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Abstract

In the present paper we establish some inverses of Rozanova’s type integral inequalities. The results in
special cases yield reverse Rozanova’s, Godunova’s and Pölya’s inequalities. c©2016 All rights reserved.
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1. Introduction

The well-known inequality due to Opial can be stated as follows (see [12]).

Theorem 1.1. Suppose f ∈ C1[0, h] satisfies f(0) = f(h) = 0 and f(x) > 0 for all x ∈ (0, h). Then∫ h

0

∣∣f(x)f ′(x)
∣∣ dx ≤ h

4

∫ h

0
(f ′(x))2dx. (1.1)

The first Opial’s type inequality was established by Willett [16] as follows:

Theorem 1.2. If x(t) be absolutely continuous in [0, a], and x(0) = 0, then∫ a

0
|x(t)x′(t)|dt ≤ a

2

∫ a

0
|x′(t)|2dt. (1.2)

A non-trivial generalization of Theorem 1.2 was established by Hua [10] as follows:
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Theorem 1.3. Let x(t) be absolutely continuous in [0, a] and x(0) = 0. If l be a positive integer, then∫ a

0
|x(t)x′(t)|dt ≤ al

l + 1

∫ a

0
|x′(t)|l+1dt. (1.3)

A sharper inequality was established by Godunova [9] as follows:

Theorem 1.4. Let f(t) be convex and increasing function on [0,∞) with f(0) = 0. If x(t) is absolutely
continuous on [0, τ ], and x(α) = 0, then∫ τ

α
f ′(|x(t)|)|x′(t)|dt ≤ f

(∫ τ

α
|x′(t)|dt

)
. (1.4)

Rozanova [14] proved an extension of Inequality (1.4) which is embodied in the following:

Theorem 1.5. Let f(t) and g(t) be convex and increasing functions on [0,∞) with f(0) = 0 and let p(t) ≥ 0,
p′(t) > 0, t ∈ [α, a] with p(α) = 0. If x(t) is absolutely continuous on [α, a) and x(α) = 0, then

f

(∫ a

α
p′(t) · g

(
|x′(t)|
p′(t)

)
dt

)
≥
∫ a

α
p′(t) · g

(
|x′(t)|
p′(t)

)
·
[
f ′
(
p(t) · g

(
|x(t)|
p(t)

))]
dt. (1.5)

The Inequality (1.5) will be called as Rozanova’s inequality in the paper.
Opial’s inequality and its generalizations, extensions and discretizations play a fundamental role in es-

tablishing the existence and uniqueness of initial and boundary value problems for ordinary and partial
differential equations as well as difference equations [1, 4, 5, 6, 7, 8, 11] and [17]. For Opial type inte-
gral inequalities involving high-order partial derivatives see [3] and [18]. For an extensive survey on these
inequalities, see [2].

The aim of the present paper is to establish some inverses of the Rozanova’s Inequality (1.5) as follows.

Theorem 1.6. Let f(t) and g(t) be convex and decreasing functions on [0,∞) with f(0) = 0 and let p(t) ≥ 0,
p′(t) > 0, t ∈ [α, τ ] with p(α) = 0. If x(t) is absolutely continuous on [α, τ) and x(α) = 0, then there exists
λ (0 ≤ λ ≤ 1), following inequality holds

f

(∫ τ

α
p′(t)g

(
|x′(t)|
p′(t)

)
dt

)
≤
∫ τ

α
p′(t)g

(
|x′(t)|
p′(t)

)
f ′
(

(Cg,λ(α, t)) · p(t)g
(
|x(t)|
p(t)

))
dt. (1.6)

where

Cg,λ(α, t) =
λg(α) + (1− λ)g(t)

g(λα+ (1− λ)t)
.

Remark 1.7. The reverse inequality in Theorem 1.6 is achieved. Moreover, in Theorem 1.5 we deal with
convex and increasing functions f and g, while the reverse inequality in Theorem 1.6 is achieved for convex
and decreasing functions f and g.

Theorem 1.8. Assume that

(I) f(t), g(t) and x(t) are as in Theorem 1.6,

(II) p(t) is increasing on [0, τ ] with p(0) = 0,

(III) h(t) is concave and increasing on [0,∞),

(IV) φ(t) is increasing on [0, a] with φ(0) = 0,

(V) For y(t) =
∫ t
0 p
′(s)g

(
|x′(s)|
p′(s)

)
ds,

f ′ (y(t)) y′(t) · φ
(

1

y′(t)

)
≥ f(y(τ))

y(τ)
· φ′
(

t

y(τ)

)
. (1.7)
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Then there exists λ and µ (0 ≤ λ, µ ≤ 1), following inequality holds

ω

(∫ τ

0
p′(t)g

(
|x′(t)|
p′(t)

)
dt

)
≤ Eh,µ(0, τ)

∫ τ

0
f ′
(
E−1g,λ(0, t)p(t)g

(
|x(t)|
p(t)

))
· v
(
p′(t)g

(
|x′(t)|
p′(t)

))
dt, (1.8)

where

Eg,λ(0, t) =
g((1− λ)t)

λg(0) + (1− λ)g(t)
,

Eh,µ(0, τ) =
h((1− µ)τ)

µh(0) + (1− µ)h(τ)
,

v(z) = zh

(
φ

(
1

z

))
, (1.9)

and
w(z) = f(z)h

(
φ
(τ
z

))
. (1.10)

Remark 1.9. Inequality (1.8) just is an inverse of the following inequality established by Rozanova [15].

ω

(∫ τ

0
p′(t)g

(
|x′(t)|
p′(t)

)
dt

)
≥
∫ τ

0
f ′
(
p(t)g

(
|x(t)|
p(t)

))
· v
(
p′(t)g

(
|x′(t)|
p′(t)

))
dt.

On the other hand, for x(t) = x1(t), x
′
1(t) > 0, x′1(0) = 0, x(τ) = b, g(t) = t, f(t) = φ(t) = t2 and

h(t) =
√

1 + t, the inequality (1.8) reduces to an inverse of the following inequality established by Pölya
[13].

2

∫ τ

0
x1(t)

(
1 + (x′1(t))

2
)1/2

dt ≤ b(τ2 + b2)1/2.

2. Proof of main results

Lemma 2.1. Let p be a positive continuous function and φ be continuous function on [a, b]. Let f be a
positive, convex and continuous function on an interval containing both [a, b] and φ[a, b] as subsets. Then
there exist λ (0 ≤ λ ≤ 1) such that

f

(∫ b
a p(x)φ(x)dx∫ b
a p(x)dx

)
≥ Ef,λ(a, b)

∫ b
a p(x)f(φ(x))dx∫ b

a p(x)dx
, (2.1)

where

Ef,λ(a, b) =
f(λa+ (1− λ)b)

λf(a) + (1− λ)f(b)
. (2.2)

Proof. For any finite sequence of real numbers {ui} in a fixed closed interval [a, b] and any sequence of
positive numbers {qi}, since a ≤ ui ≤ b, there is a sequence ti ∈ [0, 1] such that ui = tia + (1 − ti)b.
Therefore ∑n

i=1 qif(ui)∑n
i=1 qi

f

(∑n
i=1 qiui∑n
i=1 qi

) =

∑n
i=1 qif(tia+ (1− ti)b)∑n

i=1 qi

f

(∑n
i=1 qi(tia+ (1− ti)b)∑n

i=1 qi

)

≤

∑n
i=1 qi(tif(a) + (1− ti)f(b))∑n

i=1 qi

f

(∑n
i=1 qi(tia+ (1− ti)b)∑n

i=1 qi

)
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=

f(a)
∑n

i=1 qiti + f(b)
∑n

i=1 qi(1− ti))∑n
i=1 qi

f

(
a
∑n

i=1 qiti + b
∑n

i=1 qi(1− ti))∑n
i=1 qi

) .

Hence

f

(∑n
i=1 qiui∑n
i=1 qi

)
≥

f
(
a
∑n

i=1 qiti∑n
i=1 qi

+ b
(

1−
∑n

i=1 qiti∑n
i=1 qi

))
f(a)

∑n
i=1 qiti∑n
i=1 qi

+ f(b)
(

1−
∑n

i=1 qiti∑n
i=1 qi

) · ∑n
i=1 qif(ui)∑n

i=1 qi
.

On the other hand, letting xi = a+
(
b−a
n

)
i, i = 0, 1, . . . , n, we have

4xi = xi − xi−1 =
b− a
n

, i = 1, . . . , n .

Let ui := φ(xi) and qi := p(xi)4 xi, i = . . . , n, we obtain

f

(∑n
i=1 p(xi)φ(xi)4 xi∑n

i=1 p(xi)4 xi

)
≥ E′f (a, b)

∑n
i=1 p(xi)f(φ(xi))4 xi∑n

i=1 p(xi)4 xi
,

where

E′f (a, b) =
f
(
a
∑n

i=1 p(xi)t(xi)4xi∑n
i=1 p(xi)4xi

+ b
(

1−
∑n

i=1 p(xi)t(xi)4xi∑n
i=1 p(xi)4xi

))
f(a)

∑n
i=1 p(xi)t(xi)4xi∑n

i=1 p(xi)4xi
+ f(b)

(
1−

∑n
i=1 p(xi)t(xi)4xi∑n

i=1 p(xi)4xi

) .
By taking limits as n→∞, we get

f

(∫ b
a p(x)φ(x)dx∫ b
a p(x)dx

)
≥ Ef (a, b)

∫ b
a p(x)f(φ(x))dx∫ b

a p(x)dx
,

where

Ef (a, b) =
f(ma+ nb)

mf(a) + nf(b)

for some 0 ≤ m,n ≤ 1 with m+ n = 1.
If m = λ and n = 1− λ, (2.1) easily follows.

Lemma 2.1 was also proved in [19] by the author, but there’s a little mistake in that proof. A complete
and correct proof has shown here.

Proof of Theorem 1.6

Proof. Let y(t) =
∫ t
α |x

′(s)|ds, t ∈ [α, τ ] so that y′(t) = |x′(t)| and in view of

|x(t)| ≤
∫ t

α
|x′(s)|ds,

we have
y(t) ≥ |x(t)| .

From the hypotheses and in view of the reverse Jensen’s inequality in Lemma 2.1, we obtain for 0 ≤ λ ≤ 1

g

(
|x(t)|
p(t)

)
≥ g

(
y(t)

p(t)

)

= g

∫ tα p′(s) |x′(s)|p′(s) ds∫ t
α p
′(s)ds


≥
(

g(λα+ (1− λ)t)

λg(α) + (1− λ)g(t)

)
1

p(t)

∫ t

α
p′(s)g

(
|x′(s)|
p′(x)

)
ds.

(2.3)
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On the other hand, from the hypotheses and by using Inequality (2.3), we have∫ τ

α
p′(t)g

(
|x′(t)|
p′(t)

)
f ′
(
λg(α) + (1− λ)g(t)

g(λα+ (1− λ)t)
· p(t)g

(
|x(t)|
p(t)

))
dt

≥
∫ τ

α
p′(t)g

(
y′(t)

p′(t)

)
f ′
(∫ t

α
p′(s)g

(
y′(s)

p′(s)

)
ds

)
dt

=

∫ τ

α

d

dt

[
f

(∫ t

α
p′(s)g

(
y′(s)

p′(s)

)
ds

)]
dt

= f

(∫ τ

α
p′(t)g

(
y′(t)

p′(t)

)
dt

)
= f

(∫ τ

α
p′(t)g

(
|x′(t)|
p′(t)

)
dt

)
.

This completes the proof.

Proof of Theorem 1.8

Proof. From the reverse Jensen’s inequality, we obtain

p(t)g

(
|x(t)|
p(t)

)
≥ Eg,λ(0, t)y(t),

where Eg,λ(0, t) is as in (2.2). Because g and h are convex and concave functions, respectively, so there
exists 0 ≤ λ, µ ≤ 1, so that

E−1g,λ(0, t) =
λg(0) + (1− λ)g(t)

g((1− λ)t)
≥ 1,

and

Eh,µ(0, τ) =
h((1− µ)τ)

µh(0) + (1− µ)h(τ)
≥ 1.

Hence

Eh,µ(0, τ)

∫ τ

0
f ′
(
E−1g,λ(0, t)p(t)g

(
|x(t)|
p(t)

))
· v
(
p′(t)g

(
|x′(t)|
p′(t)

))
dt ≥ Eh,µ(0, τ)

∫ τ

0
f ′ (y(t)) · v

(
y′(t)

)
dt.

(2.4)

From (1.9) and (2.4), we have

Eh,µ(0, τ)

∫ τ

0
f ′
(
E−1g,λ(0, t)p(t)g

(
|x(t)|
p(t)

))
· v
(
p′(t)g

(
|x′(t)|
p′(t)

))
dt

≥ Eh,µ(0, τ)

∫ τ

0
f ′ (y(t)) y′(t)h

(
φ

(
1

y′(t)

))
dt.

(2.5)

From (2.1), (2.5) and in view of h is concave function, we obtain

Eh,µ(0, τ)

∫ τ

0
f ′
(
E−1g,λ(0, t)p(t)g

(
|x(t)|
p(t)

))
· v
(
p′(t)g

(
|x′(t)|
p′(t)

))
dt

≥ Eh,µ(0, τ)

∫ τ
0 f
′ (y(t)) y′(t) · h

(
φ
(

1
y′(t)

))
dt∫ τ

0 f
′ (y(t)) y′(t)dt

∫ τ

0
f ′ (y(t)) y′(t)dt

≥ h

∫ τ0 f ′ (y(t)) y′(t) · φ
(

1
y′(t)

)
dt∫ τ

0 f
′ (y(t)) y′(t)dt

 f(y(τ)).

(2.6)
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From (1.7), (1.10), (2.6) and in view of h is increasing function, we obtain

Eh,µ(0, τ)

∫ τ

0
f ′
(
E−1g,λ(0, t)p(t)g

(
|x(t)|
p(t)

))
· v
(
p′(t)g

(
|x′(t)|
p′(t)

))
dt

≥ h

∫ τ0 f(y(τ))
y(τ) · φ

′
(

t
y(τ)

)
dt∫ τ

0 f
′ (y(t)) y′(t)dt

 f(y(τ))

= h

 f(y(τ))
y(τ) ·

∫ τ
0 φ
′
(

t
y(τ)

)
dt∫ τ

0 (f (y(t)))′dt

 f(y(τ))

= h

(
φ

(
τ

y(τ)

))
f(y(τ))

= ω(y(τ)) = ω

(∫ τ

0
p′(t)

(
|x′(t)|
p′(t)

)
dt

)
.

This completes the proof.
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[5] D. Bâınov, P. Simeonov, Integral inequalities and applications, Kluwer Academic Publishers, Dordrecht, (1992). 1
[6] W. S. Cheung, On Opial-type inequalities in two variables, Aequationes Math., 38 (1989), 236–244. 1
[7] W. S. Cheung, Some generalized Opial-type inequalities, J. Math. Anal. Appl., 162 (1991), 317–321. 1
[8] K. M. Das, An inequality similar to Opial’s inequality, Proc. Amer. Math. Soc., 22 (1969), 258–261. 1
[9] E. K. Godunova, Integral’nye neravenstva s proizvodnysi i proizvol’nymi vypuklymi funkcijami, Uc. Zap. Mosk.

Gos. Ped. In-ta im. Lenina, 460 (1972), 58–65. 1
[10] L. G. Hua, On an inequality of Opial, Sci. Sinica, 14 (1965), 789–790. 1
[11] J. D. Li, Opial-type integral inequalities involving several higher order derivatives, J. Math. Anal. Appl., 167

(1992), 98–110. 1
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