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Abstract

This paper considers the existence, uniqueness and non-existence of solution for a quasi-linear fractional
boundary value problems with sign-changing Green’s function. Under certain growth conditions on the
nonlinear term, we employ the Leray-Schauder alternative fixed point theorem to obtain an existence result
of nontrivial solution and use the Banach contraction mapping principle to obtain a uniqueness result.
Moreover, the existence result of positive solutions is obtained when the nonlinear term is also allowed to
change sign.
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1. Introduction

Fractional differential equations have received widely attention in recent decade since fractional order
models are successfully used in cybernetics, viscoelastic mechanics, image processing, biological tissues
etc. For example, [12] fractional order circuit elements have provided a useful model for the transient
and the sinusoidal steady state frequency response of dielectrics, biological tissues and bioelectrodes. A
basic cardiac tissue electrode impedance can be represented by a series combination of a resistor and two
fractional lumped circuit elements. The overall transient voltage V (t) for this model can be represented by
the following fractional differential equation:

Cα
dαV (t)

dtα
= RCα

dαI(t)

dtα
+ I(t) +

Cα

Cβ

dα−βI(t)

dtα−β
.
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For more details of fractional applications, for instance, see [1, 8, 9, 12, 13]. At the same time, we also notice
that the existence research of (positive) solutions for boundary value problems of fractional differential
equations have received considerable attention owing to their importance in the mathematic theory and
application. Fractional differential equations of α order (0 < α ≤ 1, 1 < α ≤ 2 and until to n− 1 < α ≤ n)
subject to various kinds of boundary value conditions(two points, multiple points, integral boundary value,
periodic and anti-periodic etc.), even with impulsive effect or p-Laplacian operator etc., are investigated by
many authors. Different techniques and methods have been employed to deal with the solvability of such
boundary value problems, for example the use of fixed point index theory, the classic cone-compressions and
expansions fixed point theorems, the method of upper and lower solutions, and Leggett-Williams theorem
and its extensions. We refer reader to [2, 3, 4, 10, 14, 15, 16, 17, 18, 19, 20, 21, 23, 25, 26] and reference
therein.

The referred above papers mostly considered the differential equations with the form Dαu = f(t, u) or
Dαu = f(t, u,Dβu) and their Green’s kernels are nonnegative. Some authors also considered “quasi-linear”
differential equations. Graef et al. [4] investigated existence and uniqueness of solutions for the following
Riemann-Liouville fractional boundary value problems with Dirichlet boundary condition{

−Dα
0+u+ a(t)u = w(t)f(t, u), t ∈ (0, 1)

u(0) = u(1) = 0,
(1.1)

where 1 < α < 2 and f : [0, 1]×R → R is continuous. A special Green’s function was constructed and used.
Fourth-order differential equations have extensively applications in material mechanics and the existence

of solutions for many boundary value problems of the equations are investigated. Li [11] studied the existence
of positive solutions for the following boundary value problem for fourth-order differential equation{

u(4)(t) + βu′′(t)− αu(t) = f(t, u(t)), t ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0.
(1.2)

Sufficient conditions for existence of at least one positive solutions are established by the fixed point index
theory. Wei et al. [20] gave a necessary and sufficient condition for the existence of positive solutions for
the following integral boundary value problems of differential equations with Captuo fractional derivative

cDα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1,

au(0)− bu′(0) = 0, cu(1) + du′(1) = 0,

u′′(0) + u′′′(0) =
∫ 1
0 u′′(s)dp(s),

u′′(1) + u′′′(1) +
∫ 1
0 u′′(s)dq(s) = 0,

(1.3)

where 3 < α < 4, under the growth condition on the nonlinear term f and f may be singular on t = 0 and
u = 0. The main tools are the cone-compressions and expansions fixed point theorem with norm form for a
compact operator and the method of upper and lower solutions.

Inspired by the above works, in this paper, we consider the following boundary value problem
cDα

0+u(t)−m2 cDα−2
0+

u(t) = µg(t)f(u(t)), t ∈ (0, 1),

u′(0) = u′(1) = 0,

u′′(0)−m2u(0) = 0, u′′(1)−m2u(1) = 0,

(1.4)

where constants µ > 0,m > 0, 3 < α ≤ 4, cDα is the Caputo fractional derivative of order α. f : R → R is
continuous and g(t) : [0, 1] → R is continuous. A function u(t) ̸≡ 0 is called a positive solution of (1.4) if it
satisfies the problem and is nonnegative.

To the best of our knowledge, no paper has considered the problem (1.4). Our technique and method are
derived from [14, 20]. We first translate the problem (1.4) into two boundary value problems of “lower” order



Y. Ding, Z. Wei, Q. Zhao, J. Nonlinear Sci. Appl. 8 (2015), 650–659 652

differential equations by means of an appropriate variable substitution, so that we can easily obtain their
solutions without complicated calculation. Next, we consider some properties of the Green’s function, which
is sign-changing, of the boundary value problems. Finally, under certain growth conditions on the nonlinear
term, several sufficient conditions for the existence and uniqueness of nontrivial solution are obtained by the
Leray-Schauder alternative fixed point theorem and the Banach contraction mapping principle, respectively.
Finally, the existence and non-existence results of positive solutions are also obtained under the condition
of sign-changing both Green’s kernel and nonlinear term.

This paper is organized as follows. Sect. 2 contains some preliminary results and considers some
properties of Green’s functions. Sect. 3 is devoted to the existence, uniqueness and non-existence of solution
for problem (1.4). Sec. 4 provides an example to illustrate Theorem 3.5.

2. Preliminaries and Lemmas

For the reader’s convenience, we present firstly some definitions of fractional calculus theory and lemmas.
Throughout the paper, C[0, 1] denotes a Banach space of all continuous functions mapping [0, 1] to real
number set R equipped with maximum norm ∥.∥.

Definition 2.1 ([8, 20]). The Riemann-Liouville fractional integral Iα0+ and Dα
0+ are defined by

Iα0+f(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s)ds

and

Dα
0+f(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

0
(t− s)n−α−1f(s)ds =

(
d

dt

)n

(In−α
0+

f)(t)

where n− 1 < α ≤ n, n ∈ N, respectively, provided the integrals exist.

Definition 2.2. A function f : [0,+∞) → R, the Caputo derivative of fractional order α is defined as

cDα
0+f(t) =

1

Γ(n− α)

∫ t

0
(t− s)n−α−1f (n)(s) = (In−α

0+
f (n))(t)ds,

provided the integral exists.

It is known (see [8]) that.

Lemma 2.3. Let n− 1 < α ≤ n, n ∈ N. If u(t) ∈ Cn[a, b], then

Iα0+(
cDα

0+u(t)) = u(t)− c0 − c1t− c2t
2 − ...− cn−1t

n−1

for some ci ∈ R, i = 0, 1, 2, ..., n− 1.

Lemma 2.4. For any h(t) ∈ C[0, 1], 3 < α ≤ 4, the unique solution of the boundary value problems{
cDα−2

0+
u(t) + h(t) = 0, t ∈ (0, 1),

u(0) = u(1) = 0.
(2.1)

is

u(t) =

∫ 1

0
G(t, s)h(s)ds, (2.2)

where

G(t, s) =
1

Γ(α− 2)

{
t(1− s)α−3 − (t− s)α−3, 0 ≤ s ≤ t ≤ 1;
t(1− s)α−3, 0 ≤ t ≤ s ≤ 1,

(2.3)

and G(t, s) has the following properties:
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(1) G(t, s) is continuous on [0, 1]× [0, 1];

(2) |G(t, s)| ≤ 1/Γ(α− 2) for all t, s ∈ [0, 1];

(3) 0 ≤
∫ 1
0 G(t, s)dt = 1

Γ(α−2)(1− s)α−3(12 − 1−s
α−2) for all s ∈ [1− (α− 2)/2, 1] and

1
Γ(α−2)(s−

1
2)(1− s)α−3 <

∫ 1
0 G(t, s)dt ≤ 0 for all s ∈ [0, 1− (α− 2)/2].

(4) 0 ≤
∫ 1
0 G(t, s)ds = 1

Γ(α−1)(t− tα−2) ≤ α−3
Γ(α−1)

(
1

α−2

)α−2
α−3

for all t ∈ [0, 1].

Proof. By Lemma 2.3, for some constants c0, c1 ∈ R, we have

u(t) = c0 + c1t− Iα−2
0+

(h(t)) = c0 + c1t−
1

Γ(α− 2)

∫ t

0
(t− s)α−3h(s)ds. (2.4)

By the boundary conditions u(0) = u(1) = 0, we have c0 = 0, c1 =
1

Γ(α−2)

∫ 1
0 (1−s)α−3h(s)ds . Substituting

the values of c0, c1 into (2.4), we have

u(t) =
t

Γ(α− 2)

∫ 1

0
(1− s)α−3y(s)ds− 1

Γ(α− 2)

∫ t

0
(t− s)α−3h(s)ds

=
t

Γ(α− 2)

(∫ t

0
(1− s)α−3h(s)ds+

∫ 1

t
(1− s)α−3h(s)ds

)
− 1

Γ(α− 2)

∫ t

0
(t− s)α−3h(s)ds

=

∫ 1

0
G(t, s)h(s)ds.

(2.5)

The others are simple calculations and therefore omitted. This completes the proof.

Remark 2.5. Let 3 < α ≤ 4. From (3) in Lemma 2.4, one can know that the G(t, s) defined by (2.3)

changes its sign, Indeed, as α = 3.5, G(0.5, 0.25) = 1
2
√
π
[
√

3
4 − 1] < 0. Furthermore, it has infinitely many

sign-changing points. We can see the following images of the G(t, s) and G(0.4, s) when order α = 0.4.
Obviously, this makes it difficult to investigate the existence of positive solution for the problem (2.1) by
some techniques of cone theory.
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Lemma 2.6 ([6]). Let y ∈ C[0, 1], the second-order linear boundary value problem{
− u′′(t) +m2u(t) = y(t), t ∈ (0, 1),

u′(0) = u′(1) = 0
(2.6)
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has a unique solution

u(t) =

∫ 1

0
H(t, s)y(s)ds, (2.7)

where H(t, s) =
1

m sinhm

{
cosh(m(1− t)) · coshms, 0 ≤ s ≤ t ≤ 1,

cosh(m(1− s)) · coshmt, 0 ≤ t ≤ s ≤ 1.
satisfies

0 <
1

m sinhm
≤ H(t, s) ≤ cosh2m

m sinhm
=: H (2.8)

for t, s ∈ [0, 1] and
∫ 1
0 H(t, s)ds =

∫ 1
0 H(t, s)dt = 1/m2.

Lemma 2.7. Let 3 < α < 4. Then the boundary value problem (1.4) is equivalent to the following integral
equation

u(t) =

∫ 1

0
µG(t, τ)g(τ)f(u(τ))dτ, (2.9)

where G(t, τ) =
∫ 1
0 H(t, s)G(s, τ)ds and G(t, s) is given by (2.3), H(t, s) is given by (2.7). Furthermore,

G(t, τ) is continuous and sign-changing on [0, 1]× [0, 1].

Proof. Let y(t) = −u′′(t) +m2u(t). Then y(t) satisfies that{
cDα−2

0+
y(t) + µg(t)f(u(t)) = 0, t ∈ (0, 1),

y(0) = y(1) = 0
(2.10)

and {
− u′′(t) +m2u(t) = y(t), t ∈ (0, 1),

u′(0) = u′(1) = 0.
(2.11)

By the Lemma 2.6 and the Lemma 2.7, exchanging integral order we obtain that

u(t) =

∫ 1

0
H(t, s)

∫ 1

0
µG(s, τ)g(τ)f(u(τ))dτds

=

∫ 1

0
µg(τ)f(u(τ))

∫ 1

0
H(t, s)G(s, τ)dsdτ

=

∫ 1

0
µG(t, τ)g(τ)f(u(τ))dτ.

(2.12)

In order to prove that G(t, τ) is sign-changing, we consider that∫ 1

0
G(t, τ)dt =

∫ 1

0

∫ 1

0
H(t, s)G(s, τ)dsdt

=

∫ 1

0
G(s, τ)

∫ 1

0
H(t, s)dtds

=
1

m2

∫ 1

0
G(s, τ)ds

(2.13)

by Lemma 2.6. Note that (3) of Lemma 2.4, we know that
∫ 1
0 G(t, τ)dt is sign-changing, which implies that

G(t, τ) is sing-changing too. This completes the proof.

Define an integral operator A : C[0, 1] → C[0, 1] by

Au(t) :=

∫ 1

0
µG(t, τ)g(τ)f(u(τ))dτ. (2.14)
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It is obvious that the operator A is completely continuous by the continuities of G and f . Clearly, the
problem (1.4) has a solution if and only if the operator A has a fixed point in C[0, 1]. So we only need to
seek a fixed point of the operator A in C[0, 1].

The following lemmas are used to prove our main results.

Lemma 2.8 ([5]). Let X be a real Banach space and Ω be a open subset of X, 0 ∈ Ω, T : Ω → X be a
completely continuous operator. Then either exist x ∈ ∂Ω, λ > 1 such that T (x) = λx, or there exists a fixed
point x∗ ∈ Ω.

Lemma 2.9 ([22]). Let Ω ⊂ Rn be bounded domain, X := C(Ω) be a Banach space. T : X → X is
a compact operator with the form (Tu)(t) =

∫
ΩK(t, s)g(s)f(u(s))ds,∀u ∈ X, where g is a continuous

function, K : Ω× Ω → R is integral kernel. If

(C1) f : [0,∞) → R is continuous and f(0) > 0.

(C2) There exists a number k > 1 such that∫
Ω
(K(t, s)g(s))+ds ≥ k

∫
Ω
(K(t, s)g(s))−ds, t ∈ Ω

where (K(t, s)g(s))+, (K(t, s)g(s))− denote the positive and negative part of the function K(t, s)g(s)
for fixed t ∈ Ω, respectively.

Then there exists a positive number λ∗ such that nonlinear operator equation u = λTu has a positive solution
for λ < λ∗.

Lemma 2.10. Assume that f is non-decreasing on [0,1], then∫ x

0
f(t)dt ≤ x

∫ 1

0
f(t)dt, x ∈ (0, 1).

3. Main Results

For convenience, we introduce the following notations. Let k1 =
∫ 1
0 k(t)dt, h1 =

∫ 1
0 h(t)dt, c1 =

∫ 1
0 c(t)dt

(for detail, see Theorem 3.1, 3.2). Two assumptions conditions are listed as following.

(H1) f : R → R is continuous and g(t)f(0) ̸≡ 0, g(t) : [0, 1] → R is continuous.

(H2) f : [0,+∞) → R is continuous and f(0) > 0, g(t) : [0, 1] → [0,+∞) is continuous and g(t)(1− t)α−3 is
nondecreasing.

Theorem 3.1. Suppose that (H1) holds and there exist nonnegative functions k, h ∈ L1[0, 1] such that

|µg(t)f(u(t))| ≤ k(t)|u(t)|+ h(t), a.e. (t, u) ∈ [0, 1]× R, (3.1)

and k1H < Γ(α − 2),H is defined of (2.8). Then the problem (1.4) has at least one nontrivial solutions
u ∈ C[0, 1].

Proof. By condition (3.1), we know h(t) ≥ g(t)f(0) a.e.t ∈ [0, 1]. Since g(t)f(0) ̸≡ 0, one has h1 > 0. Let

r = Hh1/(Γ(α− 2))2(Γ(α− 2)− k1H), Ω = {u ∈ C[0, 1] : ∥u∥ < r}.

Since the operator A is a completely continuous, A : Ω → C[0, 1] is also completely continuous.
Suppose that u ∈ ∂Ω, λ > 1 such that Au = λu, then

λr = λ∥u∥ = ∥Au∥ = max
0≤t≤1

|Au(t)|

≤
∫ 1

0
H(t, s)

∫ 1

0
µ|G(s, τ)g(τ)f(u(τ))|dτds

≤ H
∫ 1

0

∫ 1

0
µ|G(s, τ)||g(τ)f(u(τ))|dτds
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≤ H
Γ(α− 2)

∫ 1

0
|µg(τ)f(u(τ))|dτds

≤ H
Γ(α− 2)

(
∥u∥

∫ 1

0
|k(τ)|dτ +

∫ 1

0
|h(τ)|dτ

)
=

H
Γ(α− 2)

(rk1 + h1),

by (2) of Lemma 2.4. Therefore λ ≤ 1, which contradicts λ > 1. By Lemma 2.8, A has a fixed point in Ω.
Since g(t)f(0) ̸≡ 0 for t ∈ [0, 1], the problem (1.4) has a nontrivial solution in Ω. This completes the

proof.

Corollary 3.2. Suppose that (H1) holds and there exists nonnegative functions h ∈ L1[0, 1] such that

|µg(t)f(u(t))| ≤ h(t), a.e. (t, u) ∈ [0, 1]× R, (3.2)

Then the problem (1.4) has at least one nontrivial solutions u ∈ C[0, 1].

The uniqueness result will be considered in the following.

Theorem 3.3. Suppose that (H1) holds and there exists nonnegative function c(t) ∈ L1[0, 1] such that

|µg(t)f(u1)− µg(t)f(u2)| ≤ c(t)|u1 − u2|

a.e.(t, ui) ∈ [0, 1]× R(i = 1, 2) and 0 < c1H < Γ(α − 2), H defined by (2.8). Then the problem (1.4) has a
unique nontrivial solution.

Proof. For any u1, u2 ∈ C[0, 1], it follows that

∥Au1 −Au2∥ = max
0≤t≤1

|Au1(t)−Au2(t)|

≤
∫ 1

0
|H(t, s)|

∫ 1

0
µ|G(s, τ)||g(τ)f(u1(τ))− g(τ)f(u2(τ))|dτds

≤ H
Γ(α− 2)

∫ 1

0

∫ 1

0
µ|g(τ)f(u1(τ))− g(τ)f(u1(τ))|dτds

≤ H
Γ(α− 2)

∫ 1

0
c(t)|u1(τ)− u2(τ)|dτ

≤ H
Γ(α− 2)

∥u1 − u2∥
∫ 1

0
c(t)dt

=
Hc1

Γ(α− 2)
∥u1 − u2∥.

(3.3)

Thus A is a contraction map. Banach contraction Theorem yields that A has a unique fixed point in
C[0, 1]. Since g(t)f(0) ̸≡ 0 for t ∈ [0, 1], the problem (1.4) has a unique nontrivial solution. The proof is
completed.

Corollary 3.4. Suppose that (H1) holds and

|µg(t)f(u1)− µg(t)f(u2)| ≤ c|u1 − u2|

a.e.(t, ui) ∈ [0, 1]×R(i = 1, 2) and 0 < cH < Γ(α−2), c > 0. Then the problem (1.4) has a unique nontrivial
solution.

Theorem 3.5. Assume that (H2) holds. Then there exists a positive number µ∗ such that problem (1.4)
has a positive solution for µ < µ∗.
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Proof. Let Tu(t) :=
∫ 1
0 G(t, τ)g(τ)f(u(τ))dτ. Then T : C[0, 1] → C[0, 1] is completely continuous. Now we

need only check (C2) in Lemma 2.9. By (2.3), note that α > 3, for 0 ≤ s ≤ 1, we compute∫ 1

0
G(s, τ)g(τ)dτ =

∫ s

0
G(s, τ)g(τ)dτ +

∫ 1

s
G(s, τ)g(τ)dτ

=
1

Γ(α− 2)

(∫ 1

0
sg(τ)(1− τ)α−3dτ −

∫ s

0
g(τ)(s− τ)α−3dτ

)
≥ 1

Γ(α− 2)

(
s

∫ 1

0
g(τ)(1− τ)α−3dτ −

∫ s

0
g(τ)(1− τ)α−3dτ

)
≥ 0

(3.4)

by Lemma 2.10. Then, from (3.4), we obtain∫ 1

0
G(t, τ)g(τ)dτ =

∫ 1

0

∫ 1

0
H(t, s)G(s, τ)g(τ)dsdτ

=

∫ 1

0
H(t, s)

∫ 1

0
G(s, τ)g(τ)dτds

>
1

m sinhm

∫ 1

0
G(s, τ)g(τ)dτds > 0

by (2.8). Which implies that there exists a number k > 1 such that∫ 1

0
G+(t, τ)g(τ)dτ ≥ k

∫ 1

0
G−(t, τ)g(τ)dτ, t ∈ [0, 1], (3.5)

where G+(t, τ) and G−(t, τ) denote positive and negative parts of the function G(t, ·) for fixed t ∈ [0, 1],
respectively. That is, the condition (C2) in Lemma 2.9 holds. Therefore there exists µ∗ > 0 such that the
operator equation u = µTu = Au has a positive solution for µ < µ∗. Equivalently, problem (1.4) has a
positive solution for µ < µ∗.

Finally, A result on non-existence of solution for the problem (1.4) is given.

Theorem 3.6. Assume that (H2) holds and

µg(t)f(u) < M |u| := |u|

(
sup
t∈[0,1]

∫ 1

0
G+(t, s)ds

)−1

for all t ∈ [0, 1] and u ∈ R \ {0}, where G+(t, s) is positive part of a function G(t, ·) for a fixed t. Then the
problem (1.4) has no non-trival solution.

Proof. Assume, on the contrary, that there exists u ̸≡ 0 such that u = Au and let t0 ∈ [0, 1] such that
∥u∥ = |u(t0)|. Then we have, by (3.5),

∥u∥ = |u(t0)| = |
∫ 1

0
µG(t0, s)g(s)f(u(s))ds|

≤ max{
∫ 1

0
µG+(t0, s)g(s)f(u(s))ds,

∫ 1

0
µG−(t0, s)g(s)f(u(s))ds}

< max{
∫ 1

0
G+(t0, s)M |u|ds,

∫ 1

0
G−(t0, s)M |u|ds}

≤ max{
∫ 1

0
G+(t0, s)ds,

∫ 1

0
G−(t0, s)ds}M∥u∥

= M∥u∥
∫ 1

0
G+(t0, s)ds = ∥u∥,

a contradiction. Therefore, problem (1.4) has no solution.
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4. Example

Example 4.1. The following example is used to illustrate theorem 3.5.
cDα

0+u(t)−m2 cDα−2
0+

u(t) = µtδf(u(t)), t ∈ (0, 1),

u′(0) = u′(1) = 0,

u′′(0)−m2u(0) = 0, u′′(1)−m2u(1) = 0,

(4.1)

where g(t) = tδ, δ > 0, µ > 0, 3 < α ≤ 4 and f : [0,+∞] → R, f(0) > 0.

We compute∫ 1

0
G(s, τ)τ δdτ =

∫ s

0
G(s, τ)τ δdτ +

∫ 1

s
G(s, τ)τ δdτ

=
1

Γ(α− 2)

(∫ 1

0
sτ δ(1− τ)α−3dτ −

∫ s

0
τ δ(s− τ)α−3dτ

)
=

1

Γ(α− 2)

(
s

∫ 1

0
τ δ(1− τ)α−3dτ −B(δ + 1, α− 2)sα+δ−2

)
=

B(δ + 1, α− 2)

Γ(α− 2)
(s− sδ+α−2)

=
Γ(δ + 1)

Γ(α+ δ − 1)
(s− sδ+α−2) > 0,

where B(x, y) is Beta function, and then∫ 1

0
G(t, τ)τ δdτ =

∫ 1

0

∫ 1

0
H(t, s)G(s, τ)τ δdsdτ

=

∫ 1

0
H(t, s)

∫ 1

0
G(s, τ)τ δdτds

≥ 1

m sinhm

∫ 1

0

∫ 1

0
G(s, τ)τ δdτds

=
1

m sinhm

Γ(δ + 1)

Γ(α+ δ − 1)

∫ 1

0
(s− sδ+α−2)ds

=
1

m sinhm

Γ(δ + 1)

Γ(α+ δ − 1)

(
1

2
− 1

α+ δ − 1

)
> 0.

So inequality (3.5) holds. Thus there exists a positive number µ∗ such that example 4.1 has a positive
solution for µ < µ∗ by Lemma 2.9.

In the paper, we mainly considered the existence, uniqueness and non-existence of solutions for the
problem (1.4). Our technique can be also used to deal with the boundary value problem for the same
fractional differential equation in problem (1.4) subjects to others boundary value conditions [24], for example
the following conditions

u(0) = u(1), u′(0) = u′(1);u′′(0) = m2u(0), u′′(1) = m2u(1).

Similarly, by [6] and [7], we can also prove the existence of solutions for fractional differential equation with
Riemann-Liouville fractional derivative, that is,

Dα
0+u(t)−m2Dα−2

0+
u(t) = µg(t)f(u(t)), t ∈ (0, 1),

u′(0) = u′(1) = 0,

u′′(0)−m2u(0) = 0, u′′(1)−m2u(1) = 0,

(4.2)

where m > 0, 3 < α ≤ 4 is a real number, Dα is the Riemann-Liouville fractional derivative of order α.
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