rightarrow A$ be a mapping such that

$$
\begin{align*}
& \left\|2 f\left(\mu \frac{a+b}{2}\right)+2 f\left(\mu \frac{a-b}{2}\right)-\mu^{2}(f(a)+f(b))\right\| \leq \theta\left(\|a\|^{p} \cdot\|b\|^{p}\right) \tag{2.12}\\
& \left\|f([x, y, z])-\left[f(x), y^{2}, z^{2}\right]-\left[x^{2}, f(y), z^{2}\right]-\left[x^{2}, y^{2}, f(z)\right]\right\| \leq \theta\left(\|x\|^{p} \cdot\|y\|^{p} \cdot\|z\|^{p}\right) \tag{2.13}
\end{align*}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $a, b, x, y, z \in A$. If $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in A$, then $f: A \rightarrow A$ is a ternary quadratic derivation.

Proof. Putting $a=b=0$ in 2.12 , we get $f(0)=0$. Letting $b=0, \mu=1$ and replacing a by $2 a$ in 2.13), we get $f(2 a)=4 f(a)$ for all $a \in A$. It is easy to show that $f\left(2^{n} a\right)=4^{n} f(a)$ and so $f(a)=\frac{f\left(2^{n} a\right)}{4^{n}}$ for all $a \in A$. It follows from Theorem 2.3 that $f: A \rightarrow A$ is a quadratic mapping. The result follows from Theorem 2.3 by putting $\varphi(a, b, x, y, z)=\theta\left(\|a\|^{p} \cdot\|b\|^{p}+\|x\|^{p} \cdot\|y\|^{p} \cdot\|z\|^{p}\right)$.

Theorem 2.6. Let A be a complex algebra-ternary Banach algebra. Let $f: A \rightarrow A$ be a mapping with $f(0)=0$ and let $\varphi: A^{5} \rightarrow[0, \infty)$ be a function satisfying (2.2) and

$$
\begin{equation*}
\left\|f(\mu(a+b))+f(\mu(a-b))-2 \mu^{2}(f(a)+f(b))\right\| \leq \varphi(a, b, 0,0,0) \tag{2.14}
\end{equation*}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $a, b, x, y, z \in A$. Assume that there exists a constant $M \in(0,1)$ such that

$$
\begin{equation*}
\varphi(2 a, 2 b, 2 x, 2 y, 2 z) \leq 4 M \varphi(a, b, x, y, z) \tag{2.15}
\end{equation*}
$$

for all $a, b, x, y, z \in A$. If $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in A$, then there exists a unique ternary quadratic derivation $D: A \rightarrow A$ such that

$$
\|f(a)-D(a)\| \leq \frac{1}{4(1-M)} \varphi(a, a, 0,0,0)
$$

for all $a \in A$.
Proof. It follows from 2.15 that

$$
\lim _{j \rightarrow \infty} \frac{\varphi\left(2^{j} a, 2^{j} b, 2^{j} x, 2^{j} y, 2^{j} z\right)}{4^{j}}=0
$$

for all $a, b, x, y, z \in A$.
Putting $b=a$ and $\mu=1$ in (2.14), we get

$$
\|4 f(a)-f(2 a)\| \leq \varphi(a, a, 0,0,0)
$$

and so

$$
\left\|f(a)-\frac{1}{4} f(2 a)\right\| \leq \frac{1}{4} \varphi(a, a, 0,0,0)
$$

for all $a \in A$.
We consider the set $\Omega:=\{h: A \rightarrow A \mid h(0)=0\}$ and introduce the generalized metric d on Ω as follows:

$$
d\left(h_{1}, h_{2}\right):=\inf \left\{K \in[0, \infty):\left\|h_{1}(a)-h_{2}(a)\right\| \leq K \varphi(a, a, 0,0,0), \forall a \in A\right\}
$$

if there exists such constant K, and $d\left(h_{1}, h_{2}\right)=\infty$, otherwise. One can easily show that (Ω, d) is complete. We define the linear mapping $J: \Omega \rightarrow \Omega$ by

$$
J(h)(a)=\frac{1}{4} h(2 a)
$$

for all $a \in A$.
The rest of the proof is similar to the proof of Theorem 2.3 .

Corollary 2.7. Let p, θ be nonnegative real numbers with $p<2$ and let A be a complex algebra-ternary Banach algebra. Let $f: A \rightarrow A$ be a mapping satisfying (2.11) and

$$
\begin{equation*}
\left\|f(\mu(a+b))+f(\mu(a-b))-2 \mu^{2}(f(a)+f(b))\right\| \leq \theta\left(\|a\|^{p}+\|b\|^{p}\right) \tag{2.16}
\end{equation*}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $a, b, x, y, z \in A$. If $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in A$, then there exists a unique ternary quadratic derivation $D: A \rightarrow A$ such that

$$
\|f(a)-D(a)\| \leq \frac{2 \theta}{4-2^{p}}\|a\|^{p}
$$

for all $a \in A$.
Proof. The result follows from Theorem 2.6 by putting $\varphi(a, b, x, y, z)=\theta\left(\|a\|^{p}+\|b\|^{p}+\|x\|^{p}+\|y\|^{p}+\right.$ $\left.\|z\|^{p}\right)$.

Remark 2.8. Bodaghi and Alias 23 provided the conditions 2.1), 2.10, (2.12), 2.14) and (2.16), which are approximate \mathbb{C}-quadraticity conditions. But they only proved the quadraticity of the resulting mappings. In this paper, the \mathbb{C}-quadraticity has been proved for each case.

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66. 1
[2] A. Bodaghi, I. A. Alias, Approximate ternary quadratic derivation on ternary Banach algebras and C^{*}-ternary rings, Adv. Difference Equ., 2012 (2012), 9 pages. 112.8
[3] J. Diaz, B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74 (1968), 305-309. 2.2
[4] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci., 27 (1941), 222-224. 1
[5] C. Park, Homomorphisms between Poisson JC* -algebras, Bull. Braz. Math. Soc., 36 (2005), 79-97. 2
[6] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300. 1. 22
[7] S. Shagholi, M. Eshaghi Gordji, M. B. Savadkouhi, Stability of ternary quadratic derivation on ternary Banach algebras, J. Comput. Anal. Appl., 13 (2011), 1097-1105. 1
[8] F. Skof, Propriet locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano, 53 (1983), 113-129. 1
[9] S. M. Ulam, Problems in Modern Mathematics, Chapter VI. Science ed., Wiley, New York, (1940). 1

[^0]: *Corresponding author
 Email addresses: baak@hanyang.ac.kr (Choonkill Park), jrlee@daejin.ac.kr (Jung Rye Lee)

