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Abstract
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1. Introduction and Preliminaries

It is well known that fixed point theory is one of the most powerful and fruitful tools in nonlinear analysis,
differential equation, and economic theory and has been studied in many various metric spaces. Especially,
in 2006, Mustafa and Sims [15] introduced a generalized metric spaces which are called G-metric space.
Follow Mustafa and Sims’ work, many authors developed and introduced various fixed point theorems in
G-metric spaces (see [7, 15, 16, 17, 18, 23]). Some authors have been interested in partially ordered G-metric
spaces and prove some fixed point theorem. Simultaneously, fixed point theory has developed rapidly in
partially ordered metric spaces [3, 13]. Fixed point theorems have also been considered in partially ordered
probabilistic metric spaces [9], in partially ordered cone metric spaces [1, 22], and in partially ordered G-
metric spaces [2, 4, 5, 6, 8, 10, 12, 19, 21]. In particular, in [4], Bhaskar and Lakshmikantham introduced
notions of a mixed monotone mapping and a coupled fixed point, proved some coupled fixed point theorems
for mixed monotone mappings, and discussed the existence and unique of solutions for periodic boundary
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value problems. Afterwards, some coupled fixed point and coupled coincidence point results and their
applications have been established.

In this paper, we prove coupled coincidence and coupled common fixed point theorems for compatible
mappings in partially ordered G-metric spaces. The results on fixed point theorems are generalizations of
some existing results. We give an example to illustrate that our result is better than the results of Aydi at
al. [3].

Throughout this paper, let N denote the set of nonnegative integers, and R+ be the set of positive real
numbers.

Before giving our main results, we recall some basic concepts and results in G-metric spaces.

Definition 1.1. ([15]) Let X be a non-empty set, G : X × X × X → R+ be a function satisfying the
following properties:
(G1) G(x, y, z) = 0 if x = y = z.
(G2) 0 < G(x, x, y) for all x, y ∈ X with x 6= y.
(G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with y 6= z.
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = . . . (symmetry in all three variables).
(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X (rectangle inequality).
Then the function G is called a generalized metric and the pair (X,G) is called a G-metric space.

Definition 1.2. ([15]) Let (X,G) be a G-metric space and let {xn} be a sequence of points of X. A point
x ∈ X is said to be the limit of the sequence {xn} if lim

n,m→∞
G(xn, xn, xm) = 0, and one says the sequence

{xn} is G-convergent to x.

Thus, if xn → x in G-metric space (X,G) then, for any ε > 0, there exists a positive integer N such that
G(x, xn, xm) < ε for all n,m > N .

In [1], the authors have shown that the G-metric induces a Hausdorff topology, and the convergence
described in the above definition is relative to this topology. The topology being Hausdorff, a sequence can
converge at most to a point. Respectively, the authors achieve the following conclusions.

Definition 1.3. ([15]) Let (X,G) be a G-metric space. A sequence {xn} is called G-Cauchy if every ε > 0,
there exists a positive N such that G(xn, xm, xl) < ε for all n,m, l > N , that is, if G(xn, xm, xl) → 0, as
n,m, l→∞.

Lemma 1.4. ([15]) If (X,G) is a G-metric space, then the following are equivalent.
(1) {xn} is G-convergent to x.
(2) G(xn, xn, x)→ 0 as n→∞.
(3) G(xn, x, x)→ 0 as n→∞.
(4) G(xm, xn, x)→ 0 as m,n→∞.

Lemma 1.5. ([15]) If (X,G) is a G-metric space, then the following are equivalent.
(1) The sequence {xn} is G-Cauchy.
(2) For every ε > 0, there exists a positive integer N such that G(xn, xm, xm) < ε for all n,m > N .

Lemma 1.6. ([15]) If (X,G) is a G-metric space, then G(x, y, y) ≤ 2G(y, x, x) for all x, y ∈ X.

Lemma 1.7. ([15]) If (X,G) is a G-metric space, then G(x, x, y) ≤ G(x, x, z)+G(z, z, y) for all x, y, z ∈ X.

Definition 1.8. ([15]) Let (X,G), (X ′, G′) be two G-metric spaces. Then a function f : X → X ′ is G-
continuous at a point x ∈ X if and only if it is G-sequentially continuous at x; that is, whenever {xn} is
G-convergent to x, {f(xn)} is G′-convergent to f(x).

Lemma 1.9. ([15]) Let (X,G) be a G-metric spaces. Then the function G(x, y, z) is jointly continuous in
all three of its variables



J. Chen, X. Huang, J. Nonlinear Sci. Appl. 8 (2015), 130–141 132

Definition 1.10. ([15]) A G-metric space (X,G) is said to be G-complete (or a complete G-metric space)
if every G-Cauchy sequence in (X,G) is convergent in X.

Next, we need some notions about partially ordered set.

Definition 1.11. ([4]) Let (X,�) be a partially ordered set and let F : X × X → X. The mapping F
is said to have the mixed monotone property if F (x, y) is monotone non-decreasing in x and is monotone
non-increasing in y; that is, for any x, y ∈ X,

x1, x2 ∈ X,x1 � x2 ⇒ F (x1, y) � F (x2, y)

and
y1, y2 ∈ X, y1 � y2 ⇒ F (x, y1) � F (x, y2).

Definition 1.12. ([4]) An element (x, y) ∈ X × X is called a coupled fixed point of the mapping F :
X ×X → X if

x = F (x, y) and y = F (y, x).

Definition 1.13. ([12]) Let (X,�) be a partially ordered set and F : X ×X → X and g : X → X be two
mappings. We say that F has the mixed-g-monotone property if F (x, y) is g-monotone nondecreasing in x
and it is g-monotone nonincreasing in y, that is, for any x, y ∈ X, we have:

x1, x2 ∈ X, g(x1) � g(x2)⇒ F (x1, y) � F (x2, y)

and, respectively,
y1, y2 ∈ X, g(y1) � g(y2)⇒ F (x, y1) � F (x, y2).

Definition 1.14. ([12]) An element (x, y) ∈ X × X is called a coupled coincidence point of the mapping
F : X ×X → X and g : X → X if

gx = F (x, y) and gy = F (y, x).

Definition 1.15. ([12]) We say that the mapping F : X ×X → X and g : X → X are commutative if

g(F (x, y)) = F (gx, gy) for all x, y ∈ X.

In [12], Lakshmikantham and Ćirić considered the following class of functions. We denote by Φ the set
of functions ϕ : [0,+∞)→ [0,+∞) satisfying
(a) ϕ−1{0} = {0}.
(b) ϕ(t) < t for all t > 0.
(c) lim

r→t+
ϕ(r) < t for all t > 0.

Hence, it concluded that lim
n→∞

ϕn(t) = 0.

Aydi et al. [3] proved the following theorem.

Theorem 1.16. Let (X,�) be a partially ordered set and suppose there is a G-metric G on X such that
(X,G)is a complete G-metric space. Let F : X ×X → X and g : X → X be such that F is continuous and
has the mixed-g-monotone property. Assume there is a function ϕ ∈ Φ such that

G(F (x, y), F (u, v), F (w, z)) ≤ ϕ(
G(gx, gu, gw) +G(gy, gv, gz)

2
) (1.1)

for all x, y, z, u, v, w ∈ X with gw � gu � gx and gy � gv � gz. Suppose also that F (X ×X) ⊆ g(X) and g
is continuous and commutes with F If there exist x0, y0 ∈ X such that gx0 � F (x0, y0) and gy0 � F (y0, x0),
then F and g have a coupled coincidence point, that is, there exists (x, y) ∈ X ×X such that g(x) = F (x, y)
and g(y) = F (y, x).
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2. Main results

In this section, we give some fixed point theorems for compatible mappings in G-metric spaces. Our
results extend some existing results in [3, 6, 13, 20]. In [11], the authors gave the following definition.

Definition 2.1. The mapping F : X ×X → X and g : X → X are said to be compatible if

lim
n→∞

G(gF (xn, yn), gF (xn, yn), F (gxn, gyn)) = 0

and
lim
n→∞

G(gF (yn, xn), gF (yn, xn), F (gyn, gxn)) = 0

whenever {xn} and {yn} are sequences in X such that

lim
n→∞

F (xn, yn) = lim
n→∞

g(xn) = x, lim
n→∞

F (yn, xn) = lim
n→∞

g(yn) = y

for all x, y ∈ X are satisfied.

Next, we prove our main results.

Theorem 2.2. Let (X,�) be a partially ordered set and suppose there is a G-metric G on X such that
(X,G)is a complete G-metric space. Let F : X ×X → X and g : X → X be such that F has the mixed-g-
monotone property. Assume there is a function ϕ ∈ Φ such that

G(F (x, y), F (u, v), F (w, z)) ≤ ϕ(max
{
G(gx, gu, gw), G(gy, gv, gz)

}
) (2.1)

for all x, y, z, u, v, w ∈ X with gw � gu � gx and gy � gv � gz. Suppose F (X × X) ⊆ g(X) and g is
continuous and compatible with F and also suppose either
(a) F is continuous or
(b) X has the following property:

(i) if a non-decreasing sequence {xn}, then xn � x for all n,

(i) if a non-increasing sequence {yn}, then yn � y for all n.

If there exist x0, y0 ∈ X such that gx0 � F (x0, y0) and gy0 � F (y0, x0), then F and g have a coupled
coincidence point, that is, there exists (x, y) ∈ X ×X such that g(x) = F (x, y) and g(y) = F (y, x).

Proof. Let x0, y0 ∈ X be such that gx0 � F (x0, y0) and gy0 � F (y0, x0). Since F (X ×X) ⊆ g(X), we
can choose x1, y1 ∈ X such that gx1 = F (x0, y0) and gy1 = F (y0, x0). Again since F (X ×X) ⊆ g(X), we
can choose x2, y2 ∈ X such that gx2 = F (x1, y1) and gy2 = F (y1, x1). Since F has the mixed g-monotone
property, we have gx0 � gx1 � gx2 and gy2 � gy1 � gy0. Continuing this process, we can construct two
sequences (xn) and (yn) in X such that

gxn = F (xn−1, yn−1) � gxn+1 = F (xn, yn)

and
gyn+1 = F (yn, xn) � gyn = F (yn−1, xn−1)

If for some n, we have (gxn+1, gyn+1) = (gxn, gyn), then F (xn, yn) = gxn and F (yn, xn) = gyn, that is, F
and g have a coincidence point. So from now on, we assume (gxn+1, gyn+1) 6= (gxn, gyn) for all n ∈ N, that
is, we assume that either gxn+1 = F (xn, yn) 6= gxn or gyn+1 = F (yn, xn) 6= gyn. From (2.1), we have

G(gxn+1, gxn+1, gxn) = G(F (xn, yn), F (xn, yn), F (xn−1, yn−1))
≤ ϕ(max

{
G(gxn, gxn, gxn−1), G(gyn, gyn, gyn−1)

}
),

(2.2)
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and
G(gyn+1, gyn+1, gyn) = G(F (yn, xn), F (yn, xn), F (yn−1, xn−1))

≤ ϕ(max
{
G(gyn, yn, yn−1), G(gxn, gxn, gxn−1)

}
).

(2.3)

Hence, from (2.2) and (2.3), we can get

max{G(gxn+1, gxn+1, gxn), G(gyn+1, gyn+1, gyn)} ≤ ϕ(max
{
G(gyn, yn, yn−1), G(gxn, gxn, gxn−1)

}
).

Let δn = max{G(gxn+1, gxn+1, gxn), G(gyn+1, gyn+1, gyn)}, then

δn ≤ ϕ(δn−1) < δn−1. (2.4)

Hence, it follows that {δn} is monotone decreasing. Therefore, there is some δ ≥ 0 such that lim
n→∞

δn = δ+.

We shall show that δ = 0. Suppose,to the contrary, that δ > 0. In (2.4), let n→∞, we can get

δ = lim
n→∞

δn ≤ lim
n→∞

ϕ(δn−1) = lim
t→δ+

ϕ(t) < δ, (2.5)

which is a contraction. Thus, δ = 0, that is,

lim
n→∞

δn = lim
n→∞

max{G(gxn+1, gxn+1, gxn), G(gyn+1, gyn+1, gyn)} = 0. (2.6)

Now we prove that (gxn) and (gyn) are G-Cauchy sequences in the G-metric space (X,G). Suppose
on the contrary that at least one of (gxn) and (gyn) is not a G-Cauchy sequence in (X,G). Then there
exists ε > 0 and sequences of natural numbers (m(k)) and (l(k)) such that for every natural number k,
m(k) > l(k) ≥ k and

rk = max{G(gxm(k), gxm(k), gxl(k)), G(gym(k), gym(k), gyl(k))} ≥ ε. (2.7)

Now corresponding to l(k) we choose m(k) to be the smallest for which (2.7) holds. So

G(gxm(k)−1, gxm(k)−1, gxl(k)) +G(gym(k)−1, gym(k)−1, gxl(k)) < ε.

Using the rectangle inequality, we get

ε ≤ rk = max{G(gxm(k), gxm(k), gxl(k)), G(gym(k), gym(k), gyl(k))}
≤ max{G(gxm(k), gxm(k), gxm(k)−1), G(gxm(k)−1, gxm(k)−1, gxl(k)),

G(gym(k), gym(k), gym(k)−1), G(gym(k)−1, gym(k)−1, gyl(k))}
< max{δm(k)−1, ε}.

Let k →∞ in the above inequality and using (2.6), we get

lim
n→∞

rk = ε+. (2.8)

Again, by rectangle inequality, we have

ε ≤ rk = max{G(gxm(k), gxm(k), gxl(k)), G(gym(k), gym(k), gyl(k))}
≤ max

{
G(gxm(k), gxm(k), gxm(k)+1), G(gxm(k)+1, gxm(k)+1, gxl(k)+1), G(gxl(k)+1, gxl(k)+1, gxl(k))

G(gym(k), gym(k), gym(k)+1), G(gym(k)+1, gym(k)+1, gyl(k)+1), G(gyl(k)+1, gyl(k)+1, gyl(k))
}

≤ max
{

[G(gxm(k), gxm(k), gxm(k)+1), G(gym(k), gym(k), gym(k)+1)];

[G(gxm(k)+1, gxm(k)+1, gxl(k)+1), G(gym(k)+1, gym(k)+1, gyl(k)+1)];

[G(gxl(k)+1, gxl(k)+1, gxl(k)), G(gyl(k)+1, gyl(k)+1, gyl(k))]
}
.

Using that G(x, x, y) ≤ 2G(x, y, y) for any x, y ∈ X, we obtain

rk ≤ max
{

[G(gxm(k), gxm(k), gxm(k)+1), G(gym(k), gym(k), gym(k)+1)];

[G(gxm(k)+1, gxm(k)+1, gxl(k)+1), G(gym(k)+1, gym(k)+1, gyl(k)+1)]; δl(k)
}

≤ max
{

[2G(gxm(k), gxm(k)+1, gxm(k)+1), 2G(gym(k), gym(k)+1, gym(k)+1)];

[G(gxm(k)+1, gxm(k)+1, gxl(k)+1), G(gym(k)+1, gym(k)+1, gyl(k)+1)]; δl(k)
}

≤ max
{

2δm(k); [G(gxm(k)+1, gxm(k)+1, gxl(k)+1), G(gym(k)+1, gym(k)+1, gyl(k)+1)]; δl(k)
} (2.9)
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Now, using inequality (2.1), we have

G(gxm(k)+1, gxm(k)+1, gxl(k)+1) = G(F (xm(k), ym(k)), F (xm(k), ym(k)), F (xl(k), yl(k)))

≤ ϕ(max{G(gxm(k), gxm(k), gxl(k)), G(gym(k), gym(k), gyl(k))})
= ϕ(rk).

and

G(gym(k)+1, gym(k)+1, gyl(k)+1) = G(F (ym(k), xm(k)), F (ym(k), xm(k)), F (yl(k), xl(k)))

≤ ϕ(max{G(gym(k), gym(k), gyl(k), G(gxm(k), gxm(k), gxl(k))})
= ϕ(rk).

Adding the above inequalities, we get

max{G(gxm(k)+1, gxm(k)+1, gxl(k)+1), G(gym(k)+1, gym(k)+1, gyl(k)+1)} ≤ ϕ(rk). (2.10)

Hence, from (2.9) and (2.10), it follows that

rk ≤ max
{

2δm(k), ϕ(rk), δl(k)} (2.11)

Now, using (2.6), (2.8) and the properties of the function ϕ, and letting k →∞ in (2.11), we get

ε ≤ max
{

0, lim
k→∞

ϕ(rk), 0} = lim
k→∞

ϕ(rk) = lim
r(k)→ε+

ϕ(rk) < ε, (2.12)

which is a contraction. Thus we proved that (gxn) and (gyn) are G-Cauchy sequences in the G-metric space
(X,G). Now, since (X,G) is G-complete, there are x, y ∈ X such that (gxn) and (gyn) are respectively
G-convergent to x and y, that is from Lemma 1.4, we have

lim
n→+∞

F (xn, yn) = lim
n→+∞

g(xn) = x, lim
n→+∞

F (yn, xn) = lim
n→+∞

g(yn) = y. (2.13)

and
lim

n→+∞
G(gxn, gxn, x) = lim

n→+∞
G(gxn, x, x) = 0, (2.14)

lim
n→+∞

G(gyn, gyn, y) = lim
n→+∞

G(gyn, y, y) = 0. (2.15)

Since g is continuous and compatible with F , hence we have

lim
n→∞

G(gF (xn, yn), gF (xn, yn), F (gxn, gyn)) = 0 (2.16)

and
lim
n→∞

G(gF (yn, xn), gF (yn, xn), F (gyn, gxn)) = 0. (2.17)

Now, suppose that assumption (a) holds. From F (xn, yn) = gxn+1 and F (yn, xn) = gyn+1, we have

G(g(x), g(x), F (gxn, gyn)) ≤ G(g(x), g(x), gF (xn, yn)) +G(gF (xn, yn), gF (xn, yn), F (gxn, gyn)). (2.18)

In (2.18), let n→∞ and using (2.16), we can get

lim
n→∞

G(g(x), g(x), F (gxn, gyn)) = G(g(x), g(x), F (x, y)) = 0.

Hence, g(x) = F (x, y). Similarly, we can show that g(y) = F (y, x). Finally, suppose that (b) holds. Since
{gxn} is a non-decreasing sequence and gxn → x and as {gyn} is a non-increasing sequence and gyn → y,
we have g(xn) � x and g(yn) � y for all n. Then, from (2.1), we have

G(g(x), g(x), F (x, y)) ≤ G(g(x), g(x), g(gxn+1)) +G(g(gxn+1), g(gxn+1), F (x, y))
= G(g(x), g(x), g(gxn+1)) +G(F (gxn, gyn), F (gxn, gyn), F (x, y))
≤ G(g(x), g(x), g(gxn+1)) + ϕ(max{G(g(gxn), g(gxn), gx), G(g(gyn), g(gyn), gy)}).

(2.19)
In (2.19), let n → ∞, we can conclude that g(x) = F (x, y). Similarly, we can show that g(y) = F (y, x).
The proof is completed. �

If ϕ(t) = kt in Theorem 2.2, we can get the following corollary.
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Corollary 2.3. Let (X,�) be a partially ordered set and suppose there is a G-metric G on X such that
(X,G)is a complete G-metric space. Let F : X ×X → X and g : X → X be such that F has the mixed-g-
monotone property. Assume there is a k ∈ [0.1) such that

G(F (x, y), F (u, v), F (w, z)) ≤ kmax
{
G(gx, gu, gw), G(gy, gv, gz)

}
(2.20)

for all x, y, z, u, v, w ∈ X with gw � gu � gx and gy � gv � gz. Suppose that F (X ×X) ⊆ g(X) and g is
continuous and compatible with F and also suppose either
(a) F is continuous or
(b) X has the following property:

(i) if a non-decreasing sequence {xn}, then xn � x for all n,

(ii) if a non-increasing sequence {yn}, then yn � y for all n.

If there exist x0, y0 ∈ X such that gx0 � F (x0, y0) and gy0 � F (y0, x0), then F and g have a coupled
coincidence point, that is, there exists (x, y) ∈ X ×X such that g(x) = F (x, y) and g(y) = F (y, x).

Remark 2.4. Corollary 2.3 generalizes the results of Nashine [20].

Let g = Ix in Corollary 2.3, we can get the following corollary.

Corollary 2.5. Let (X,�) be a partially ordered set and suppose there is a G-metric G on X such that
(X,G)is a complete G-metric space. Let F : X ×X → X be such that F has the mixed monotone property.
Assume there is a k ∈ [0.1) such that

G(F (x, y), F (u, v), F (w, z)) ≤ kmax
{
G(x, u, w), G(y, v, z)

}
(2.21)

for all x, y, z, u, v, w ∈ X with w � u � x and y � v � z. Suppose that either
(a) F is continuous or
(b) X has the following property:

(i) if a non-decreasing sequence {xn}, then xn � x for all n,

(ii) if a non-increasing sequence {yn}, then yn � y for all n.

If there exist x0, y0 ∈ X such that x0 � F (x0, y0) and y0 � F (y0, x0), then F have a coupled fixed point in
X, that is, there exists (x, y) ∈ X ×X such that x = F (x, y) and y = F (y, x).

Remark 2.6. Corollary 2.5 extends the results of Choudury [6].

Let Ψ denote all functions ψ : [0,∞)→ [0,∞) satisfying lim
t→r

ψ(t) > 0 for each r > 0. Using the definition

of Ψ, we can get the following corollary.

Corollary 2.7. Let (X,�) be a partially ordered set and suppose there is a G-metric G on X such that
(X,G)is a complete G-metric space. Let F : X ×X → X and g : X → X be such that F has the mixed-g-
monotone property. Assume there exists ψ ∈ Ψ such that

G(F (x, y), F (u, v), F (w, z)) ≤ max
{
G(gx, gu, gw), G(gy, gv, gz)

}
−ψ(max

{
G(gx, gu, gw), G(gy, gv, gz)

}
),

(2.22)

for all x, y, z, u, v, w ∈ X with gw � gu � gx and gy � gv � gz. Suppose that F (X ×X) ⊆ g(X) and g is
continuous and compatible with F and also suppose either
(a) F is continuous or
(b) X has the following property:

(i) if a non-decreasing sequence {xn}, then xn � x for all n,

(ii) if a non-increasing sequence {yn}, then yn � y for all n.
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If there exist x0, y0 ∈ X such that gx0 � F (x0, y0) and gy0 � F (y0, x0), then F and g have a coupled
coincidence point, that is, there exists (x, y) ∈ X ×X such that g(x) = F (x, y) and g(y) = F (y, x).

Proof. Let ϕ(t) = t− ψ(t). Obviously, ϕ ∈ Φ. Hence, Corollary 2.7 satisfies all conditions of Theorem
2.2. The proof is completed. �

Remark 2.8. Corollary 2.7 extends the results obtained by Luong [13].

Now, we shall prove the uniqueness of the coupled fixed point. Note that, if (X,�) is a partially ordered
set, then we endow the product X ×X with the following partial order relation:

(x, y), (u, v) ∈ X ×X, (x, y) � (u, v)⇔ x � u, y � v.

Theorem 2.9. In addition to the hypotheses of Theorem 2.2, suppose that for all (x, y), (x∗, y∗) ∈ X ×X,
there exists (u, v) ∈ X×X such that (F (u, v), F (v, u)) is comparable with (F (x, y)F (y, x)) and (F (x∗, y∗), F (y∗, x∗)).
Suppose also that ϕ is a nondecreasing function. Then F and g have a unique coupled common fixed point,
that is, there exists a unique (x, y) ∈ X ×X such that

x = gx = F (x, y) and y = gy = F (y, x). (2.23)

Proof. From Theorem 2.2, the set of coupled coincidences is non-empty. We shall show that if (x, y)
and (x∗, y∗) are coupled coincidence points, that is, if g(x) = F (x, y), g(y) = F (y, x), g(x∗) = F (x∗, y∗)
and g(y∗) = F (y∗, x∗), then gx = gx∗ and gy = gy∗. By assumption, there exists (u, v) ∈ X × X such
that (F (u, v), F (v, u)) is comparable with (F (x, y), F (y, x)) and (F (x∗, y∗), F (y∗, x∗)). Without restriction
to the generality, we can assume that

(F (x, y), F (y, x)) � (F (u, v), F (v, u))

and
(F (x∗, y∗), F (y∗, x∗)) � (F (u∗, v∗), F (v∗, u∗)).

Put u0 = u,v0 = v, and choose u1, v1 ∈ X such that gu1 = F (u0, v0), gv1 = F (v0, u0). Then, similarly as in
the proof of Theorem 2.2, we can inductively define sequences (gun) and (gvn) in X by gun+1 = F (un, vn)
and gvn+1 = F (vn, un). Further, let x0 = x, y0 = y, x∗0 = x∗, y∗0 = y∗. and, in the same way, define the
sequences (gxn), (gyn), (gx∗n) and (gy∗n). Since

(F (x, y), F (y, x)) = (gx1, gy1) = (gx, gy) � (F (u, v), F (v, u)) = (gu1, gv1),

then, gx � gu1 and gv1 � gy. Using that F is a mixed g-monotone mapping, one can show easily that
gx � gun and gvn � gy for all n ≥ 1. Thus, from (2.1), we have

G(g(un+1), g(x), g(x)) = G(F (un, vn), F (x, y), F (x, y))
≤ ϕ(max{G(gun, gx, gx), G(gvn, gy, gy)}) (2.24)

G(g(y), g(y), g(vn+1)) = G(F (y, x), F (y, x), F (vn, un))
≤ ϕ(max{G(gy, gy, gvn), G(gx, gx, gun)}). (2.25)

From (2.24) and (2.25), we can conclude that

max{G(g(un+1), g(x), g(x), G(g(y), g(y), g(vn+1))} ≤ ϕ(max{G(gun, gx, gx), G(gvn, gy, gy)})

Without restriction to the generality, we can suppose that (gun, gvn) 6= (gx, gy) for all n ≥ 1. Since ϕ is
non-decreasing, from the previous inequality, we get

max{G(g(un+1), g(x), g(x), G(g(y), g(y), g(vn+1))} ≤ ϕn(max{G(gu1, gx, gx), G(gv1, gy, gy)}). (2.26)
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In (2.26), let n→∞, we can get

lim
n→∞

G(g(un+1), g(x), g(x)) = 0 and lim
n→∞

G(g(y), g(y), g(vn+1) = 0. (2.27)

Similarly, one can show that

lim
n→∞

G(g(un+1), g(x∗), g(x∗)) = 0 and lim
n→∞

G(g(y∗), g(y∗), g(vn+1) = 0. (2.28)

Therefore, from (2.27), (2.28) and the uniqueness of the limit, we get

gx = gx∗ and gy = gy∗. (2.29)

Since gx = F (x, y) and gy = F (y, x), by compatible of F and g, we have

g(gx) = g(F (x, y)) = F (gx, gy) and g(g(y)) = g(F (y, x)) = F (gy, gx). (2.30)

Put g(x) = z and g(y) = w, then by (2.30), we get

gz = F (z, w) and gw = F (w, z). (2.31)

Thus, (z,w) is a coincidence point. Then by (2.29) with x∗ = z and y∗ = w, we have gx = gz and gy = gw,
that is,

g(z) = g(x) = z and g(y) = g(w) = w. (2.32)

From (2.31) and (2.32), we get z = gz = F (z, w) and w = gw = F (w, z). Then, (z, w) is a coupled fixed
point of F and g. To prove the uniqueness, assume that (p, q) is another coupled fixed point. Then by
(2.29), we have p = gp = gz = z and q = gq = gw = w. The proof is completed. �

Inspired by [14], we give an example to illustrate that Theorem 2.2 is an extension of Theorem 1.16.

Example 2.10. Let X = [0, 1] and (X,�) be a partially ordered set with the natural ordering of real
numbers. Let G(x, y, z) = |x− y|+ |y − z|+ |z − x| for all x, y, z ∈ X. Then (X,G) is a complete G-metric
space. Let the mapping g : X → X be defined by

g(x) = x2 for all x ∈ X,

and let the mapping F : X ×X → X be defined by

F (x, y) =

{
x2−y2

3 if x � y
0 if x ≺ y

for all x, y ∈ X. Then F satisfies the mixed g-monotone property. Let ϕ(t) : R+ → R+ be such that
ϕ(t) = 2t

3 for all t ∈ R+. Suppose that (xn) and (yn) are two sequences in X such that

lim
n→∞

F (xn, yn) = a, lim
n→∞

g(xn) = a, lim
n→∞

F (yn, xn) = b, lim
n→∞

g(yn) = b.

Then a = 0 and b = 0. For all n ≥ 1, we define

g(xn) = x2n, g(yn) = y2n,

F (xn, yn) =

{
x2n−y2n

3 if xn � yn,
0 if xn ≺ yn,

and

F (yn, xn) =

{
y2n−x2n

3 if yn � xn,
0 if yn ≺ xn.
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From the above, we see that

lim
n→∞

G(gF (xn, yn), gF (xn, yn), F (gxn, gyn)) = 0,

lim
n→∞

G(gF (yn, xn), gF (yn, xn), F (gyn, gxn)) = 0.

This proves that F and g are compatible. Also, suppose that x0 = 0 and y0 = c are two points in X such
that

g(x0) = g(0) = 0 = F (0, c) = F (x0, y0),

g(y0) = g(c) = c2 � c2

3
= F (c, 0) = F (y0, x0).

Now it is left to show that (2.1) of Theorem 2.2 is satisfied with ϕ(t) = 2t
3 as defined above. Let

x, y, u, v, z, w ∈ X be such that g(w) � g(u) � g(x) and g(y) � g(v) � g(z), that is, w � u � x and
y � v � z. We have the following possible cases.
Case 1: When x � y, u � v, and z � w. Then we get

G(F (x, y), F (u, v), F (z, w)) = G(
x2 − y2

3
,
u2 − v2

3
,
z2 − w2

3
)

= |(x
2 − y2)− (u2 − v2)

3
|+ |(u

2 − v2)− (z2 − w2)

3
|+ |(z

2 − w2)− (x2 − y2)
3

|

≤ 1

3

(
|(x2 − y2)− (u2 − v2)|+ |(u2 − v2)− (z2 − w2)|+ |(z2 − w2)− (x2 − y2)|

)
≤ 1

3

(
|x2 − u2|+ (y2 − v2)|+ |u2 − z2|+ |v2 − w2|+ |z2 − x2|+ |w2 − y2)|

)
≤ 2

3
max

{
|x2 − u2|+ |u2 − z2|+ |z2 − x2|, |(y2 − v2)|+ |v2 − w2|+ |w2 − y2)|

}
and

ϕ(max
{
G(gx, gu, gz), G(gy, gv, gw)}) = ϕ(max

{
G(x2, u2, z2), G(y2, v2, w2)})

=
2

3

(
max

{
G(x2, u2, z2), G(y2, v2, w2)

})
=

2

3
max

{
|x2 − u2|+ |u2 − z2|+ |z2 − x2|,
|y2 − v2|+ |v2 − w2|+ |w2 − y2|

}
.

Hence, G(F (x, y), F (u, v), F (z, w)) ≤ ϕ(max
{
G(gx, gu, gz), G(gy, gv, gw)}), is that, (2.1) holds.

Case 2: When x � y, u � v, and z ≺ w. Then we get

G(F (x, y), F (u, v), F (z, w)) = G(F (x, y), F (u, v), 0) = G(
x2 − y2

3
,
u2 − v2

3
, 0)

= |(x
2 − y2)− (u2 − v2)

3
|+ |u

2 − v2

3
|+ |x

2 − y2

3
|

≤ 1

3

(
|(x2 − y2)− (u2 − v2)|+ |u2 − v2|+ |x2 − y2|

)
≤ 1

3

(
|x2 − u2|+ (y2 − v2)|+ |u2 − w2|+ |w2 − v2|+ |x2 − z2|+ |z2 − y2|

)
≤ 1

3

(
|x2 − u2|+ (y2 − v2)|+ |u2 − z2|+ |w2 − v2|+ |x2 − z2|+ |w2 − y2|

)
≤ 2

3
max

{
|x2 − u2|+ |u2 − z2|+ |z2 − x2|, |(y2 − v2)|+ |v2 − w2|+ |w2 − y2|

}
and

ϕ(max
{
G(gx, gu, gz), G(gy, gv, gw)}) = ϕ(max

{
G(x2, u2, z2), G(y2, v2, w2)})

=
2

3

(
max

{
G(x2, u2, z2), G(y2, v2, w2)

})
=

2

3
max

{
|x2 − u2|+ |u2 − z2|+ |z2 − x2|,
|(y2 − v2)|+ |v2 − w2|+ |w2 − y2|

}
.
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Hence, G(F (x, y), F (u, v), F (z, w)) ≤ ϕ(max
{
G(gx, gu, gz), G(gy, gv, gw)}), is that, (2.1) holds.

Case 3: When x � y, u ≺ v, and z � w, then we have

G(F (x, y), F (u, v), F (z, w)) = G(F (x, y), 0, F (z, w)) = G(
x2 − y2

3
, 0,

z2 − w2

3
)

= |x
2 − y2

3
|+ |z

2 − w2

3
|+ |(z

2 − w2)− (x2 − y2)
3

|

≤ 1

3

(
|x2 − y2|+ |z2 − w2|+ |(z2 − w2)− (x2 − y2)|

)
≤ 1

3

(
|x2 − u2|+ |y2 − u2|+ |u2 − z2|+ |w2 − u2|+ |x2 − z2|+ |w2 − y2|

)
≤ 1

3

(
|x2 − u2|+ |y2 − v2|+ |u2 − z2|+ |w2 − v2|+ |x2 − z2|+ |w2 − y2)|

)
≤ 2

3
max

{
|x2 − u2|+ |u2 − z2|+ |z2 − x2|, |y2 − v2|+ |v2 − w2|+ |w2 − y2|

}
and

ϕ(max
{
G(gx, gu, gz), G(gy, gv, gw)}) = ϕ(max

{
G(x2, u2, z2), G(y2, v2, w2)})

=
2

3

(
max

{
G(x2, u2, z2), G(y2, v2, w2)

})
=

2

3
max

{
|x2 − u2|+ |u2 − z2|+ |z2 − x2|,
|(y2 − v2)|+ |v2 − w2|+ |w2 − y2|

}
.

Hence, G(F (x, y), F (u, v), F (z, w)) ≤ ϕ(max
{
G(gx, gu, gz), G(gy, gv, gw)}), is that, (2.1) holds.

Case 4: If x ≺ y, u � v, and z � w, then we see that this assumption cannot happen.
Case 5: If x ≺ y, u ≺ v, and z � w, then we can get

G(F (x, y), F (u, v), F (z, w)) = G(0, 0, F (z, w)) = G(0, 0,
z2 − w2

3
)

= |z
2 − w2

3
|+ |z

2 − w2

3
|

≤ 1

3

(
|z2 − u2|+ |u2 − w2|+ |(z2 − x2)− (x2 − w2)|

)
≤ 1

3

(
|z2 − u2|+ |v2 − w2|+ |z2 − x2|+ |x2 − w2|

)
≤ 2

3
max

{
|x2 − u2|+ |u2 − z2|+ |z2 − x2|, |y2 − v2|+ |v2 − w2|+ |w2 − y2|

}
and

ϕ(max
{
G(gx, gu, gz), G(gy, gv, gw)}) = ϕ(max

{
G(x2, u2, z2), G(y2, v2, w2)})

=
2

3

(
max

{
G(x2, u2, z2), G(y2, v2, w2)

})
=

2

3
max

{
|x2 − u2|+ |u2 − z2|+ |z2 − x2|,
|(y2 − v2)|+ |v2 − w2|+ |w2 − y2|

}
.

Hence, G(F (x, y), F (u, v), F (z, w)) ≤ ϕ(max
{
G(gx, gu, gz), G(gy, gv, gw)}), is that, (2.1) holds.

Case 6: If x ≺ y, u � v, and z ≺ w, then we see that this assumption cannot happen.
Case 7: If x � y, u ≺ v, and z ≺ w, then we see that this assumption cannot happen.
Case 8: If x ≺ y, u ≺ v, and z ≺ w, then obviously (2.1) holds.

Thus all the hypotheses of Theorem 2.2 are fulfilled. So, we conclude that F and g have a coupled
coincidence point. In this case, (0, 0) is a coupled coincidence point of F and g in X.

Next, we illustrate that the example doesn’t satisfied with the condition of Theorem 1.16. Since for all
x, y ∈ X, we have g(F (x, y)) 6= F (gx, gy). Hence, in this example g does not commute with F . Theorem
1.16 is not application to this example. So our result generalizes and extends Theorem 1.16.
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