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Abstract

In this paper, we prove the existence of a coincident point and a common fixed point for two self mappings
defined on a complete partial metric space X. We will consider generalized cyclic representation of the set X
with respect to the two self maps defined on X and a contractive condition involving a generalized distance
altering function. Our results generalizes several corresponding results in the existing literature. c©2015 All
rights reserved.
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1. Introduction and Preliminaries

The partial metric spaces were introduced by Matthews in [22] as a part of the study of denotational
semantics of dataflow networks. He introduced this notion to solve some difficulties of the domain theory
and showed the Banach’s contraction principle [7] can be generalized in context of partial metric spaces for
applications in program verifications (see for example [13, 21, 24, 27, 31, 32, 33, 36].

Now, we recall definition and properties of partial metric spaces.
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Definition 1.1. ([22, 23]) A partial metric ”p” on X is a function from X ×X to R+ such that for every
element x, y and z of X it satisfies following axioms.
p1 : 0 ≤ p (x, x) ≤ p (x, y) .
p2 : p (x, x) = p (x, y) = p(y, y) if and only if x = y.
p3 : p (x, y) = p (y, x) . (symmetry)
p4 : p(x, z) ≤ p (x, y) + p (y, z)− p (y, y) . (triangular inequality)
If ”p” is a partial metric on X then (X, p) is called a partial metric space.

Remark 1.2. It is clear that if p (x, y) = 0, then from p1 and p2 x = y. But if x = y then p (x, y) may not be
zero.

Each partial metric ”p” on X generates a T0 topology τp on X which has the collection of all open balls
{Bp (x, ε) : x ∈ X, ε > 0} as a base. Where Bp (x, ε) = {y ∈ X : p (x, y) < p (x, x) + ε} for each ε > 0 and
x ∈ X. Notice that for a partial metric p on X, the function dp : X × X → R+ defined by dp (x, y) =
2p (x, y)− p (x, x)− p (y, y) for all x, y, z ∈ X is a metric on X.

Definition 1.3. ([4, 22, 23])

1. A sequence {xn} in a partial metric space (X, p) converges to the limit x ∈ X if and only if
lim
n→∞

p (x, xn) = p (x, x).

2. A sequence {xn} in a partial metric space (X, p) is called Cauchy if and only if lim
m,n→∞

p (xm, xn) exists

and is finite.

3. A partial metric space (X, p) is said to be complete if every Cauchy sequence {xn} in X converges,
with respect to τp, to a point x ∈ X such that lim

m,n→∞
p (xm, xn) = p (x, x) .

4. The mapping f : X → X is said to be continuous at x0 ∈ X If for every ε > 0, there exists δ > 0 such
that f (Bp (x0, δ)) ⊂ Bp (f (x0) , ε) .

The following lemmas will be frequently used in the proofs of the main results.

Lemma 1.4. ([4, 22, 23, 30])

1. A sequence {xn} is a Cauchy sequence in a partial metric space (X, p) if and only if it is a Cauchy
sequence in the metric space (X, dp).

2. A partial metric space (X, p) is complete if and only if the metric space (X, dp) is complete. Moreover,
lim
n→∞

dp (x, xn) = 0, if and only if

p (x, x) = lim
n→∞

p (x, xn) = lim
n,m→∞

p (xn, xm) .

Where x is the limit of {xn} in (X, dp) .

3. Let (X, p) be a complete partial metric space. Then
(a) If p (x, y) = 0, then x = y.
(b) If x 6= y, then p (x, y) > 0.

4. Let (X, p) be a partial metric space. Assume that the sequence {xn} is converging to z as n → ∞.
such that p (z, z) = 0. Then
lim
n→∞

p (xn, y) = p (z, y) for all elements y of X.

Khan et al. [19] initiated the use of control function in the fixed point theory of metric spaces, which they
called an altering distance function. Generalizations of distance altering function have been used in fixed
point theory in metric and probabilistic metric spaces in works like [11, 12, 25, 26, 35]. In [12] Chaudhury
and Dutta presented the following definition of the generalized distance altering function of two variables.
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Definition 1.5. ([12]) A function ψ : [0,∞)2 → [0,∞) is said to be generalized altering distance function
of two variables if :

1. ψ is continuous,

2. ψ is monotone increasing in both variables, and

3. ψ (x, y) = 0 only if x = y = 0.

The class of all such functions are denoted by Ω . We define α (x) = ψ (x, x) for x ∈ [0,∞) . Clearly α (x) = 0
if and only if x = 0.

In 2003, Kirk et al. [20] introduced the notion of cyclic representation of a non empty set X and
characterized the Banach’s contraction principle in the context of cyclic mapping. After the distinguished
result of Kirk et al. [20], a number of fixed point theorems have been proved, for details see [9, 16, 17, 28,
29, 34]. In 2005, Rus [34] introduced the following definition as the generalization of cyclic mapping defined
in [20].

Definition 1.6. ([34])
Let X be a non-empty set, m be a positive integer and F : X → X be a mapping. X =

⋃m
i=1Ai is said to

be the cyclic representation of X with respect to F if

1. Ai, i = 1, 2, ...,m are nonempty sets.

2. F (A1) ⊂ A2, F (A2) ⊂ A3, ..., F (Am−1) ⊂ Am, F (Am) ⊂ A1.

After this many authors focused on the fixed point theorems for metric spaces as well as on complete
partial metric spaces with generalized cyclic representation, for details see [2, 3, 5, 6, 8, 10, 15, 18]. In [18] the
following notion of generalized cyclic representation of non empty set with respect to two self maps is defined.

Definition 1.7. ([18])
Let X be a non-empty set, m be a positive integer and S, T : X → X be two mappings. X =

⋃m
i=1Ai is

said to be cyclic representation of X with respect to S and T if

1. Ai, i = 1, 2, ...,m are nonempty sets,

2. T (A1) ⊂ S (A2) , T (A2) ⊂ S (A3) , ..., T (Am−1) ⊂ S (Am) , T (Am) ⊂ S (A1) .

Definition 1.8. ([14])
Let T and S be two self-maps on X. If Sw = Tw = z, for some w ∈ X, then w is called a coincidence point
of S and T, and z is called a point of coincidence of S and T . If w = z, then z is called the common fixed
point of S and T.

Definition 1.9. ([14])
Consider the two self-maps S and T defined on a non-empty set X. If STx = TSx, for all x ∈ X, then S
and T are said to be commuting maps. If they commute at their coincidence points only then they are said
to be weakly compatible that is, if STx = TSx whenever, Tx = Sx.

Lemma 1.10. ([1])
Let S and T be weakly compatible self-maps on X. If w is the unique point of coincidence of S and T and
Sw = Tw = z, then z will be unique common fixed point of S and T.

2. Main Result

Now, we state the main result of this paper which includes the generalizations given in Definitions 1.5 and
1.7. Lastly we discuss an example to illustrate the usability of the main result.
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Theorem 2.1. Let (X, p) be a complete partial metric space, m be a positive integer, A1, A2, ..., Am be
non-empty subsets of X and X =

⋃m
i=1Ai. Let S, T : X → X be two self-mappings such that X =

⋃m
i=1Ai

is the cyclic representation of X with respect to S and T, for any x ∈ Ai, y ∈ Ai+1 and i ∈ {1, 2, ...,m} ,

α (p (Tx, Ty)) ≤ ψ (p (Sx, Sy) , p (Sx, Tx))− φ (p (Sx, Sy) , p (Sx, Tx)) (2.1)

is satisfied, where Am+1 = A1, ψ, φ ∈ Ω and α (x) = ψ (x, x) for x ∈ [0,∞) . Suppose that S (Ai) , for all i
are closed subsets of X. If S is one to one then there exists z ∈

⋂m
i=1Ai such that Sz = Tz. In particular if

the pair {S, T} is weakly compatible then they have a unique common fixed point.

Proof. Let x1 ∈ A1 be an arbitrary element then by the cyclic representation of X we can find an element
x2 ∈ A2 such that Tx1 = Sx2. For x2 ∈ A2, we can find x3 ∈ A3 such that Tx2 = Sx3. Continuing in this
way, we can construct a sequence {xn} as follows Txn = Sxn+1, for all n ∈ N. If for some k ∈ N, we have
Sxk+1 = Sxk, then Sxk+1 = Sxk = Txk, which shows that xk is the point of coincidence of S and T. Now,
suppose that Sxn+1 6= Sxn for all n ∈ N. Then by definition of X there exists in ∈ {1, 2, ...,m} such that
xn ∈ Ain+1 and xn−1 ∈ Ain . For x = xn and y = xn−1 we have

α (p (Txn, Txn−1)) ≤ ψ (p (Sxn, Sxn−1) , p (Sxn, Txn))

−φ (p (Sxn, Sxn−1) , p (Sxn, Txn))

α (p (Sxn+1, Sxn)) ≤ ψ (p (Sxn, Sxn−1) , p (Sxn, Sxn+1))

−φ (p (Sxn, Sxn−1) , p (Sxn, Sxn+1))

≤ ψ (p (Sxn, Sxn−1) , p (Sxn, Sxn+1)) . (2.2)

Since α (x) = ψ (x, x) , so

ψ (p (Sxn+1, Sxn) , p (Sxn+1, Sxn)) ≤ ψ (p (Sxn, Sxn−1) , p (Sxn+1, Sxn)) .

If p (Sxn, Sxn−1) < p (Sxn+1, Sxn) , then

α (p (Sxn+1, Sxn)) ≤ ψ (p (Sxn, Sxn−1) , p (Sxn+1, Sxn))
< ψ (p (Sxn+1, Sxn) , p (Sxn+1, Sxn)) = α (p (Sxn+1, Sxn)) ,

which is a contradiction, since ψ is monotone increasing in both variables and α (p (Sxn+1, Sxn)) 6= 0
whenever p (Sxn+1, Sxn) 6= 0. Thus

p (Sxn+1, Sxn) ≤ p (Sxn, Sxn−1)

for all n ∈ N and {p (Sxn+1, Sxn)} is a decreasing sequence of non-negative real numbers, so there must
exists some r ≥ 0, such that

p (Sxn+1, Sxn)→ r as n→∞ (2.3)

Taking limit as n→∞ in (2.2) then utilizing (2.3) and the definition of ψ and φ we have α (r) ≤ ψ (r, r)−
φ (r, r) < ψ (r, r) = α (r) . Therefore, α (r) = 0. Which forces r = 0. Hence

lim
n→∞

p (Sxn, Sxn+1) = 0. (2.4)

As p (Sxn, Sxn) ≤ p (Sxn+1, Sxn) and p (Sxn+1, Sxn+1) ≤ p (Sxn+1, Sxn) which implies

lim
n→∞

p (Sxn, Sxn) = lim
n→∞

p (Sxn+1, Sxn+1) = lim
n→∞

p (Sxn+1, Sxn) = 0. (2.5)

Also by using the definition of dp we have dp (Sxn+1, Sxn) = 2p (Sxn+1, Sxn)−p (Sxn+1, Sxn+1)−p (Sxn, Sxn) ,
and

lim
n→∞

dp (Sxn+1, Sxn) = 0. (2.6)
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To show that {Sxn} is a Cauchy sequence in (X, dp) . Assume that {Sxn} is not Cauchy sequence then
there exists some ε > 0 for which we can find the subsequences

{
Sxm(k)

}
and

{
Sxn(k)

}
of {Sxn} with

n(k) > m(k) > k such that
dp
(
Sxm(k), Sxn(k)

)
≥ ε. (2.7)

Further, we can choose n (k) corresponding to m (k) , in such a way that it is the smallest integer satisfying
inequality (2.7), hence

dp
(
Sxm(k), Sxn(k)−1

)
< ε. (2.8)

From inequality (2.7) ,

ε ≤ dp
(
Sxm(k), Sxn(k)

)
≤ dp

(
Sxm(k), Sxn(k)−1

)
+ dp

(
Sxn(k)−1, Sxn(k)

)
< ε+ dp

(
Sxn(k)−1, Sxn(k)

)
Hence,

ε ≤ dp
(
Sxm(k), Sxn(k)

)
< ε+ dp

(
Sxn(k)−1, Sxn(k)

)
. (2.9)

We know that,

dp
(
Sxn(k)−1, Sxn(k)

)
= 2p

(
Sxn(k)−1, Sxn(k)

)
− p

(
Sxn(k), Sxn(k)

)
−p
(
Sxn(k)−1, Sxn(k)−1

)
.

Let k →∞, using (2.4) and (2.5) we get

lim
k→∞

dp
(
Sxn(k)−1, Sxn(k)

)
= 0. (2.10)

Using (2.10) in (2.9) we have
lim
k→∞

dp
(
Sxm(k), Sxn(k)

)
= ε. (2.11)

As

dp
(
Sxm(k), Sxn(k)

)
= 2p

(
Sxm(k), Sxn(k)

)
− p

(
Sxm(k), Sxm(k)

)
−p
(
Sxn(k), Sxn(k)

)
Let k →∞, using (2.5) and (2.11) we get

lim
k→∞

dp
(
Sxm(k), Sxn(k)

)
= 2 lim

k→∞
p
(
Sxm(k), Sxn(k)

)
.

Therefore
lim
k→∞

p
(
Sxm(k), Sxn(k)

)
=
ε

2
. (2.12)

From the triangular inequality

dp
(
Sxn(k), Sxm(k)

)
≤ dp

(
Sxn(k), Sxn(k)+1

)
+ dp

(
Sxn(k)+1, Sxm(k)+1

)
+dp

(
Sxm(k)+1, Sxm(k)

)
and

dp
(
Sxn(k)+1, Sxm(k)+1

)
≤ dp

(
Sxn(k)+1, Sxn(k)

)
+ dp

(
Sxn(k), Sxm(k)

)
+ dp

(
Sxm(k), Sxm(k)+1

)
Let k →∞, and using (2.10) and (2.11) we get

lim
k→∞

dp
(
Sxn(k), Sxm(k)

)
≤ lim

k→∞
dp
(
Sxn(k)+1, Sxm(k)+1

)
and

lim
k→∞

dp
(
Sxn(k)+1, Sxm(k)+1

)
≤ lim

k→∞
dp
(
Sxn(k), Sxm(k)

)
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Hence,
lim
k→∞

dp
(
Sxn(k)+1, Sxm(k)+1

)
= lim

k→∞
dp
(
Sxn(k), Sxm(k)

)
= ε. (2.13)

By definition of dp,

dp
(
Sxm(k)+1, Sxn(k)+1

)
= 2 p

(
Sxm(k)+1, Sxn(k)+1

)
− p

(
Sxm(k)+1, Sxm(k)+1

)
−p
(
Sxn(k)+1, Sxn(k)+1

)
Let k →∞, and using (2.5) we get

lim
k→∞

dp
(
Sxm(k)+1, Sxn(k)+1

)
= 2 lim

k→∞
p
(
Sxm(k)+1, Sxn(k)+1

)
= ε.

Hence, we obtain

lim
k→∞

p
(
Sxm(k)+1, Sxn(k)+1

)
=
ε

2
. (2.14)

By substituting x = xm(k) and y = yn(k) in (2.1) we get

α
(
p
(
Txm(k), Txn(k)

))
≤ ψ

(
p
(
Sxm(k), Sxn(k)

)
, p
(
Sxm(k), Txm(k)

))
−φ
(
p
(
Sxm(k), Sxn(k)

)
, p
(
Sxm(k), Txm(k)

))

α
(
p
(
Sxm(k)+1, Sxn(k)+1

))
≤ ψ

(
p
(
Sxm(k), Sxn(k)

)
, p
(
Sxm(k), Sxm(k)+1

))
−φ
(
p
(
Sxm(k), Sxn(k)

)
, p
(
Sxm(k), Sxm(k)+1

))
Taking limit as k →∞, using (2.4), (2.12), (2.14) and the continuity of φ and ψ we obtain

α
(ε

2

)
≤ ψ

(ε
2
, 0
)
− φ

(ε
2
, 0
)
< ψ

(ε
2
, 0
)
< ψ

(ε
2
,
ε

2

)
= α

(ε
2

)
,

since ψ is monotone increasing in both variables and φ
(
ε
2 , 0
)
> 0, so the above inequality gives a contradiction

that is ε = 0. Hence {Sxn} is a Cauchy sequence in (X, dp) . As (X, p) is complete so is (X, dp) and there
exists some z ∈ X such that

lim
n→∞

dp (Sxn, z) = 0. (2.15)

Also by using Lemma 1.4(2), we have

p (z, z) = lim
n→∞

p (Sxn, z) = lim
n→∞

p (Sxn, Sxm)

=
1

2
lim

m,n→∞
dp (Sxn, Sxm) = 0. (2.16)

Which shows that Sxn → z as n→∞ in the partial metric space (X, p) . Since all S (Ai) ’s are closed in X,
so z ∈ S(Ai) for all i. Thus z ∈

⋂m
i=1 S (Ai) and there exists zi ∈ Ai such that Szi = z. Also S is given as

a one-one mapping so we have Sz1 = Sz2 = ... = Szm = z, which implies z1 = z2 = ... = zm = z′, therefore
Sz′ = z for z′ ∈

⋂m
i=1Ai and lim

n→∞
Sxn = z = Sz′. By construction, the sequence {Sxn} has infinite number

of terms in each Ai. Now fix i ∈ {1, 2, ...,m} such that z ∈ Ai and Tz ∈ Ai+1. We may take a subsequence{
Sxn(k)

}
of {Sxn} with Sxn(k) ∈ SAi−1 where xn(k) ∈ Ai−1 and also converges to z. Using (2.16) we have

p (z, z) = lim
n→∞

p (Sxn, z) = lim
n→∞

p
(
Sxn(k), z

)
= 0. (2.17)

put y = xn(k) and x = z′ in (2.1) we have

α
(
p
(
Tz′, Txn(k)

))
= α

(
p
(
Tz′, Sxn(k)+1

))
≤ ψ

(
p
(
Sz′, Sxn(k)

)
, p
(
Sz′, T z′

))
− φ

(
p
(
Sz′, Sxn(k)

)
, p
(
Sz′, T z′

))
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Apply limit as n→∞, using (2.4) and the property of φ and ψ we have

ψ
(
p
(
Tz′, Sz′

)
, p
(
Tz′, Sz′

))
= α

(
p
(
Tz′, Sz′

))
≤ ψ

(
p
(
Sz′, Sz′

)
, p
(
Sz′, T z′

))
− φ

(
p
(
Sz′, Sz′

)
, p
(
Sz′, T z′

))
≤ ψ

(
p
(
Sz′, Sz′

)
, p
(
Sz′, T z′

))
. (2.18)

Since ψ is monotone increasing so we get p (Tz′, Sz′) ≤ p (Sz′, Sz′) , and by definition of small self-distance
p (Sz′, Sz′) ≤ p (Tz′, Sz′) , hence

p
(
Sz′, Sz′

)
=
(
Tz′, Sz′

)
.

If p (Sz′, Sz′) 6= 0, then p (Sz′, Sz′) > 0 and, from(2.18) we get

ψ
(
p
(
Sz′, Sz′

)
, p
(
Sz′, Sz′

))
= α

(
p
(
Sz′, Sz′

))
≤ ψ

(
p
(
Sz′, Sz′

)
, p
(
Sz′, Sz′

))
−φ
(
p
(
Sz′, Sz′

)
, p
(
Sz′, T z′

))
≤ ψ

(
p
(
Sz′, Sz′

)
, p
(
Sz′, Sz′

))
. (2.19)

A contradiction, since ψ ∈ Ω. Thus p (Sz′, Sz′) = p (Tz′, Sz′) = p (Tz′, T z′) = 0 and Tz′ = Sz′ = z. Since S
and T are weakly compatible so TTz′ = TSz′ = STz′ = SSz′, that is Tz = Sz. Now, we prove that Tz = z.
Since Tz′ ∈ X hence Tz′ ∈ Ai for some i ∈ {1, 2, ...,m} . By z′ ∈

⋂m
i=1Ai, we have z′ ∈ Ai−1. Put x = z′

and y = Tz′ in (2.1),
α (p (Tz′, TTz′)) ≤ ψ (p (Sz′, STz′) , p (Sz′, T z′))

−φ (p (Sz′, STz′) , p (Sz′, T z′))
≤ ψ (p (Sz′, STz′) , p (Sz′, T z′)) .

Since Sz′ = Tz′ so from the last inequality we have

α (p (Tz′, TTz′)) ≤ ψ (p (Tz′, TTz′) , p (Tz′, T z′))
−φ (p (Tz′, TTz′) , p (Tz′, T z′))
≤ ψ (p (Tz′, TTz′) , p (Tz′, T z′))

≤ ψ (p (Tz′, TTz′) , p (Tz′, TTz′)) .

Since ψ ∈ Ω and p (Tz′, T z′) ≤ p (Tz′, TTz′) . Thus we have p (Tz′, TTz′) = 0 and, consequently Tz =
Tz′ = TTz′ = Tz = Sz. Let z∗ ∈ X be another common fixed point of S and T such that z 6= z∗ then
p (z, z∗) 6= 0. Since both z and z∗ are common fixed point of S and T so by given conditions z, z′ ∈

⋂m
i=1Ai.

Using (2.1) we have

α (p (z, z∗)) = α (p (Tz, Tz∗)) ≤ ψ (p (Sz, Sz∗) , p (Sz, Tz))
−φ (p (Sz, Sz∗) , p (Sz, Tz))

< ψ (p (Sz, Sz∗) , p (Sz, Tz)) = ψ (p (z, z∗) , p (z, z)) .

Since ψ ∈ Ω and p (z, z) ≤ p (z, z∗) . Which forces p (z, z∗) = 0, that is z = z∗.

Corollary 2.2. Let (X, p) be a complete partial metric space, m be a positive integer, A1, A2, ..., Am be
non-empty closed subsets of X, X =

⋃m
i=1Ai be the cyclic representation of X with respect to the self map

T defined on X. Suppose that there exists functions ψ, φ ∈ Ω, such that

α (p (Tx, Ty)) ≤ ψ (p (x, y) , p (x, Tx))− φ (p (x, y) , p (x, Tx))

is satisfied for any x ∈ Ai, y ∈ Ai+1 i ∈ {1, 2, ...,m} , where Am+1 = A1, and for x ∈ [0,∞) , α (x) = ψ (x, x) .
Then T has a unique fixed point z ∈

⋂m
i=1Ai.

Proof. Take Sx = x in Theorem 2.1.
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Example 2.3. Let X = [0, 1] and define the function p : X × X → R+ by p (x, y) = max {x, y} . Then

(X, p) is a complete partial metric space. Let S , T : X → X are such that Tx = x2

16 and Sx = x
4 for all

x ∈ X. Suppose that φ, ψ : [0,∞)2 → [0,∞) are defined by ψ (x, y) = x + y and φ (x, y) = max {x, y} for
all x, y ∈ [0,∞) . Let Ai = [0, 1] for i = 1, 2, ...,m. All the conditions of Theorem 2.1 are satisfied and we
obtain 0 ∈

⋂m
i=1Ai as the common fixed point of S and T.

3. Conclusion

A common fixed point theorem for a complete partial metric space has been proved by utilizing the idea
of generalized cyclic representation of a non-empty set and the generalized distance altering function of two
variables. An illustrative example is also given.
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