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Abstract

In this paper, we prove some common fixed point theorems for a pair of mappings satisfying certain rational
contractions in the frame work of complex valued metric besides discussing consequences of our main results.
To illustrate our results and to distinguish them from the existing ones, we equip the paper with suitable
examples. c©2014 All rights reserved.
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1. Introduction

The Banach contraction principle [2] is a very popular and effective tool in solving existence problems
in many branches of mathematical analysis. Due to simplicity and usefulness of this classic and celebrated
theorem, it has become a very popular source of existence and uniqueness theorems in different branches of
mathematical analysis. This theorem provides an impressive illustration of the unifying power of functional
analytic methods and their usefulness in various disciplines. This famous theorem runs as follows.

Theorem 1.1. [2]. Let (X, d) be a complete metric space and T be a mapping of X into itself satisfying:
d(Tx, Ty) ≤ kd(x, y), ∀x, y ∈ X, where k is a constant in (0, 1). Then, T has a unique fixed point x∗ ∈ X.
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The existing literature of fixed point theory contains a great number of generalizations of Banach con-
traction principle by using different form of contraction condition in various spaces. But majority of such
generalizations are obtained by improving underlying contraction conditions which also includes contraction
conditions dscribed by rational expressions. Recently, Azam et al. [1] introduced the notion of complex
valued metric spaces and established some fixed point results for a pair of mappings for contraction condition
satisfying a rational expression. Though complex valued metric spaces form a special class of cone metric
space, yet this idea is intended to define rational expressions which are not meaningful in cone metric spaces
and thus many results of analysis cannot be generalized to cone metric spaces. Indeed the definition of a
cone metric space banks on the underlying Banach space which is not a division Ring. However, in complex
valued metric spaces, one can study improvements of a host of results of analysis involving divisions. One
can refer related results in [6, 7].

In this paper, proceeding on the lines of Azam et al. [1], we prove results on common fixed point for a
pair of mappings satisfying relatively more general contraction conditions described by rational expressions
in complex valued metric spaces. Some illustrative examples are also furnished to support the usability of
our results.

2. Preliminaries

In what follows, we recall some notations and definitions that will be utilized in our subsequent discussion.
Let C be the set of complex numbers and z1, z2 ∈ C. Define a partial order - on C as follows:

z1 - z2 if and only if Re(z1) ≤ Re(z2), Im(z1) ≤ Im(z2).

Consequently, one can infer that z1 - z2 if one of the following conditions is satisfied:
(i) Re(z1) = Re(z2), Im(z1) < Im(z2), (ii) Re(z1) < Re(z2), Im(z1) = Im(z2),
(iii) Re(z1) < Re(z2), Im(z1) < Im(z2), (iv) Re(z1) = Re(z2), Im(z1) = Im(z2).
In particular, we write z1 � z2 if z1 6= z2 and one of (i), (ii), and (iii) is satisfied and we write z1 ≺ z2 if

only (iii) is satisfied. Notice that 0 - z1 � z2 ⇒ |z1| < |z2|, and z1 � z2, z2 ≺ z3 ⇒ z1 ≺ z3.
The following definition is recently introduced by Azam et al. [1].

Definition 2.1. Let X be a nonempty set whereas C be the set of complex numbers. Suppose that the
mapping d : X ×X → C, satisfies the following conditions:

(d1): 0 - d(x, y), for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
(d2): d(x, y) = d(y, x) for all x, y ∈ X;
(d3): d(x, y) - d(x, z) + d(z, y), for all x, y, z ∈ X.
Then d is called a complex valued metric on X, and (X, d) is called a complex valued metric space.

Definition 2.2. Let (X, d) be a complex valued metric space and B ⊆ X.
(i) b ∈ B is called an interior point of a set B whenever there is 0 ≺ r ∈ C such that N(b, r) ⊆ B where

N(b, r) = {y ∈ X : d(b, y) ≺ r}.
(ii) A point x ∈ X is called a limit point of B whenever for every 0 ≺ r ∈ C, N(x, r) ∩ (B\{X}) 6= ∅.
(iii) A subset A ⊆ X is called open whenever each element of A is an interior point of A whereas a subset

B ⊆ X is called closed whenever each limit point of B belongs to B. The family

F = {N(x, r) : x ∈ X, 0 ≺ r}.

is a sub-basis for a topology on X. We denote this complex topology by τc. Indeed, the topology τc is
Hausdorff.

Definition 2.3. Let (X, d) be a complex valued metric space and {xn}n≥1 be a sequence in X and x ∈ X.
We say that

(i) the sequence {xn}n≥1 converges to x if for every c ∈ C, with 0 ≺ c there is n0 ∈ N such that for all
n > n0, d(xn, x) ≺ c. We denote this by limn xn = x, or xn → x, as n→∞,
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(ii) the sequence{xn}n≥1 is Cauchy sequence if for every c ∈ C with 0 ≺ c there is n0 ∈ N such that for
all n > n0, d(xn, xn+m) ≺ c,

(iii) the metric space (X, d) is a complete complex valued metric space if every Cauchy sequence is
convergent.

Definition 2.4. (cf.[4]) Two families of self-mappings {Ti}mi=1 and {Si}ni=1 are said to be pairwise commuting
if: (i) TiTj = TjTi, i, j ∈ {1, 2, ...m}; (ii) SkSl = SlSk, k, l ∈ {1, 2, ...n}; (iii) TiSk = SkTi, i ∈ {1, 2, ...m},
k ∈ {1, 2, ...n}.

In [1], Azam et al. established the following two lemmas.

Lemma 2.5. (cf. [1]) Let (X, d) be a complex valued metric space and let {xn} be a sequence in X. Then
{xn} converges to x if and only if |d(xn, x)| → 0 as n→∞.

Lemma 2.6. (cf. [1]) Let (X, d) be a complex valued metric space and let {xn} be a sequence in X. Then
{xn} is a Cauchy sequence if and only if |d(xn, xn+m)| → 0 as n→∞.

3. Main results

In this section, we prove some common fixed point theorems for contraction conditions described by
rational expressions (e.g. Azam et al. [1]). Our main result runs as follows.

Theorem 3.1. Let (X, d) be a complete complex valued metric space and the mappings S, T : X → X
satisfy:

d(Sx, Ty) - αd(x, y) +
βd(x, Sx)d(y, Ty)

d(x, Ty) + d(y, Sx) + d(x, y)
(3.1.1)

for all x, y ∈ X such that x 6= y, d(x, Ty) + d(y, Sx) + d(x, y) 6= 0 where α, β are nonnegative reals with
α+ β < 1 or d(Sx, Ty) = 0 if d(x, Ty) + d(y, Sx) + d(x, y) = 0. Then S and T have a unique common fixed
point.

Proof. Let x0 be an arbitrary point in X and define x2k+1 = Sx2k, x2k+2 = Tx2k+1, k = 0, 1, 2, · · · . Then,

d(x2k+1, x2k+2) = d(Sx2k, Tx2k+1) - αd(x2k, x2k+1) +
βd(x2k, Sx2k)d(x2k+1, Tx2k+1)

d(x2k, Tx2k+1) + d(x2k+1, Sx2k) + d(x2k, x2k+1)

- αd(x2k, x2k+1) +
βd(x2k, x2k+1)d(x2k+1, x2k+2)

d(x2k, x2k+2) + d(x2k+1, x2k+1) + d(x2k, x2k+1)

so that

|d(x2k+1, x2k+2)| ≤ α|d(x2k, x2k+1)|+
β|d(x2k, x2k+1)||d(x2k+1, x2k+2)|
|d(x2k, x2k+2) + d(x2k, x2k+1)|

.

As (owing to triangular inequality) |d(x2k+1, x2k+2)| ≤ |d(x2k+1, x2k) + d(x2k, x2k+2)|, therefore

|d(x2k+1, x2k+2)| ≤ α|d(x2k, x2k+1)|+ β|d(x2k, x2k+1)| = (α+ β)|d(x2k, x2k+1)|.

Similarly,

d(x2k+3, x2k+2) = d(Sx2k+2, Tx2k+1)

- αd(x2k+2, x2k+1) +
βd(x2k+2, Sx2k+2)d(x2k+1, Tx2k+1)

d(x2k+1, Sx2k+2) + d(x2k+2, Tx2k+1) + d(x2k+2, x2k+1)

- αd(x2k+2, x2k+1) +
βd(x2k+2, x2k+3)d(x2k+1, x2k+2)

d(x2k+1, x2k+3) + d(x2k+2, x2k+2) + d(x2k+2, x2k+1)

so that

|d(x2k+3, x2k+2)| ≤ α|d(x2k+2, x2k+1)|+
β|d(x2k+1, x2k+2)||d(x2k+2, x2k+3)|
|d(x2k+1, x2k+3) + d(x2k+2, x2k+1)|

.
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As earlier, by the triangular inequality |d(x2k+2, x2k+3)| ≤ |d(x2k+2, x2k+1) + d(x2k+1, x2k+3)| so that

|d(x2k+2, x2k+3)| ≤ α|(x2k+2, x2k+1)|+ β|d(x2k+1, x2k+2)| = (α+ β)|d(x2k+1, x2k+2)|.

If δ = α+ β < 1, then |d(xn+1, xn+2)| ≤ δ|d(xn, xn+1)| ≤ · · · ≤ δn+1|d(x0, x1)| so that for any m > n,

|d(xn, xm)| ≤ |d(xn, xn+1)|+ |d(xn+1, xn+2)|+ · · ·+ |d(xm−1, xm)|

≤ [δn + δn+1 + · · ·+ δm−1]|d(x0, x1)| ≤
δn

1− δ
|d(x0, x1)|

and hence |d(xm, xn)| ≤ δn

1−δ |d(x0, x1)| → 0, as m, n → ∞. which amounts to say that {xn} is a Cauchy
sequence. Since X is complete, there exists some u ∈ X such that xn → u as n→∞. Let on contrary that
u 6= Su so that d(u, Su) = z > 0. Now, we can write

z - d(u, x2k+2) + d(x2k+2, Su) - d(u, x2k+2) + d(Tx2k+1, Su)

- d(u, x2k+2) + αd(x2k+1, u) +
βd(u, Su)d(x2k+1, Tx2k+1)

d(u, Tx2k+1) + d(x2k+1, Su) + d(u, x2k+1)

- d(u, x2k+2) + αd(x2k+1, u) +
βzd(x2k+1, x2k+2)

d(u, x2k+2) + d(x2k+1, Su) + d(u, x2k+1)
,

so that

|z| ≤ |d(u, x2k+2)|+ α|d(x2k+1, u)|+ β|z||d(x2k+1, x2k+2)|
|d(u, x2k+2) + d(x2k+1, Su) + d(u, x2k+1)|

which on making n → ∞, gives rise |d(u, Su)| = 0 which is a contradiction so that u = Su. Similarly, one
can show that u = Tu.

To prove the uniqueness of common fixed point of S and T , let u∗ in X be another common fixed point
of S and T . Then

d(u, u∗) = d(Su, Tu∗) - αd(u, u∗) +
βd(u, Su)d(u∗, Tu∗)

d(u, Tu∗) + d(u∗, Su) + d(u, u∗)

so that |d(u, u∗)| ≤ α|d(u, u∗)| + β|d(u,Su)||d(u∗,Tu∗)|
|d(u,Tu∗)+d(u∗,Su)+d(u,u∗)| ≤ α|d(u, u∗)|, so that u∗ = u which proves the

uniqueness of common fixed point.
Secondly, we consider the case: d(x2k, Tx2k+1) + d(x2k+1, Sx2k) + d(x2k, x2k+1) = 0 (for any k) implies

d(Sx2k, Tx2k+1) = 0, so that x2k = Sx2k = x2k+1 = Tx2k+1 = x2k+2. Thus, we have x2k+1 = Sx2k = x2k, so
there exist n1 and m1 such that n1 = Sm1 = m1. Using foregoing arguments, one can also show that there
exist n2 and m2 such that n2 = Tm2 = m2. As d(m1, Tm2)+d(m2, Sm1)+d(m1,m2) = 0, (due to definition)
implies d(Sm1, Tm2) = 0, so that n1 = Sm1 = Tm2 = n2 which in turn yields that n1 = Sm1 = Sn1.
Similarly, one can also have n2 = Tn2. As n1 = n2, implies Sn1 = Tn1 = n1, therefore n1 = n2, is common
fixed point of S and T .
We now prove that S and T have unique common fixed point. For this, assume that n∗1 in X is another
common fixed point of S and T. Then we have Sn∗1 = Tn∗1 = n∗1. As d(n1, Tn

∗
1) + d(n∗1, Sn1) + d(n1, n

∗
1) =

0, therefore d(n1, n
∗
1) = d(Sn1, Tn

∗
1) = 0. This implies that n∗1 = n1. This completes the proof of the

theorem.

Corollary 3.2. Let (X, d) be a complete complex valued metric space and let the mapping T : X → X
satisfy:

d(Tx, Ty) - αd(x, y) +
βd(x, Tx)d(y, Ty)

d(x, Ty) + d(y, Tx) + d(x, y)

for all x, y ∈ X such that x 6= y, d(x, Ty) + d(y, Tx) + d(x, y) 6= 0 where α, β are nonnegative reals with
α+ β < 1 or d(Tx, Ty) = 0 if d(x, Ty) + d(y, Tx) + d(x, y) = 0. Then T has a unique fixed point.

As an application of Theorem 3.1, we prove the following theorem for two finite families of mappings.
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Theorem 3.3. If {Ti}m1 and {Si}n1 are two finite pairwise commuting finite families of self-mappings defined
on a complete complex valued metric space (X, d) such that the mappings S and T (with T = T1T2...Tm and
S = S1S2...Sn) satisfy the condition (3.1.1), then the component maps of the two families {Ti}m1 and {Si}n1
have a unique common fixed point.

Proof. In view of Theorem 3.1, one can infer that T and S have a unique common fixed point l i.e. T l =
Sl = l. Now we are required to show that l is common fixed point of all the components maps of both the
families. In view of pairwise commutativity of the families {Ti}m1 and {Si}n1 , (for every 1 ≤ k ≤ m) we can
write

Tkl = TkSl = STkl and Tkl = TkT l = TTkl

which show that Tkl (for every k) is also a common fixed point of T and S. By using the uniqueness of
common fixed point, we can write Tkl = l (for every k) which shows that l is a common fixed point of the
family {Ti}m1 . Using the foregoing arguments, one can also show that (for every 1 ≤ k ≤ n) Skl = l. This
completes the proof of the theorem.

By setting T1 = T2 = ... = Tm = F and S1 = S2 = ... = Sn = G, in Theorem 3.3, we derive the following
common fixed point theorem involving iterates of mappings.

Corollary 3.4. If F and G are two commuting self-mappings defined on a complete complex valued metric
space (X, d) satisfying the condition

d(Fmx,Gny) - αd(x, y) +
βd(x, Fmx)d(y,Gny)

d(x,Gny) + d(y, Fmx) + d(x, y)

for all x, y ∈ X , where α, β are nonnegative reals with α + β < 1 or d(Fmx,Gny) = 0 if d(x,Gny) +
d(y, Fmx) + d(x, y) = 0, then F and G have a unique common fixed point.

By setting m = n and F = G = T in Corollary 3.3, we deduce the following corollary.

Corollary 3.5. Let (X, d) be a complete complex valued metric space and let the mapping T : X → X
satisfies (for some fixed n):

d(Tnx, Tny) - αd(x, y) +
βd(x, Tnx)d(y, Tny)

d(x, Tny) + d(y, Tnx) + d(x, y)

for all x, y ∈ X such that x 6= y, d(x, Ty) + d(y, Tx) + d(x, y) 6= 0 where α, β are nonnegative reals with
α+ β < 1 or d(Tnx, Tny) = 0 if d(x, Tny) + d(y, Tnx) + d(x, y) = 0. Then T has a unique fixed point.

Proof. By Corollary 3.1, we obtain v ∈ X such that Tnv = v. The result then follows from the observation

d(Tv, v) = d(TTnv, Tnv) = d(TnTv, Tnv) - αd(Tv, v) +
βd(Tv, TnTv)d(v, Tnv)

d(Tv, Tnv) + d(v, TnTv) + d(Tv, v)

- αd(Tv, v) +
βd(Tv, TTnv)d(v, v)

d(Tv, v) + d(v, TTnv) + d(Tv, v)
= αd(Tv, v).

By setting β = 0, we draw following corollary which can be viewed as an extension of Bryant [3] theorem
to complex valued metric spaces.

Corollary 3.6. If T : X → X is a mapping defined on a complete complex valued metric space (X, d)
satisfying the condition

d(Tnx, Tny) - αd(x, y)

for all x, y ∈ X, where α is nonnegative real with α < 1, then T has a unique fixed point.
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The following example demonstrates the superiority of Bryant theorem over Banach contraction theorem.

Example 3.7. Let X = C be set of complex number. Define d : C× C→ C by

d(z1, z2) = |x1 − x2|+ i|y1 − y2|

where z1 = x1 + iy1 and z2 = x2 + iy2. Then (C, d), is a complete complex valued metric space. Define
T : C→ C as

T (x+ iy) =


0 , x, y ∈ Q
i, x, y ∈ Qc
1, x ∈ Qc, y ∈ Q
1 + i, x ∈ Q, y ∈ Qc

Now for x = 1√
2 and y = 0 we get d(T ( 1√

2), T (0)) = d(1, 0) = 1 - λd( 1√
2 , 0) = λ 1√

2 . Thus λ ≥
√

2, which is

a contradiction as 0 ≤ λ < 1 . However, notice that T 2z = 0, so that 0 = d(T 2z1, T
2z2) - λd(z1, z2), which

shows that T 2, satisfies the requirement of Bryant Theorem and z = 0 is the unique fixed point of T.

In what follows, we prove similar type of results for a different rational expression studied in Imdad and
Khan [5].

Theorem 3.8. Let (X, d) be a complete complex valued metric space and let the mappings S, T : X → X
satisfy:

d(Sx, Ty) - αd(x, y) +
β[d2(x, Ty) + d2(y, Sx)]

d(x, Ty) + d(y, Sx)
+ γ[d(x, Sx) + d(y, Ty)] (3.3.1)

for all x, y ∈ X such that x 6= y, where α, β and γ are nonnegative reals with α+2β+2γ < 1 or d(Sx, Ty) = 0
if d(x, Ty) + d(y, Sx) = 0 . Then pair (S, T ) have a unique common fixed point.

Proof. Let x0 be an arbitrary point in X and define x2k+1 = Sx2k, x2k+2 = Tx2k+1, k = 0, 1, 2, · · · . Then,

d(x2k+1, x2k+2) = d(Sx2k, Tx2k+1) - αd(x2k, x2k+1) +
β[d2(x2k, Tx2k+1) + d2(x2k+1, Sx2k)]

d(x2k, Tx2k+1) + d(x2k+1, Sx2k)

+ γ[d(x2k, Sx2k) + d(x2k+1, Tx2k+1)]

- αd(x2k, x2k+1) +
β[d2(x2k, x2k+2) + d2(x2k+1, x2k+1)]

d(x2k, x2k+2) + d(x2k+1, x2k+1)

+ γ[d(x2k, x2k+1) + d(x2k+1, x2k+2)]

so that |d(x2k+1, x2k+2)| ≤ α|d(x2k, x2k+1)|+
β|d2(x2k, x2k+2)|
|d(x2k, x2k+2)|

+ γ[|d(x2k, x2k+1)|+ |d(x2k+1, x2k+2)|]

or |d(x2k+1, x2k+2)| ≤ α|d(x2k, x2k+1)|+ β|d(x2k, x2k+2)|+ γ[|d(x2k, x2k+1)|+ |d(x2k+1, x2k+2)|].

As |d(x2k, x2k+2)| < |d(x2k, x2k+1)|+ |d(x2k+1, x2k+2)|, therefore

|d(x2k+1, x2k+2)| ≤ α |d(x2k, x2k+1)|+ β[|d(x2k, x2k+1)|+ |d(x2k+1, x2k+2)|]
+γ[|d(x2k, x2k+1)|+ |d(x2k+1, x2k+2)|].

or

|d(x2k+1, x2k+2)| ≤
(
α+ β + γ

1− β − γ

)
|d(x2k, x2k+1)|.
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Also,

d(x2k+3, x2k+2) = d(Sx2k+2, Tx2k+1) - αd(x2k+2, x2k+1) +
β[d2(x2k+2, Tx2k+1) + d2(x2k+1, Sx2k+2)]

d(x2k+2, Tx2k+1) + d(x2k+1, Sx2k+2)

+ γ[d(x2k+2, Sx2k+2) + d(x2k+1, Tx2k+1)]

- αd(x2k+2, x2k+1) +
β[d2(x2k+2, x2k+2) + d2(x2k+1, x2k+3)]

d(x2k+2, x2k+2) + d(x2k+1, x2k+3)

+ γ[d(x2k+2, x2k+3) + d(x2k+1, x2k+2)]

so that |d(x2k+3, x2k+2)| ≤ α|d(x2k+2, x2k+1)|+
β|d2(x2k+1, x2k+3)|
|d(x2k+1, x2k+3)|

+γ[|d(x2k+2, x2k+3)|+ |d(x2k+2, x2k+1)|]

or |d(x2k+3, x2k+2)| ≤ α|d(x2k+2, x2k+1)|+ β|d(x2k+1, x2k+3)|+ γ[|d(x2k+3, x2k+2)|+ |d(x2k+2, x2k+1)|].

As |d(x2k+1, x2k+3)| < |d(x2k+1, x2k+2)|+ |d(x2k+2, x2k+3)|, therefore

|d(x2k+3, x2k+2)| ≤ α|d(x2k+2, x2k+1)|+ β[|d(x2k+3, x2k+2)|+ |d(x2k+2, x2k+1)|]
+γ[|d(x2k+3, x2k+2)|+ |d(x2k+2, x2k+1)|].

or |d(x2k+3, x2k+2)| ≤
(
α+ β + γ

1− β − γ

)
|d(x2k+2, x2k+1)|.

If δ =
(
α+β+γ
1−β−γ

)
< 1, we have |d(xn+1, xn+2)| ≤ δ|d(xn, xn+1)| ≤ · · · ≤ δn+1|d(x0, x1)| so that for any m > n,

|d(xn, xm)| ≤ |d(xn, xn+1)|+ |d(xn+1, xn+2)|+ · · ·+ |d(xm−1, xm)|

≤ [δn + δn+1 + · · ·+ δm−1]|d(x0, x1)| ≤
δn

1− δ
|d(x0, x1)| → 0, as m, n→∞,

which shows that {xn} is a Cauchy sequence. Since X is complete, there exists u ∈ X such that xn → u.
Let on contrary u 6= Su, so that d(u, Su) = z > 0 and we can have

z - d(u, x2k+2) + d(x2k+2, Su) - d(u, x2k+2) + d(Tx2k+1, Su)

- d(u, x2k+2) + αd(u, x2k+1) +
β[d2(u, Tx2k+1) + d2(x2k+1, Su)]

d(u, Tx2k+1) + d(x2k+1, Su)

+ γ[d(u, Su) + d(x2k+1, Tx2k+1)]

- d(u, x2k+2) + αd(u, x2k+1) +
β[d2(u, x2k+2) + d2(x2k+1, Su)]

d(u, x2k+2) + d(x2k+1, Su)
+ γ[z + d(x2k+1, x2k+2)],

or |z| ≤ |d(u, x2k+2)|+ α|d(x2k+1, u)|+ β|[d2(u, x2k+2) + d2(x2k+1, Su)]|
|d(u, x2k+2) + d(x2k+1, Su)|

+ γ[|z|+ |d(x2k+1, x2k+2)|]

which on making n → ∞, gives rise |d(u, Su)| = 0 a contradiction so that u = Su. Similarly, one can
show that u = Tu. As in Theorem 3.1. the uniqueness of common fixed point remains a consequence of
contraction condition (3.3.1). The proof can be completed in the line of Theorem 3.1. This completes the
proof of the theorem.

By setting S = T, we get the following:

Corollary 3.9. Let (X, d) be a complete complex valued metric space and let the mapping T : X → X
satisfy:

d(Tx, Ty) - αd(x, y) +
β[d2(x, Ty) + d2(y, Tx)]

d(x, Ty) + d(y, Tx)
+ γ[d(x, Tx) + d(y, Ty)]

for all x, y ∈ X such that x 6= y, where α, β and γ are nonnegative reals with α+2β+2γ < 1 or d(Tx, Ty) = 0
if d(x, Ty) + d(y, Tx) = 0. Then T has a unique fixed point.

As an application of Theorem 3.8, we prove the following theorem for two finite families of mappings.
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Theorem 3.10. If {Ti}m1 and {Si}n1 are two finite pairwise commuting finite families of self-mapping defined
on a complete complex valued metric space (X, d) such that the mappings S and T (with T = T1T2...Tm and
S = S1S2...Sn) satisfy the condition (3.3.1), then the component maps of the two families {Ti}m1 and {Si}n1
have a unique common fixed point.

Proof. The proof of this theorem is identical to that of Theorem 3.8.

By setting T1 = T2 = ... = Tm = G and S1 = S2 = ... = Sn = F, in Theorem 3.10, we derive the
following common fixed point theorem involving iterates of mappings.

Corollary 3.11. Let (X, d) be a complete complex valued metric space and let the mappings F,G : X → X
satisfy:

d(Fmx,Gny) - αd(x, y) +
β[d2(x,Gny) + d2(y, Fmx)]

d(x,Gny) + d(y, Fmx)
+ γ[d(x, Fmx) + d(y,Gny)]

for all x, y ∈ X such that x 6= y, where α, β and γ are nonnegative reals with α + 2β + 2γ < 1 or
d(Fmx,Gny) = 0 if d(x,Gny) + d(y, Fmx) = 0. Then pair (F,G) have unique common fixed point.

By setting m = n and F = G = T in Corollary 3.11, we deduce the following corollary.

Corollary 3.12. Let (X, d) be a complete complex valued metric space and let the mapping T : X → X
satisfy (for some fixed n):

d(Tnx, Tny) - αd(x, y) +
β[d2(x, Tny) + d2(y, Tnx)]

d(x, Tny) + d(y, Tnx)
+ γ[d(x, Tnx) + d(y, Tny)]

for all x, y ∈ X such that x 6= y, where α, β and γ are nonnegative reals with α + 2β + 2γ < 1 or
d(Tnx, Tny) = 0 if d(x, Tny) + d(y, Tnx) = 0. Then T has a unique fixed point.

By setting β = γ = 0 we draw following corollary which can be viewed as an extension of Bryant [3]
theorem to complex valued metric spaces.

Corollary 3.13. If T : X → X is a mapping defined on a complete complex valued metric space (X, d)
satisfying the condition

d(Tnx, Tny) - αd(x, y)

for all x, y ∈ X , where α is a nonnegative real with α < 1, then T has a unique fixed point.

We conclude this paper with an illustrative example which demonstrates Theorem 3.1.

Example 3.14. Consider

X1 = {z ∈ C : Re(z) ≥ 0, Im(z) = 0} and X2 = {z ∈ C : Im(z) ≥ 0, Re(z) = 0}

and write X = X1 ∪X2. Define a mapping d : X ×X → C as :

d(z1, z2) =


max{x1, x2}+ imax{x1, x2} , z1, z2 ∈ X1

max{y1, y2}+ imax{y1, y2}, z1, z2 ∈ X2

(x1 + y2) + i(x1 + y2), z1 ∈ X1, z2 ∈ X2

(x2 + y1) + i(x2 + y1), z1 ∈ X2, z2 ∈ X1

where z1 = x1 + iy1, z2 = x2 + iy2. By a routine calculation, one can easily verify that (X, d) is a complete
complex valued metric space.
Set T = S and define a self-mapping T on X (with z = (x, y)) as

Tz =

{
(x2 , 0) , z ∈ X1

(0,
y

2
), z ∈ X2.
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Now, we show that T (= S) satisfies condition (3.1.1). We distinguish the following cases: Before discussing
diffrent cases, one needs to notice that

0 - d(Sz1, T z2), d(z1, z2),
d(z1, Sz1)d(z2, T z2)

d(z1, T z2) + d(z2, Sz1) + d(z1, z2)
.

Firstly, if z1, z2 ∈ X1, then we have

d(Sz1, T z2) = d((
x1
2
, 0), (

x2
2
, 0)) = max{x1

2
,
x2
2
}+ imax{x1

2
,
x2
2
}

= max{x1
2
,
x2
2
}(1 + i) =

1

2
max{x1, x2}(1 + i) -

1

2
d(z1, z2).

Seconly,if z1, z2 ∈ X2, then we have

d(Sz1, T z2) = d((0,
y1
2

), (0,
y2
2

)) = max{y1
2
,
y2
2
}+ imax{y1

2
,
y2
2
}

= max{y1
2
,
y2
2
}(1 + i) =

1

2
max{y1, y2}(1 + i) -

1

2
d(z1, z2).

Thirdly, if z1 ∈ X1, z2 ∈ X2, then we have

d(Sz1, T z2) = d((
x1
2
, 0), (0,

y2
2

)) = [
x1
2

+
y2
2

](1 + i) =
1

2
[x1 + y2](1 + i) =

1

2
[x1 + y2](1 + i) -

1

2
d(z1, z2).

Finally, if z2 ∈ X1, z1 ∈ X2, then we have

d(Sz1, T z2) = d((0,
y1
2

), (
x2
2
, 0)) = [

y1
2

+
x2
2

](1 + i) =
1

2
[y1 + x2](1 + i) =

1

2
[y1 + x2](1 + i) -

1

2
d(z1, z2).

Thus, condition (3.1.1) is satisfied with α = 1
2 and 0 < β < 1

2 and, in all, conditions of Theorem 3.1 are
satisfied. Notice that the point 0 ∈ X remains fixed under T and is indeed unique. Thus, in all, this example
substantiates the genuineness of our results proved in this paper.
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