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Dipartimento di Matematica e Informatica, Università degli Studi di Palermo, via Archirafi 34, 90123 Palermo, Italy.

Abstract

We establish some fixed point theorems for mappings satisfying Geraghty-type contractive conditions in the
setting of partial metric spaces and ordered partial metric spaces. Presented theorems extend and generalize
many existing results in the literature. Examples are given showing that these results are proper extensions
of the existing ones. c©2014 All rights reserved.
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1. Introduction and Preliminaries

Banach’s contraction principle is one of the pivotal results of analysis. It is widely considered as the
source of metric fixed point theory. Also, its significance lies in its vast applicability in a number of branches
of mathematics.

Definition 1.1. Let S denotes the class of the functions β : [0,+∞) → [0, 1) which satisfy the condition
β(tn)→ 1⇒ tn → 0.

The following generalization of Banach’s contraction principle, proved in 1973, is due to Geraghty [18].

Theorem 1.2. Let (X, d) be a complete metric space and f : X → X be a mapping. Assume that there
exists β ∈ S such that, for all x, y ∈ X,

d(f(x), f(y)) ≤ β(d(x, y))d(x, y).

Then f has a unique fixed point z ∈ X and, for any choice of the initial point x0 ∈ X, the sequence {xn}
defined by xn = f(xn−1) for each n ≥ 1 converges to the point z.
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Very recently, Amini-Harandi and Emami [4] proved the following existence theorem.

Theorem 1.3. Let (X,�) be a partially ordered set and suppose that there exists a metric d in X such that
(X, d) is a complete metric space. Let f : X → X be an increasing mapping such that there exists x0 ∈ X
with x0 � f(x0). Suppose that there exists β ∈ S such that

d(f(x), f(y)) ≤ β(d(x, y))d(x, y)

for all x, y ∈ X with x � y. Assume that either f is continuous or X is such that if an increasing sequence
{xn} converges to x, then xn � x for each n ≥ 1. Besides, if for all x, y ∈ X, there exists z ∈ X which is
comparable to x and y, then f has a unique fixed point in X.

In the mathematical field of domain theory, attempts were made in order to equip semantics domain with
a notion of distance. In particular, Matthews [27] introduced the notion of a partial metric space as a part
of the study of denotational semantics of data for networks, showing that the contraction mapping principle
can be generalized to the partial metric context for applications in program verification. Moreover, the
existence of several connections between partial metrics and topological aspects of domain theory have been
lately pointed by other authors as O’Neill [28], Bukatin and Scott [9], Bukatin and Shorina [10], Romaguera
and Schellekens [39] and others (see also [19, 25, 26, 38, 41, 42] and the references therein).

After the result of Matthews [27], the interest for fixed point theory developments in partial metric spaces
has been constantly growing. Indeed, many authors presented significant contributions in the directions of
establishing partial metric versions of well-known fixed point theorems in classical metric spaces (see for
example [8, 12, 14, 43]). Obviously, we cannot cite all these papers but we give only a partial list [1]-[7],
[11, 13, 15, 16], [20]-[24], [32, 33, 36, 37, 44].

2. Partial metric spaces

The following definitions and details can be seen in [27, 28, 32, 33].

Definition 2.1. A partial metric on a nonempty set X is a function p : X ×X → [0,+∞) such that, for
all x, y, z ∈ X

(p1) x = y ⇔ p(x, x) = p(x, y) = p(y, y),

(p2) p(x, x) ≤ p(x, y),

(p3) p(x, y) = p(y, x),

(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

A partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial metric on X.

It is clear that, if p(x, y) = 0, then from (p1) and (p2) follows x = y. But if x = y, p(x, y) may not be 0.
Each partial metric p on X generates a T0 topology τp on X which has as a base the family of open p-balls
{Bp(x, ε) : x ∈ X, ε > 0}, where

Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε}

for all x ∈ X and ε > 0. A sequence {xn} in (X, p) converges to a point x ∈ X, with respect to τp if
limn→+∞ p(xn, x) = p(x, x). This will be denoted by xn → x, as n→ +∞ or limn→+∞ xn = x.
If p is a partial metric on X, then the function ps : X ×X → [0,+∞) given by:

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y) (2.1)

is a metric on X. Furthermore, limn→+∞ p
s(xn, x) = 0 if and only if

p(x, x) = lim
n→ +∞

p(xn, x) = lim
n,m→ +∞

p(xn, xm). (2.2)
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Example 2.2. A basic example of a partial metric space is the pair ([0,+∞), p), where p(x, y) = max {x, y}
for all x, y ∈ [0,+∞). The corresponding metric is:

ps(x, y) = 2 max {x, y} − x− y = |x− y| .

Example 2.3. If (X, d) is a metric space and c ≥ 0 is arbitrary, then

p(x, y) = d(x, y) + c

defines a partial metric on X and the corresponding metric is ps(x, y) = 2d(x, y).

Other examples of partial metric spaces which are interesting from a computational point of view may
be found in [27].

Remark 2.4. Clearly, a limit of a sequence in a partial metric space need not be unique. Moreover, the
function p(·, ·) need not be continuous in the sense that xn → x and yn → y implies p(xn, yn)→ p(x, y). For
example, if X = [0,+∞) and p(x, y) = max {x, y} for x, y ∈ X, then for {xn} = {1}, p(xn, x) = x = p(x, x)
for each x ≥ 1 and so, for example, xn → 2 and xn → 3 when n→ +∞.

Definition 2.5. Let (X, p) be a partial metric space. Then one has the following:

(i) A sequence {xn} in (X, p) is called a Cauchy sequence if limn,m→ +∞ p(xn, xm) exists (and is finite).

(ii) The space (X, p) is said to be complete if every Cauchy sequence {xn} in X converges, with respect
to τp, to a point x ∈ X such that

p(x, x) = lim
n→ +∞

p(xn, x) = lim
n,m→ +∞

p(xn, xm).

Lemma 2.6 ([27, 32]). Let (X, p) be a partial metric space. Then one has the following:

(a) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the metric space (X, ps).

(b) The space (X, p) is complete if and only if the metric space (X, ps) is complete.

Definition 2.7. Let X be a nonempty set. Then, (X, p,�) is called an ordered partial metric space if:

(i) (X, p) is a partial metric space,

(ii) (X,�) is a partially ordered set.

3. Main results

We begin with the following auxiliary lemmas which are useful to prove some fixed point theorems in a
partial metric space.

Lemma 3.1 ([33], Lemma 2). Let (X, p) be a partial metric space and {xn} ⊂ X. If xn → x ∈ X and
p(x, x) = 0, then lim

n→+∞
p(xn, z) = p(x, z) for all z ∈ X.

Lemma 3.2 ([17], Lemma 2.8). Let (X, p) be a partial metric space and {xn} be a sequence in X such that:

lim
n→+∞

p(xn+1, xn) = 0.

If {x2n} is not a Cauchy sequence in (X, p), then there exist ε > 0 and two sequences {mk}, {nk} of positive
integers, with mk < nk, such that the following four sequences:

{p(x2mk
, x2nk

)} , {p(x2mk
, x2nk+1)} , {p(x2mk−1, x2nk

)} , {p(x2mk−1, x2nk+1)}

tend to ε as k → +∞.
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Definition 3.3 ([40], Definition 2.2). Let f : X → X and α : X × X → [0,+∞). The mapping f is
α-admissible if for all x, y ∈ X such that α(x, y) ≥ 1, we have α(fx, fy) ≥ 1.

Definition 3.4. Let (X, p) be a partial metric space and let α : X ×X → [0,+∞). X is called α-regular if
for every sequence {xn} ⊂ X such that α(xn, xn+1) ≥ 1 for all n ∈ N ∪ {0} and xn → x, then there exists a
subsequence {xnk

} of {xn} such that α(xnk
, x) ≥ 1 for all k ∈ N.

The following theorem is one of our main results.

Theorem 3.5. Let (X, p) be a complete partial metric space and let α : X ×X → [0,+∞) be a function.
Let f : X → X be a self mapping. Suppose that there exists β ∈ S such that

α(x, fx)α(y, fy)p(fx, fy) ≤ β(M(x, y))M(x, y) (3.1)

for all x, y ∈ X, where

M(x, y) = max

{
p(x, y), p(x, fx), p(y, fy),

1

2
[p(x, fy) + p(fx, y)]

}
.

Assume also that the following conditions hold:

(i) f is α-admissible;

(ii) there exists x0 ∈ X such that α(x0, fx0) ≥ 1;

(iii) for every sequence {xn} ⊂ X such that α(xn, xn+1) ≥ 1 for all n ∈ N ∪ {0} and xn → x, we have
α(x, fx) ≥ 1;

(iv) α(x, fx) ≥ 1 for all x ∈ Fix(f).

Then f has a unique fixed point z in X.

Proof. Let x0 ∈ X such that α(x0, fx0) ≥ 1. Define the sequence {xn} in X by

xn = fxn−1 for all n ∈ N.

Since, by hypothesis, f is α-admissible, we obtain

α(fx0, fx1) = α(x1, x2) ≥ 1, α(fx1, fx2) = α(x2, x3) ≥ 1.

By induction, we get
α(xn, xn+1) ≥ 1 for all n ∈ N ∪ {0} .

If xn = xn+1 for some n ∈ N ∪ {0}, then xn = xn+1 = fxn and so xn is a fixed point of f . Now,
we assume p(xn+1, xn) > 0 for each n ∈ N ∪ {0}. First, we will prove that the sequence {p(xn+1, xn)} is
decreasing and tends to 0 as n→ +∞. By (3.1), for each n ∈ N, we have:

p(xn+2, xn+1) = p(fxn+1, fxn) (3.2)

≤ α(xn+1, fxn+1)α(xn, fxn)p(fxn+1, fxn)

≤ β(M(xn+1, xn))M(xn+1, xn)

< M(xn+1, xn),

where

M(xn+1, xn)

= max

{
p(xn+1, xn), p(xn+1, xn+2), p(xn, xn+1),

1

2
[p(xn+1, xn+1) + p(xn+2, xn)]

}
.
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Since in a partial metric space we have

p(xn+1, xn+1) + p(xn+2, xn) ≤ p(xn+2, xn+1) + p(xn+1, xn),

then we get
M(xn+1, xn) ≤ max{p(xn+1, xn), p(xn+2, xn+1)}.

If M(xn+1, xn) = p(xn+2, xn+1), by (3.2), we have a contradiction. Then M(xn+1, xn) = p(xn+1, xn).
Again using (3.2) it follows 0 < p(xn+2, xn+1) < p(xn+1, xn). Hence, the sequence {p(xn+1, xn)} is decreasing
and bounded from below, thus it converges to some r ≥ 0. Suppose that r > 0. By (3.2), we have

p(xn+2, xn+1)

p(xn+1, xn)
≤ β(p(xn+1, xn)) ≤ 1,

for all n ∈ N∪ {0} which yields that limn→+∞ β(p(xn+1, xn)) = 1. On the other hand, since β ∈ S, we have
limn→+∞ p(xn+1, xn) = 0 and so r = 0.

In order to prove that {xn} is a Cauchy sequence in (X, p), suppose the contrary, that is, {xn} is not
a Cauchy sequence. Using Lemma 3.2, we know that there exist ε > 0 and two sequences {mk}, {nk} of
positive integers, with mk < nk, such that the following four sequences

{p(x2mk
, x2nk

)} , {p(x2mk
, x2nk+1)} , {p(x2mk−1, x2nk

)} , {p(x2mk−1, x2nk+1)}

tend to ε as k → +∞.
Putting, in the contractive condition (3.1), x = x2mk−1 and y = x2nk

, it follows that:

p(x2mk
, x2nk+1) ≤ α(x2mk−1, fx2mk−1)α(x2mk

, fx2mk
)p(fx2mk−1, fx2mk

) (3.3)

≤ β(M(x2mk−1, x2nk
))M(x2mk−1, x2nk

)

< M(x2mk−1, x2nk
),

where

M(x2mk−1, x2nk
) = max{p(x2mk−1, x2nk

), p(x2mk−1, x2mk
), p(x2nk

, x2nk+1),

1

2
[p(x2mk−1, x2nk+1) + p(x2mk

, x2nk
)]}.

Letting k → +∞, we get M(x2mk−1, x2nk
)→ ε. From (3.3) we have:

p(x2mk
, x2nk+1)

M(x2mk−1, x2nk
)
≤ β(M(x2mk−1, x2nk

)) ≤ 1, for all k ∈ N.

From the previous inequality, as k → +∞, we obtain

lim
k→+∞

β(M(x2mk−1, x2nk
)) = 1.

Since β ∈ S, we have limk→+∞M(x2mk−1, x2nk
) = 0, which is a contradiction. This implies that ε = 0.

Therefore, {xn} is a Cauchy sequence in (X, p). Since (X, p) is complete, it follows that the sequence {xn}
converges to some z ∈ X. We say

p(z, z) = lim
n→+∞

p(xn, z) = lim
n,m→+∞

p(xn, xm) = 0. (3.4)

Now, we show that z is a fixed point of f . If p(z, fz) > 0, using condition (iii) and (3.1) with x = xn
and y = z, we get

p(xn+1, fz) ≤ α(xn , fxn)α(z, fz)p(fxnk
, fz)

≤ β(M(xn, z))M(xn, z).
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Now, for n large enough we have M(xn, z) = p(z, fz) and so, from the previous inequality and Lemma
3.1, we obtain

1 = lim
n→+∞

p(xn+1, fz)

M(xn, z)
= lim

n→+∞
β(M(xn, z)) ≤ 1.

This implies limn→+∞M(xn, z) = 0, a contradiction. Thus, p(z, fz) = 0 and hence fz = z, that is, z is
a fixed point of f .

Assume that u and v, with u 6= v, are two fixed points of f . Then

0 < p(u, v) ≤ α(u, fu)α(v, fv)p(fu, fv) ≤ β(M(u, v))M(u, v) < M(u, v),

where

M(u, v) = max

{
p(u, v), p(u, fu), p(v, fv)),

1

2
[p(u, fv)) + p(fu, v)]

}
= p(u, v).

It follows 0 < p(u, v) < M(u, v) = p(u, v), a contradiction. Therefore, we get u = v and this completes the
proof.

The following theorem is another main result of this paper.

Theorem 3.6. Let (X, p) be a complete partial metric space and let α : X ×X → [0,+∞) be a function.
Let f : X → X be a self mapping. Suppose that there exists β ∈ S such that

α(x, y)p(fx, fy) ≤ β(M(x, y))M(x, y) (3.5)

for all x, y ∈ X, where

M(x, y) = max

{
p(x, y), p(x, fx), p(y, fy),

1

2
[p(x, fy) + p(fx, y)]

}
.

Assume also that the following conditions hold:

(i) f is α-admissible;

(ii) there exists x0 ∈ X such that α(x0, fx0) ≥ 1;

(iii) X is α-regular and for every sequence {xn} ⊂ X such that α(xn, xn+1) ≥ 1 for all n ∈ N ∪ {0}, we
have α(xm, xn) ≥ 1 for all m,n ∈ N with m < n;

(iv) α(x, y) ≥ 1 for all x, y ∈ Fix(f).

Then f has a unique fixed point z ∈ X.

Proof. Let x0 ∈ X such that α(x0, fx0) ≥ 1. Define the sequence {xn} in X by

xn = fxn−1 for all n ∈ N.

Proceeding as in the proof of Theorem 3.5, we deduce that {xn} is a Cauchy sequence in (X, p) such
that p(xn+1, xn)→ 0, as n→ +∞. Since (X, p) is complete, it follows that the sequence {xn} converges to
some z ∈ X such that

p(z, z) = lim
n→+∞

p(xn, z) = lim
n,m→+∞

p(xn, xm) = 0. (3.6)

Now, we show that z is a fixed point of f . Since X is α-regular, then there exists a subsequence {xnk
}

of {xn} such that α(xnk
, z) ≥ 1 for all k ∈ N. If p(z, fz) > 0, using (3.5) with x = xnk

and y = z, we get
that

p(xnk+1, fz) ≤ α(xnk
, z)p(fxnk

, fz)

≤ β(M(xnk
, z))M(xnk

, z).
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Now, for k large enough, we have M(xnk
, z) = p(z, fz) and so, from the previous inequality and Lemma

3.1, we obtain

1 = lim
k→+∞

p(xnk+1, fz)

M(xnk
, z)

= lim
k→+∞

β(M(xnk
, z)) ≤ 1.

This implies limk→+∞M(xnk
, z)) = 0, which is a contradiction. Thus, p(z, fz) = 0 and hence fz = z,

that is, z is a fixed point of f .
Assume that u and v, with u 6= v, are two fixed point of f . Then

0 < p(u, v) ≤ α(u, v)p(fu, fv) ≤ β(M(u, v))M(u, v) < M(u, v),

where

M(u, v) = max

{
p(u, v), p(u, fu), p(v, fv)),

1

2
[p(u, fv)) + p(fu, v)]

}
= p(u, v).

It follows 0 < p(u, v) < M(u, v) = p(u, v), which is a contradiction. Therefore, we get u = v and this
completes the proof.

Example 3.7. Let X = [0, 1], d(x, y) = |x − y| for all x, y ∈ X, p(x, y) = max{x, y} for all x, y ∈ X,

β(t) = e−t

(t+1) for each t > 0 and β(0) = 1/2. Let

α(x, y) =

{
1
4 if (x, y) 6= (0, 0)

1 if (x, y) = (0, 0).

The mapping f : X → X defined by f(x) =
x

3
is α-admissible, but it does not satisfy the conditions of

Geraghty’s theorem in the metric space (X, d). Indeed, taking x = 1 and y = 0, we have

d(f1, f0) = d(
1

3
, 0) = |1

3
− 0| = 1

3

and

β(d(1, 0)) d(1, 0) = β(|1− 0|) |1− 0| = β(1) =
1

2e
.

Since
1

3
>

1

2e
, Geraghty’s theorem cannot be used to prove the existence of a fixed point of f .

Also we note that the mapping f does not satisfy the condition of Theorem 3.1 of [17] with respect to the
partial metric defined above, because of

p(f1, f0) =
1

3
>

1

2 e
= β(p(1, 0)) p(1, 0).

On the other hand, taking x, y ∈ X with, for example, x ≥ y and x > 0, then:

M(x, y) = max

{
p(x, y), p(x, fx), p(y, fy),

1

2
[p(x, fy) + p(fx, y)]

}
= x

α(x, y)p(fx, fy) =
1

12
x

and

β(M(x, y))M(x, y) = β(x)x =
e−x

x+ 1
x.

Now, from 1/12 < 1/2 e ≤ e−x/(x+ 1) for all x ∈ [0, 1], we get that (3.5) holds.
Since the conditions (i)-(iv) of Theorem 3.6 are satisfied, then f has a unique fixed point (z=0).
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4. Fixed points in ordered partial metric spaces

The existence of fixed points in partially ordered sets has been considered in [34]. Later on, some
generalizations of [34] are given in [17, 29, 30, 31, 33, 37, 40]. Several applications of these results to matrix
equations are presented in [34]. Moreover, some applications to periodic boundary value problems and to
some particular problems are given, respectively, in [29, 30].

The following theorem ensures the existence of a fixed point for self-mappings in the setting of ordered
partial metric spaces.

Theorem 4.1. Let (X, p,�) be a complete ordered partial metric space and α : X × X → [0,+∞) be a
function. Let f : X → X be a non-decreasing mapping. Suppose that there exists β ∈ S such that

p(fx, fy) ≤ β(M(x, y))M(x, y) (4.1)

for all x, y ∈ X with x � y, where

M(x, y) = max

{
p(x, y), p(x, fx), p(y, fy),

1

2
[p(x, fy) + p(fx, y)]

}
.

Assume also that the following conditions hold:

(i) there exists x0 ∈ X such that x0 � fx0;

(ii) X is such that, if a non-decreasing sequence {xn} converges to x, then there exists a subsequence {xnk
}

of {xn} such that xnk
� x for all k ∈ N;

(iii) x, y are comparable whenever x, y ∈ Fix(f).

Then f has a unique fixed point z ∈ X.

Proof. Define the mapping α : X ×X → [0,+∞) by

α(x, y) =

{
1 if x � y
0 otherwise.

The reader can show easily that f is an α-admissible mapping and so (i) of Theorem 3.6 holds. The
condition (i) above ensures that (ii) of Theorem 3.6 holds. Now, let {xn} be a sequence in X such that
α(xn, xn+1) ≥ 1 for all n ∈ N and xn → x ∈ X as n → +∞. By the definition of α, we have xn � xn+1

for all n ∈ N. By (ii), there exists a subsequence {xnk
} of {xn} such that xnk

� x for all k ∈ N and so
α(xnk

, x) ≥ 1 for all k ∈ N and hence X is α-regular. Further, α(xm, xn) ≥ 1 for all m,n ∈ N with m < n.
Hence (iii) of Theorem 3.6 holds. The same considerations show that (iii) of this theorem implies (iv) of
Theorem 3.6. Thus the hypotheses (i)-(iv) of Theorem 3.6 are satisfied. Also the contractive condition (3.5)
is satisfied, because of α(x, y) = 1 for all x, y ∈ X such that x � y and α(x, y) = 0 if x � y. Hence by
Theorem 3.6, f have a unique fixed point.
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