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Abstract

In this paper, we propose a spectral projected gradient method for the convex optimization problem
with singular solution. By solving the equivalent equation of the gradient function, this method combines
the perturbed spectral gradient direction with the projection direction to generate the next iteration point.
Under some mild conditions, we establish the global convergence and the local R-linear convergence rate
under the local error bound condition. Preliminary numerical tests are given to show that the proposed
method works well. c©2016 All rights reserved.
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1. Introduction

In this paper, we consider the following unconstrained optimization problem:

min f(x), x ∈ Rn, (1.1)

where f : Rn → R is continuously differentiable and its gradient denoted by ∇f(x).
At kth iteration, denote sk−1 = xk − xk−1, yk−1 = ∇f(xk) − ∇f(xk−1). Quasi-Newton methods for

unconstrained optimization [9, 10] obey the recursive iterative process

xk+1 = xk +B−1k ∇f(xk).
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The sequence of matrices {Bk} satisfy the secant equation

Bksk−1 = yk−1.

Let I denote the identical matrix in Rn×n and assume that we want a matrix Bk with a very simple
structure that satisfies the secant equation. More precisely, we wish

Bk = λkI with λk ∈ R.

Then the secant equation becomes:
λksk−1 = yk−1.

In general, this equation may not be consistent. However, accepting the least-squares solution that
minimizes

‖λsk−1 − yk−1‖2,

we obtain

λk =
〈sk−1, yk−1〉
〈sk−1, sk−1〉

,

here 〈·, ·〉 denotes the inner product for given two vectors. This formula defines the most popular spectral
gradient method for unconstrained optimization with the search direction:

dk = − 1

λk
∇f(xk).

The method was first introduced by Barzilai and Borwein [2], and the convergence for quadratic func-
tions was established by Raydan [20], and a global scheme was discussed for nonquadratic functions [21],
which used a variant of the nonmonotone line search of Grippo et al. [12]. Due to its simplicity and nu-
merical efficiency, the spectral gradient as well as the spectral projected gradient method has been applied
successfully to finding local minimizers of large scale problems [3, 4, 7, 11, 14, 15, 19, 27], for more details,
see the recent paper [5] and references therein.

Recently, the local convergence analysis of the spectral gradient methods has also been concerned.
However, the analysis results are often provided for convex quadratics. For two dimension convex quadratics,
Barzilai and Borwein [2] established the R-superlinear convergence of the method. Under a restrictive
condition, Molina and Raydan [19] established the Q-linear rate of the (preconditioned) spectral gradient
method. The R-linear rate for any dimension strictly convex quadratics was established by Dai and Liao [8].
Under the condition that f(x) is three times continuously differentiable and the generated sequence {xk}
converges to x∗ with the positive definite Hessian matrix assumption, that is, ∇2f(x∗) is positive definite,
Liu and Dai [18]proved that the R-linear rate of spectral gradient method for general function.

Besides the restricted quadratic or strictly convex condition, to obtain the local convergence rate, one
often assumes that the iteration sequence convergence to some x∗ of the solution. Moreover, the solution
x∗ is required to be an isolated solution.

To remove the above mentioned restricted conditions and motivated by the projection method for non-
linear equations [23, 24, 27, 28], especially the technique in [27], in this paper, we design a perturbed spectral
projected gradient method for problem (1.1). Here the perturbation means that the gradient of the objective
function is computed or supplied with some error. This can happen when computing the gradient involves
solving a complex subproblem or the problem data is corrupted. One example is the dual ascent method
arisen in the Lagrangian dual function of the constrained optimization problem, see Solodov ([22], page
266).

Compared with the existing spectral gradient methods for unconstrained optimization, our method enjoys
the following properties:

• The method generates a bounded sequence automatically.
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• The strong global convergence is guaranteed.
• The method is R-linearly convergence without the nonsingular assumption.

Note that in our local convergence analysis (see Section 3), we use a local error bound condition. It is
worth pointing out that the local error bound condition is a weaker condition than the isolated solution.
Using this condition, Yamashita and Fukushima [25], Kanzow, Yamashita and Fukushima [13], Zhou and
Toh [28], Wang and Wang [24] considered the local convergence rate of the Levenberg Marquardt method and
Newton method for nonlinear equations problems. Zhang, Wu and Zhang [26] considered the trust region
method for unconstrained optimization. Li, Fukushima, Qi and Yamashita [16], Li and Li [17] considered
the regularization method for convex optimization.

The organization of this paper is as follows. In Section 2, we propose our algorithm and analyze the
global convergence. In Section 3, we establish the R-linear convergence of the algorithm under a local error-
bound condition. The numerical tests and comparison are given in Section 4. In Section 5, we give the
conclusion of this paper.

2. Algorithm and global convergence

Combining the perturbed spectral gradient method and the projection technique, we describe the algo-
rithm as follows:

Algorithm 2.1.

Step 0: Choose an initial point x1 ∈ Rn, parameters β, σ, η ∈ (0, 1), r > 0 and set θ1 = 1, k = 1.

Step 1: If ‖∇f(xk)‖ = 0 , then stop.

Step 2: Compute the search direction dk by

dk = −θk∇f(xk) + ek, (2.1)

where ‖ek‖ ≤ ηθk‖∇f(xk)‖.

Step 3: Find the trial point zk = xk+αkdk, where αk = βmk with mk being the smallest nonnegative integer
m such that

− 〈∇f(xk + βmdk), dk〉 ≥ σβm‖dk‖2. (2.2)

If ∇f(zk) = 0, stop.

Step 4: Compute
xk+1 = xk − ζk∇f(zk), (2.3)

where

ζk =
〈∇f(zk), xk − zk〉
‖∇f(zk)‖2

. (2.4)

Step 5: Compute sk = xk+1 − xk, yk = ∇f(xk+1)−∇f(xk) + rsk and

θk+1 =
〈sk, sk〉
〈sk, yk〉

. (2.5)

Set k := k + 1, and go to Step 1.

Remark 2.2. In Step 5, the vector yk is different from the standard definition in the spectral gradient method,
which is motivated by the idea of [15]. We will show that it plays an important role in the proof of the local
R-linear convergence rate in Section 3.

To establish the global convergence of Algorithm 2.1, we make the following assumptions.
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Assumptions

(A1) The solution set of (1.1), denoted by S, is nonempty; the function f(x) is assumed a convex function
on Rn, which means that ∇f(x) is monotone on Rn:

〈∇f(x)−∇f(y), x− y〉 ≥ 0

for all x, y ∈ Rn.
(A2) The gradient ∇f(x) is Lipschitz continuous on Rn, that is, there exists a constant L > 0 such that

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.

To analyze the global convergence of Algorithm 2.1, we assume that it generates an infinite sequence
{xk}.

The following lemma shows that Algorithm 2.1 is well defined.

Lemma 2.3. Suppose that Assumption (A2) holds. Then the Algorithm 2.1 is well-defined.

Proof. Suppose that there exists k0 ≥ 1 such that (2.2) is not satisfied for any nonnegative integer m, that
is,

−〈∇f(xk0 + βmdk0), dk0〉 < σβm‖dk0‖2, ∀m ≥ 1.

Let m→∞, then by the continuity of ∇f(x), we have

− 〈∇f(xk0), dk0〉 ≤ 0. (2.6)

From Step 1, Step 2 and Step 5, we know that

∇f(xk) 6= 0, dk 6= 0, ∀ k ≥ 1.

By the remark of [27], we know that
1

L+ r
≤ θk ≤

1

r
. (2.7)

Hence by (2.1), we have

−〈∇f(xk), dk〉 = θk〈∇f(xk),∇f(xk)〉 − 〈∇f(xk), ek〉
≥ (1− η)θk‖∇f(xk)‖2 > 0,

(2.8)

which contradicts (2.6), the contradiction deduces our desired result.

The following result shows that the sequences {xk} and {zk} are bounded, the proof is very similar to
that of [23], we describe here especially some inequalities since we will use some them in the local convergence
analysis.

Lemma 2.4. Suppose Assumptions (A1) and (A2) hold, sequences {xk} and {zk} are generated by Algorithm
2.1. Then we have

(i) {xk} and {zk} are both bounded;

(ii) limk→∞ ‖xk − zk‖ = 0 and limk→∞ ‖xk+1 − xk‖ = 0.

Proof. From (2.2), we have

〈∇f(zk), xk − zk〉 = −αk〈∇f(zk), dk〉 ≥ σα2
k‖dk‖2 = σ‖xk − zk‖2 > 0. (2.9)

Let x∗ ∈ S, then we have

‖xk+1 − x∗‖2 = ‖xk − ζk∇f(zk)− x∗‖2

= ‖xk − x∗‖2 − 2ζk〈∇f(zk), xk − x∗〉+ ζ2k‖∇f(zk)‖2.
(2.10)
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By the monotonicity of gradient ∇f(x) and x∗ ∈ S, it holds that

〈∇f(zk), xk − x∗〉 = 〈∇f(zk), xk − zk〉+ 〈∇f(zk), zk − x∗〉
≥ 〈∇f(zk), xk − zk〉+ 〈∇f(x∗), zk − x∗〉
= 〈∇f(zk), xk − zk〉.

(2.11)

From (2.4),(2.9), (2.10) and (2.11), we have

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2ζk〈∇f(zk), xk − zk〉+ ζ2k‖∇f(zk)‖2

= ‖xk − x∗‖2 −
〈∇f(zk), xk − zk〉2

‖∇f(zk)‖2

≤ ‖xk − x∗‖2 −
σ2‖xk − zk‖4

‖∇f(zk)‖2
.

(2.12)

Hence the sequence {‖xk − x∗‖} is decreasing and convergent, moreover, the sequence {xk} is bounded.
Using the continuity of ∇f(x), we know that there exists a constant M > 0, such that

‖∇f(xk)‖ ≤M, ∀k ≥ 1. (2.13)

By the Cauchy-Schwartz inequality, the monotonicity of ∇f(x) and (2.9), we have

‖∇f(xk)‖ ≥
〈∇f(xk), xk − zk〉
‖xk − zk‖

≥ 〈∇f(zk), xk − zk〉
‖xk − zk‖

≥ σ‖xk − zk‖. (2.14)

From (2.13) and (2.14), we obtain that the sequence {zk} is also bounded, without loss of generality, we
assume that ‖∇f(zk)‖ ≤M. It follows from (2.12) that

σ2

M2

∞∑
k=1

‖xk − zk‖4 ≤
∞∑
k=1

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
<∞,

which implies that
lim
k→∞

‖xk − zk‖ = 0.

Using (2.3) and Cauchy-Schwarz inequality, we obtain that

‖xk+1 − xk‖ = ‖(xk − ζk∇f(zk))− xk‖

= ‖ζk∇f(zk)‖ =
〈∇f(zk), xk − zk〉
‖∇f(zk)‖

≤ ‖xk − zk‖.

(2.15)

Thus,
lim
k→∞

‖xk+1 − xk‖ = 0.

Theorem 2.5. Under Assumptions (A1) and (A2), the sequence {xk} generated by Algorithm 2.1 converges
to a solution of problem (1.1).

Proof. Since zk = xk + αkdk, it holds from Lemma 2.4

lim
k→∞

αk‖dk‖ = lim
k→∞

‖xk − zk‖ = 0. (2.16)
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From (2.1) and (2.7), we have

‖dk‖ ≥ ‖ − θk∇f(xk)‖ − ‖ek‖ ≥
(1− η)‖∇f(xk)‖

(L+ r)
. (2.17)

So if lim infk→∞ ‖dk‖ = 0, we obtain by (2.17) that

lim inf
k→∞

‖∇f(xk)‖ = 0.

The continuity of ∇f(x) implies that the sequence {xk} has some accumulation point x∗ such that
∇f(x∗) = 0, that is, x∗ ∈ S. From (2.12), it holds that {‖xk−x∗‖} converges, and since x∗ is an accumulation
point of {xk}, it must hold that {xk} converges to x∗. Now assume

lim inf
k→∞

‖dk‖ > 0,

then by (2.16), it holds that
lim
k→∞

αk = 0. (2.18)

This implies that

− 〈∇f(xk +
αk
β
dk), dk〉 < σ

αk
β
‖dk‖2. (2.19)

Since {xk} and {dk} are bounded, let k →∞ in the above inequality and assume {xk} → x and {dk} → d,
we obtain

−〈∇f(x), d〉 ≤ 0,

this contradicts to (2.8), the contradiction deduces our desired result. This completes the proof.

3. Convergence rate

In this section, we analyze the local convergence rate of our method. By Theorem 2.5, we assume
{xk} → x∗ ∈ S. Let dist(x, S) denote the distance from x to S, to this end, we make the following error
bound assumption:

Assumption
(A3) For x∗ ∈ S, there exist positive constants δ, c1 such that

c1dist(x, S) ≤ ‖∇f(x)‖,∀ x ∈ N(x∗, δ) ∩ S. (3.1)

Here N(x∗, δ) = {ζ ∈ Rn|‖ζ − x∗‖ ≤ δ} be the closed ball centered at x∗ with radius δ > 0. Assumption
(A3) is a local error bound condition and known to be much weaker than the more standard nonsingularity
assumption. By (2.7), we know that 1

L+r ≤ θk ≤
1
r , hence from (2.1) we have

‖dk‖ ≤
1 + η

r
‖∇f(xk)‖. (3.2)

Based on this inequality, we can easily obtain the following conclusion.

Lemma 3.1. Under Assumptions (A1)-(A3), suppose that xk ∈ N(x∗, 12δ). Then we have

‖dk‖ ≤
L(1 + η)

r
dist(xk, S). (3.3)

Proof. Let µk ∈ S be a closest solution to xk. That is, ‖xk − µk‖ = dist(xk, S). Since xk ∈ N(x∗, 12δ), we
have

‖µk − x∗‖ ≤ ‖µk − xk‖+ ‖xk − x∗‖ ≤ ‖xk − x∗‖+ ‖xk − x∗‖ ≤ δ,
hence µk ∈ N(x∗, δ). By (3.2),

‖dk‖ ≤
1 + η

r
‖∇f(xk)−∇f(µk)‖ =

L(1 + η)

r
dist(xk, S).
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Lemma 3.2. Under Assumptions (A1)-(A3), if r ≥ (L + σ)(1 + η), then for all k large enough, we have
zk = xk + dk.

Proof. By Theorem 2.5, the sequence {∇f(xk)} converges to 0. By Lemma 3.1, the sequence {dk} converges
also to 0. Hence by the Lipschitz continuity of ∇f(x), we have

∇f(xk + dk) = ∇f(xk) +Rk,

with ‖Rk‖ ≤ L‖dk‖. By the definition of dk and inequality (2.7), we have

−〈∇f(xk), dk〉 ≥
1

(1 + η)θk
‖dk‖2 ≥

r

(1 + η)
‖dk‖2,

and therefore, we get

−〈∇f(xk + dk), dk〉 ≥ (
r

1 + η
− L)‖dk‖2.

since r ≥ (L+ σ)(1 + η), we have r
1+η − L ≥ σ and ( r

1+η − L)‖dk‖2 ≥ σ‖dk‖2, then by Step 3 in Algorithm
2.1, we know that xk + dk satisfies the inequality (2.2) and therefore zk = xk + dk.

Now, we introduce the main result in this section.

Theorem 3.3. Suppose that {xk} converges to x∗ ∈ S and Assumptions (A1)-(A3) hold. Then the whole
sequence {xk} converges to x∗ R-linearly.

Proof. Let ωk := argmin{‖xk − ω‖|ω ∈ S}. From (2.12), we obtain

‖xk+1 − ωk‖2 ≤ ‖xk − ωk‖2 −
〈∇f(zk), xk − zk〉2

‖∇f(zk)‖2
. (3.4)

Hence for sufficiently large k, we have from Assumption (A2) that

‖∇f(zk)‖ = ‖∇f(zk)−∇f(ωk)‖ ≤ L‖zk − ωk‖
≤ L(‖xk − zk‖+ ‖xk − ωk‖)
≤ L(‖dk‖+ ‖xk − ωk‖)

≤ L(1 +
L(1 + η)

r
)dist(xk, S)

.
= c2dist(xk, S).

By the definition of dk,

‖∇f(xk)‖ ≤ (
L+ r

1− η
)‖dk‖

.
= c3‖dk‖.

On the other hand, from Lemma 3.2, (3.4) and Assumption (A3), we have

〈∇f(zk), xk − zk〉 ≥ σ‖dk‖2 ≥
σ

c23
(‖∇f(xk)‖2) ≥

c21σ

c23
dist2(xk, S). (3.5)

It follows from (3.4) and (3.5) that

dist2(xk+1, S) ≤ ‖xk+1 − ωk‖2 ≤ (1− σ2c41
c43c

2
2

)dist2(xk, S),

which implies that the sequence {dist(xk, S)} converges to 0 Q-linearly. Therefore, the sequence {xk}
converges to x∗ R-linearly. This completes the proof.

Remark 3.4. Note that to obtain the linear convergence, it is necessary to let the parameter
σ2c41
c43c

2
2
< 1.
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4. Numerical results

In this section, we test the efficiency of our method on some test problems. The algorithms were coded
in Matlab 2013a and run on a personal computer with 2.93GHZ CPU processor. The parameters are set as
follows: β = 0.5, σ = 10−2, η = 10−2 and ek is generated randomly and satisfies the condition in Step 2.
We use ‖∇f(xk)‖ ≤ 10−6 as the stopping criterion.

In Sect. 3, the R-linear convergence of the proposed algorithm has been proved theoretically under the
local error bound condition ‖∇f(x)‖ ≥ c1dist(x, S). In what follows, we first examined the local convergence
of the method on the following test problem [26]:

f(x1, x2) = (x1 − 4x2)
2.

The solution set of this problem is {(x1, x2)|x1 − 4x2 = 0}. We set the initial point to (-5000, 5000) and
try to seek the minimum and the parameter r = 0.1. It is easy to verify that the Hessian is singular at any
solution, and the local error bound condition is satisfied when c1 ∈ [0,

√
34]. Numerical results indicate that

the sequence generated by the algorithm converges to x = (3.52941176e + 03,−0.88235294e + 03) , which
is an optimal solution. The iterative step xk and the norm of gradient at every iteration are recorded in
Table 1. These results indicate that our spectral gradient projection method converges quickly when xk
approaches the optimal solution. Figure 1 gives the behavior of the iteration for this problem.

Table 1: Test results for local convergence

Iteration k xk ‖∇f(xk)‖
1 (-5000, 5000) 2.06155281e+05
2 (-4.21875000e+03, 1.87500000e+03) 9.66352881e+04
3 (-3.53143312e+03, -0.87426749e+03) 2.83365636e+02
4 (-3.52942320e+03, -0.88230717e+03) 1.60402414
5 (-3.52941181e+03, -0.88235272e+03) 0.00761685
6 (-3.52941176e+03, -0.88235294e+03) 6.59860170e-06

1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5
x 10

5

k

||
∇

 f
(x

k
)|

|

Figure 1: Behavior of the iteration.
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We then test the global convergence of the method for some large scale problems. The problems are
taken from [1] or the CUTE collection established by Bongartz, Conn, Gould and Toint[6]. Here the function
name is the same as that of [1], for example, we write Dig7 to denote the Diagonal 7 function in [1]. Since
the parameter r plays an important role in the convergence analysis, in Table 2, we give the test results
for different choice of the parameter r. with perturbed parameter η = 0.01. Here, we give the comparison
results for r = 0.1 and r = 0.01 and we use n to denote the dimension of the problem, IT denote the number
of iteration and Time denote the CPU time used (in second). From Table 2, we can see that for our test
problems, the behaviors of the algorithm for r = 0.1 are somewhat better than these of r = 0.01, which is
different from the behaviors form the method to monotone equation in [27], which show that the method
works well for smaller parameter r.

Table 2: Test results for different r

Problem r=0.1 r=0.01

n IT Time IT Time

Raydan2 1000 11 0.0637 21 0.0818
10000 11 0.1189 22 0.2050
100000 12 0.5762 24 1.2157
1000000 12 5.6008 26 13.6712

Dig5 1000 10 0.0358 25 0.0464
10000 11 0.1057 27 0.2657
100000 12 0.8347 29 2.4134
1000000 12 8.5868 30 24.0679

Quadratic QF1 1000 28 0.0263 27 0.0132
10000 26 0.1034 29 0.1542
100000 26 1.0666 27 1.1297
1000000 30 14.2717 28 13.3337

Generalized Quadratic 1000 25 0.0391 24 0.0368
10000 26 0.1710 24 0.1267
100000 28 1.1538 26 1.1262
1000000 29 13.2829 27 13.2831

Dig7 1000 27 0.0519 26 0.0483
10000 28 0.2240 27 0.2300
100000 28 1.8972 27 1.8361
1000000 30 22.1964 29 22.5995

Dig8 1000 15 0.0331 22 0.0465
10000 16 0.1435 23 0.2265
100000 17 1.2033 25 1.9743
1000000 18 13.0988 27 22.7253

Extended Penalty 1000 68 0.0633 68 0.4261
10000 85 0.7879 87 0.9253
100000 97 4.5619 97 4.5481

Full Hessian FH1 1000 6 0.0150 6 0.0499
10000 7 0.0940 7 0.0971
100000 7 0.7974 7 0.7814
1000000 8 9.1848 8 9.1205
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5. Conclusion

In this paper, we establish the R-linear convergence of a spectral projected gradient method for uncon-
strained optimization with singular solution under a local error bound condition. We obtain the R-linearly
convergence rate of the proposed method and give some numerical tests to show the efficiency of the pro-
posed method. It is worth pointing out the convergence rate analysis is based on the assumption for some
parameters r ≥ (L+ σ)(1 + η), so how to weaken those conditions to obtain the rate of convergence worth
further discussing.
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