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Abstract

This paper investigates the existence and multiplicity of positive solutions for a second-order delay p-
Laplacian boundary value problem. By using fixed point index theory, some new existence results are
established. c©2015 All rights reserved.
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1. Introduction

In this paper, we are mainly concerned with the existence and multiplicity of positive solutions for the
following second-order delay p-Laplacian boundary value problem

(φp(u
′(t)))′ + f(t, u(t− τ)) = 0, t ∈ (0, 1), τ ∈ (0, 1),

u(t) = ϕ(t), t ∈ [−τ, 0],

u(0) = u′(1) = 0,

(1.1)

where φp(s) = |s|p−2s, φ−1p = φq, p
−1 + q−1 = 1, p > 1, q > 1, ϕ ∈ C([−τ, 0],R+), ϕ(0) = 0, and

f ∈ C([0, 1]×R+,R+) (R+ := [0,∞)). Here, by a positive solution of (1.1) we mean a function u ∈ C[−τ, 1]
such that u(t) > 0 for t ∈ (0, 1] and u solves (1.1).

Differential equations with delay arise from a variety of areas in applied mathematics, physics and
mathematical ecology. Clearly, comparing to the equations without delay, such equations, to a certain extent,
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reflect even more exactly the physical reality. Therefore, in recent years, there have been increasing interests
in the study of this kind of problems and have received a lot of attention, see [1, 7, 12] and the references
therein. Due to their wide applications, the existence and multiplicity of positive solutions for delay boundary
value problems has also attracted increasing attention over the last decades, see [2, 3, 4, 5, 11, 14] and the
references therein.

Recently, some authors also pay their attention to the existence and multiplicity of positive solutions for
delay p-Laplacian boundary value problems, see [6, 9, 10, 13] .

In [6], by using Guo-Krasnosel’skii fixed point theorem and generalization of the Leggett-Williams fixed
point theorem due to Avery and Peterson, Du et al. considered the following multi-point boundary value
problem with delay and one dimensional p-Laplacian{

(φp(x
′(t)))′ + λp(t)f(t, x(t− τ)) = 0, t ∈ (0, 1),

x(t) = 0,−τ ≤ t ≤ 0, x(1) = x(η),
(1.2)

where τ, η are given constants with τ > 0, 0 < η < 1, λ is a positive parameter. They obtained (1.2) has at
least one positive solution or three positive solutions.

In [10], by virtue of Guo-Krasnosel’skii fixed point theorem, Jiang et al. established the existence of
single and multiple nonnegative solutions to the problem{

(φp(x
′(t)))′ + q(t)f(t, x(t− τ)) = 0, t ∈ (0, 1) \ {τ},

x(t) = ξ(t),−τ ≤ t ≤ 0, x(1) = 0.
(1.3)

In [13], Wang et al. studied the following delay differential equation with one-dimensional p-Laplacian
(φp(x

′(t)))′+q(t)f(t, x(t), x(t−1), x′(t)) = 0, t ∈ (0, 1), subject to one of the following two pairs of boundary
conditions x(t) = ξ(t),−1 ≤ t ≤ 0, x(1) = 0, and x(t) = ξ(t),−1 ≤ t ≤ 0, x′(1) = 0. By using Avery-
Peterson fixed point theorem, they obtained some results for the existence three positive solutions of the
above two problems, respectively.

Motivated by the above works, we investigate the existence and multiplicity of positive solutions for
(1.1). We first convert the problem to an equivalent integral equation. Then we introduce an appropriate
linear operator and get its first eigenvalue and eigenfunction. Under some conditions concerning the first
eigenvalue, by virtue of fixed point index theory, we establish several new existence theorems for (1.1).

2. Preliminaries

We first offer several basic facts used throughout this paper.

Lemma 2.1. The problem (1.1) is equivalent to the following integral equation

u(t) =


ϕ(t), −τ ≤ t ≤ 0,∫ t

0

(∫ 1

s
f(x, u(x− τ))dx

) 1
p−1

ds, 0 ≤ t ≤ 1.
(2.1)

This proof is very simple, so we omit it here. From (2.1) we should turn our aim to t ∈ [0, 1], if there
exists u(u(t) ∈ C[0, 1], u(t) > 0, ∀t ∈ (0, 1]) such that the second equation of (2.1) holds true, then u defined
by (2.1) is a positive solution for (1.1).

Let E := C[0, 1], ‖u‖ := maxt∈[0,1] |u(t)|, P := {u ∈ E : u(t) ≥ 0, ∀t ∈ [0, 1]}. Then (E, ‖ · ‖) is a real
Banach space and P is a cone on E. We let Bρ := {u ∈ E : ‖u‖ < ρ} for ρ > 0 in the sequel.

Define an operator A : P → P by

(Au)(t) :=

∫ t

0

(∫ 1

s
f(x, u(x− τ))dx

) 1
p−1

ds, 0 ≤ t ≤ 1. (2.2)



K. Zhang, J. Xu, J. Nonlinear Sci. Appl. 8 (2015), 193–200 195

The Arzela–Ascoli theorem, together with the continuity of f , implies that A is a completely continuous
operator. Moreover, the existence of positive solutions for (1.1) is equivalent to the existence of positive
fixed points of A.

Lemma 2.2. If g is well defined and non-negative, non-increasing on [0, 1]. Then for any t ∈ [0, 1],∫ t

0
g(s)ds ≥ t

∫ 1

0
g(s)ds.

Lemma 2.3. Let P0 = {u ∈ P : u(t) ≥ t‖u‖,∀t ∈ [0, 1]}. Then A(P ) ⊂ P0.

Proof. For any u ∈ P , we have by (2.2), (Au)(t) ≤
∫ 1
0

(∫ 1
s f(x, u(x− τ))dx

) 1
p−1

ds. On the other hand, let

g(s) :=
(∫ 1

s f(x, u(x− τ))dx
) 1

p−1
and then g is non-negative and non-increasing on [0, 1]. From Lemma 2.2,

we find
∫ t
0 g(s)ds ≥ t

∫ 1
0 g(s)ds and thus∫ t

0

(∫ 1

s
f(x, u(x− τ))dx

) 1
p−1

ds ≥ t
∫ 1

0

(∫ 1

s
f(x, u(x− τ))dx

) 1
p−1

ds.

Therefore, (Au)(t) ≥ t‖Au‖, t ∈ [0, 1], as claimed. This completes the proof.

Define the linear operator (Lu)(t) :=
∫ 1
0 G(t, s)u(s)ds, u ∈ E, where G(t, s) := min{t, s}. Then L : E →

E is a completely continuous and positive operator.

Lemma 2.4. ([8]) Let Ω ⊂ E be a bounded open set and A : Ω∩P → P is a completely continuous operator.
If there exists v0 ∈ P \ {0} such that v −Av 6= λv0 for all v ∈ ∂Ω ∩ P and λ ≥ 0, then i(A,Ω ∩ P, P ) = 0.

Lemma 2.5. ([8]) Let Ω ⊂ E be a bounded open set with 0 ∈ Ω. Suppose A : Ω ∩ P → P is a completely
continuous operator. If v 6= λAv for all v ∈ ∂Ω ∩ P and 0 ≤ λ ≤ 1, then i(A,Ω ∩ P, P ) = 1.

Lemma 2.6. Let ψ(t) := sin π
2 t. Then ψ ∈ P\{0} and∫ 1

0
G(t, s)ψ(t)dt =

4

π2
ψ(s). (2.3)

Lemma 2.7. (see [15, Lemma 2.6]) Let θ > 0 and ϕ ∈ C([0, 1],R+). Then(∫ 1

0
ϕ(t)dt

)θ
≤
∫ 1

0
(ϕ(t))θdt if θ ≥ 1,

(∫ 1

0
ϕ(t)dt

)θ
≥
∫ 1

0
(ϕ(t))θdt if 0 < θ ≤ 1.

3. Main results

Let p∗ := min{1, p− 1}, p∗ := max{1, p− 1}, Nτ :=
∫ 1
0 t

p∗ψ(t)dt, Mτ :=
∫ 1−τ
0 tp∗ψ(t+ τ)dt,

α :=
Nτπ

2

4(1− τ)
, β :=

π2

4

[
τ(2 + π(1− τ))

2Mτ
+ 1

]
.

We now list our hypotheses on f .
(H1) f ∈ C([0, 1]× R+,R+).

(H2) There exist a1 > β
p−1
p∗ and c > 0 such that f(t, x) ≥ a1xp−1 − c for all x ∈ R+ and t ∈ [0, 1].

(H3) There exist b1 ∈ (0, α
p−1
p∗ ) and r > 0 such that f(t, x) ≤ b1xp−1 for all x ∈ [0, r] and t ∈ [0, 1].

(H4) There exist a2 > β
p−1
p∗ and r > 0 such that f(t, x) ≥ a2xp−1 for all x ∈ [0, r] and t ∈ [0, 1].

(H5) There exist b2 ∈ (0, α
p−1
p∗ ) and c > 0 such that f(t, x) ≤ b2xp−1 + c for all x ∈ R+ and t ∈ [0, 1].

(H6) There are ω > 0 and ζ ∈ (0, ( p
p−1)p−1) such that

f(t, x) ≤ ζωp−1 for all x ∈ [0, ω] and t ∈ [0, 1].
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Theorem 3.1. Suppose that (H1)–(H3) are satisfied. Then (1.1) has at least one positive solution.

Proof. Let M1 := {u ∈ P : u = Au+ λψ for some λ ≥ 0}, where ψ is determined by Lemma 2.6. We claim
M1 is bounded. Indeed, u ∈M1 implies u(t) ≥ (Au)(t) and thus

u(t) ≥
∫ t

0

(∫ 1

s
f(x, u(x− τ))dx

) 1
p−1

ds.

Note p∗,
p∗
p−1 ∈ [0, 1]. For all u ∈M1, Lemma 2.7 and (H2) imply

up∗(t) ≥

(∫ t

0

(∫ 1

s
f(x, u(x− τ))dx

) 1
p−1

ds

)p∗

≥
∫ t

0

∫ 1

s
f

p∗
p−1 (x, u(x− τ))dxds

=

∫ 1

0
G(t, s)f

p∗
p−1 (s, u(s− τ))ds

≥
∫ 1

0
G(t, s)

(
a1u

p−1(s− τ)− c
) p∗

p−1 ds

≥
∫ 1

0
G(t, s)

(
a

p∗
p−1

1 up∗(s− τ)− c
p∗
p−1

)
ds

≥ a
p∗
p−1

1

∫ 1

0
G(t, s)up∗(s− τ)ds− c

p∗
p−1

2
.

(3.1)

Multiplying ψ(t) on both sides of the above and integrating over [0, 1], we find by (2.3)∫ 1

0
up∗(t)ψ(t)dt ≥ 4a

p∗
p−1

1

π2

∫ 1

0
up∗(t− τ)ψ(t)dt− c

p∗
p−1

π
=

4a
p∗
p−1

1

π2

∫ 1−τ

0
up∗(t)ψ(t+ τ)dt− c

p∗
p−1

π

and thus

4a
p∗
p−1

1 − π2

π2

∫ 1−τ

0
up∗(t)ψ(t+ τ)dt ≤

∫ 1

0
up∗(t)ψ(t)dt−

∫ 1−τ

0
up∗(t)ψ(t+ τ)dt+

c
p∗
p−1

π

=

∫ 1−τ

0
up∗(t)(ψ(t)− ψ(t+ τ))dt+

∫ 1

1−τ
up∗(t)ψ(t)dt+

c
p∗
p−1

π

≤ τ(2 + π(1− τ))

2
‖u‖p∗ +

c
p∗
p−1

π
.

(3.2)

On the other hand, we have by Lemma 2.3,∫ 1−τ

0
up∗(t)ψ(t+ τ)dt ≥

∫ 1−τ

0
(t‖u‖)p∗ψ(t+ τ)dt = ‖u‖p∗

∫ 1−τ

0
tp∗ψ(t+ τ)dt. (3.3)

Combining this and (3.2), we find

4a
p∗
p−1

1 − π2

π2

∫ 1−τ

0
tp∗ψ(t+ τ)dt‖u‖p∗ ≤ τ(2 + π(1− τ))

2
‖u‖p∗ +

c
p∗
p−1

π
.

Consequently,

‖u‖p∗ ≤
c

p∗
p−1

π

4a
p∗
p−1
1 −π2

π2 Mτ − τ(2+π(1−τ))
2
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for all u ∈M1, which implies the boundedness ofM1, as claimed. Taking R > sup{‖u‖ : u ∈M1}, we have
u−Au 6= λψ, ∀u ∈ ∂BR ∩ P, λ ≥ 0. Now by virtue of Lemma 2.4, we obtain

i(A,BR ∩ P, P ) = 0. (3.4)

Let M2 := {u ∈ Br ∩ P : u = λAu for some λ ∈ [0, 1]}. We shall prove M2 = {0}. Indeed, if u ∈ M2, we
have

u(t) ≤ (Au)(t) =

∫ t

0

(∫ 1

s
f(x, u(x− τ))dx

) 1
p−1

ds, ∀u ∈ Br ∩ P.

Notice p∗, p∗

p−1 ≥ 1. Now by Lemma 2.7 and (H3), we obtain

up
∗
(t) ≤

(∫ t

0

(∫ 1

s
f(x, u(x− τ))dx

) 1
p−1

ds

)p∗

≤
∫ t

0

∫ 1

s
f

p∗
p−1 (x, u(x− τ))dxds

=

∫ 1

0
G(t, s)f

p∗
p−1 (s, u(s− τ))ds

≤ b
p∗
p−1

1

∫ 1

0
G(t, s)up

∗
(s− τ)ds, ∀u ∈M2.

(3.5)

Multiplying ψ(t) on both sides of the above and integrating over [0, 1], we find by (2.3)

∫ 1

0
up

∗
(t)ψ(t)dt ≤ 4b

p∗
p−1

1

π2

∫ 1

0
up

∗
(t− τ)ψ(t)dt =

4b
p∗
p−1

1

π2

∫ 1−τ

0
up

∗
(t)ψ(t+ τ)dt. (3.6)

Consequently, ‖u‖p∗
∫ 1
0 t

p∗ψ(t)dt ≤ 4(1−τ)b
p∗
p−1
1

π2 ‖u‖p∗ , Nτ >
4(1−τ)b

p∗
p−1
1

π2 implies M2 = {0} and thus u 6=
λAu,∀u ∈ ∂Br ∩ P, λ ∈ [0, 1]. Now Lemma 2.5 yields

i(A,Br ∩ P, P ) = 1. (3.7)

Combining this with (3.4) gives i(A, (BR\Br) ∩ P, P ) = 0 − 1 = −1. Hence the operator A has at least
one fixed point in (BR \ Br) ∩ P and therefore (1.1) has at least one positive solution. This completes the
proof.

Theorem 3.2. Suppose that (H1), (H4) and (H5) are satisfied. Then (1.1) has at least one positive solution.

Proof. Let M3 := {u ∈ Br ∩ P : u = Au + λψ for some λ ≥ 0}. We claim M3 ⊂ {0}. Indeed, if u ∈ M3,
then we have u ≥ Au by definition

u(t) ≥
∫ t

0

(∫ 1

s
f(x, u(x− τ))dx

) 1
p−1

ds.

Note p∗,
p∗
p−1 ∈ [0, 1]. Now Lemma 2.7 and (H4) imply

up∗(t) ≥
∫ 1

0
G(t, s)f

p∗
p−1 (s, u(s− τ))ds ≥ a

p∗
p−1

2

∫ 1

0
G(t, s)up∗(s− τ)ds, ∀u ∈M3.

Multiplying ψ(t) on both sides of the above and integrating over [0, 1], we find by (2.3)∫ 1

0
up∗(t)ψ(t)dt ≥ 4a

p∗
p−1

2

π2

∫ 1

0
up∗(t− τ)ψ(t)dt =

4a
p∗
p−1

2

π2

∫ 1−τ

0
up∗(t)ψ(t+ τ)dt.
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Consequently,

∫ 1

0
up∗(t)ψ(t)dt−

∫ 1−τ

0
up∗(t)ψ(t+ τ)dt ≥ 4a

p∗
p−1

2 − π2

π2

∫ 1−τ

0
up∗(t)ψ(t+ τ)dt

and thus

τ(2 + π(1− τ))

2
‖u‖p∗ ≥ 4a

p∗
p−1

2 − π2

π2
‖u‖p∗

∫ 1−τ

0
tp∗ψ(t+ τ)dt, ∀u ∈M3.

τ(2+π(1−τ))
2 <

4a
p∗
p−1
2 −π2

π2 Mτ implies M3 ⊂ {0}, as claimed. As a result, we have u − Au 6= λψ,∀u ∈
∂Br ∩ P, λ ≥ 0. Now Lemma 2.4 gives

i(A,Br ∩ P, P ) = 0. (3.8)

Let M4 := {u ∈ P : u = λAu for some λ ∈ [0, 1]}. We assert M4 is bounded. Indeed, if u ∈ M4, then u is
concave and u ≤ Au, i.e.,

u(t) ≤
∫ t

0

(∫ 1

s
f(x, u(x− τ))dx

) 1
p−1

ds.

Notice p∗, p∗

p−1 ≥ 1. Now by Lemma 2.7 and (H5), we obtain

up
∗
(t) ≤

∫ 1

0
G(t, s)f

p∗
p−1 (s, u(s− τ))ds

≤
∫ 1

0
G(t, s)

(
b2u

p−1(s− τ) + c
) p∗

p−1 ds

≤ b
p∗
p−1

3

∫ 1

0
G(t, s)up

∗
(s− τ)ds+

c
p∗
p−1

1

2

(3.9)

for all u ∈ M4, b3 ∈ (b2, αp) and c1 > 0 being chosen so that (b2z + c)
p∗
p−1 ≤ b

p∗
p−1

3 z
p∗
p−1 + c

p∗
p−1

1 , ∀z ≥ 0.
Multiplying ψ(t) on both sides of the above and integrating over [0, 1], we find by (2.3)

∫ 1

0
up

∗
(t)ψ(t)dt ≤ 4b

p∗
p−1

3

π2

∫ 1−τ

0
up

∗
(t)ψ(t+ τ)dt+

c
p∗
p−1

1

π
. (3.10)

Therefore,

‖u‖p∗
∫ 1

0
tp

∗
ψ(t)dt ≤ 4(1− τ)b

p∗
p−1

3

π2
‖u‖p∗ +

c
p∗
p−1

1

π

and thus

‖u‖p∗ ≤
c

p∗
p−1
1
π

Nτ −
4(1−τ)b

p∗
p−1
3

π2

.

Now the boundedness of M4, as asserted. Taking R > sup{‖u‖ : u ∈ M4}, we have u 6= λAu,∀u ∈
∂BR ∩ P, λ ∈ [0, 1]. Now Lemma 2.5 yields

i(A,BR ∩ P, P ) = 1. (3.11)

Combining this with (3.8) gives i(A, (BR\Br) ∩ P, P ) = 1 − 0 = 1. Hence the operator A has at least
one fixed point in (BR \ Br) ∩ P and therefore (1.1) has at least one positive solution. This completes the
proof.
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Theorem 3.3. Suppose that (H1), (H2), (H4) and (H6) are satisfied. Then (1.1) has at least two positive
solutions.

Proof. By (H6), we have

‖Au‖ = (Au)(1) =

∫ 1

0

(∫ 1

s
f(x, u(x− τ))dx

) 1
p−1

ds

≤
∫ 1

0

(∫ 1

s
ζωp−1dx

) 1
p−1

ds

=
ζ

1
p−1 (p− 1)

p
ω

< ω

and thus ‖Au‖ < ‖u‖ for all u ∈ Bω ∩ P , so that u 6= λAu, ∀u ∈ ∂Bω ∩ P, λ ∈ [0, 1]. Lemma 2.5 yields

i(A,Bω ∩ P, P ) = 1. (3.12)

On the other hand, in view of (H2) and (H4), we may choose R > ω and r ∈ (0, ω) so that (3.4) and (3.8) hold
(see the proofs of Theorem 3.1 and 3.2). Combining (3.4), (3.8) and (3.12), we obtain i(A, (BR\Bω)∩P, P ) =
0− 1 = −1, i(A, (Bω\Br)∩P, P ) = 1− 0 = 1. Hence A has at least two fixed points, one in (BR \Bω)∩P
and the other in (Bω \ Br) ∩ P . This proves that (1.1) has at least two positive solutions. This completes
the proof.
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