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Abstract

We prove a Heisenberg type uncertainty principle for the continuous shearlet transform, and study two
generalizations of it. Our work extends the shearlet theory. (©)2016 All rights reserved.
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1. Introduction and Preliminaries

The uncertainty principle is a collection of mathematical statements expressing a fundamental property
of the Fourier transform, namely, that a function f and its Fourier transform f cannot be simultaneously
small. There are various kinds of formulation of uncertainty principles. For example, see V. Havin and B.
Joricke [9], D. Donoho and P. Strak [5], G. B. Folland and A. Sitaram [6], M. G. Cowling and J. F. Price
[2].

S. Dahlke et al. in [4] employ the general uncertainty principle in order to derive mother wavelet functions
that minimize the uncertainty relations derived for the infinitesimal generators of the wavelet group: scaling
and translations. E. Wilczok [12] employ a Heisenberg type uncertainty principle in order to describe strict
limits to maximal time-frequency resolution for the continuous wavelet transform and the continuous Gabor
transform.

For the continuous shearlet transform, S. Dahlke et al. [3] show the minimizers of the uncertainty
relations associated with the infinitesimal generators of the shearlet group: scaling, shear and translations.
But, a description of the strict limits to maximal time-frequency resolution for shearlet is not given so far.
Similar to the classical Gabor and wavelet cases, a very natural question arises: do there exist the strict
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limits to maximal time-frequency resolution related to the continuous shearlet transform? The answer is yes,
since, K. Grochenig has given a very important meta-uncertainty principle for time-frequency representation
in [7].

Metatheorem: Every time-frequency representation comes with its own version of the
uncertainty principle.

The shearlet transform [I}, &, 10, 1] has an advance over the classical wavelet transform as it provides
information about the directionality within the image. One of the main problems in shearlet theory is the
Heisenberg type uncertainty principle for the continuous shearlet transform.

In this paper, we present a recipe to derive a Heisenberg type uncertainty principle for the continuous
shearlet transform.

1. Define a continuous shearlet transform, and choose a Heisenberg type uncertainty principle.

2. Replace the function f and f in the uncertainty principle by the continuous shearlet transform, and
formulate a new uncertainty principle.

3. Prove the resulting inequality.

Many ideas in this paper are inspired by S. Dahlke et al. [3], E. Wilczok [12], M. G. Cowling et al. [2]
and K. Grochenig [7]. Our work extends shearlet theory.

The paper is organized as follows: in Section 2, we give some notation and definitions. Then in Section 3]
we prove some lemmas on shearlet. In Section [4] we prove a Heisenberg type uncertainty principle for the
continuous shearlet transform, and then we study two generalizations of it.

2. Preliminary

We will use the following conventions throughout the paper. For a function f € L'(R?) N L?(R?), the
Fourier transform of f is defined by

FNE) = £6) = [ fwpe e,
R2
Set A, = < g \;& ) and Ss = ( (1] i > We introduce the following fundamental operators of shearlet:
the dilation operator
[Dadl(@) = |det Ao 20(A;'2)  a€ RY, ¢ e L(R),

the shear operator

[Ds,¥)(x) =9(S; ') s€ R, ¢ e L*(R?)
and the translation operator

[T)(x) =9z —t) te R ¢eL*(R).
Definition 2.1. Let v € L?(R?); shearlet for a € RT, s € R, t € R? is defined by

Yasa(@) = det [ Ao 294,57 (2 = 1)).
The shearlet system generated by ¢ is defined by {¢4s:(7) : @ € RT,s € R, t € R*}.

The associated continuous shearlet transform of an f € L?(R?) is given by

SHyf(a,s,t) = (f, Vast) = /f(:c)ww,t(x)dx. (2.1)
R2

We denote the norm on LP(R?) by

3 =

£, = | [ Vs

For an f € L?(R?)\{0}, the Heisenberg-Pauli-Weyl inequality is
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1

(R/ 2% f (=) 2dw> (Réf(f)?ds) > / () *da,
2 R2

(,/ xpf(w)”dx) (Rgpfwdg) > 5 [ ) Pde

2 2 R2

Before entering derivation of uncertainty principle for continuous shearlet transform, we prove four
lemmas about its properties.

N

which is generalized in

=

3. Notation

Lemma 3.1. Let f,v € L?(R?); then

FOD(ES,Aq) = det |Ay| 2 Fy(SHy f(a, 5, 1), (3.1)
where a € R, s € R, t € R?.

Proof. In fact, we have
na©) =det Aa 7% [ (47187 (@ — ) 0o
2
= det |A,|2 / P(y)e e S Aty Let y = AJNST (@ —t)

= det | Aq|2h (€S, Ay )e 24,
Then, we obtain

SHyf(a,5.6) = [ Fa)duaolds
R2

_/f(g)q/}a,&t(f)d{ Planchel Theorem

- / F(€)det | Aa F (€S, Ag)e2mittde
=det |4, |2/f D(ES, Ag)eX™ 8t de

= det | Aa| 2 FH(F(E)d(£SsA0)) (8)-
A direct calculation yields
det ‘Aa’%Fil(f(é)qﬁ(gssAa))&) = Swa(av S7t>
FUF€)D(ES:A0)) () = det |Aa| "2 SHy f(a, 5,1)
FOD(ESAs) = det | Ag| "2 Fo(SHy f(a, s,1)),

where F; denotes the Fourier transform with respect to the variable ¢. O
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Lemma 3.2. Let f,1 € L?*(R?); then

bﬂﬂ@HM@ﬁﬁXM%ﬂ=/WEMM@UWM
R? R2

where a € RY, s € R, t € R?.
By using the Plancherel theorem, Lemma [3.2] could be proved.
Definition 3.3. Let ¢ € L?(R?) be such that

Cy _//W’ € &) dépdé, < oo

is satisfied. Then v is admissible.
We need the following form of the admissibility condition.

Lemma 3.4. Let ¢ € L?>(R?) and ¢ be admissible. Then
//W&SA dads = Cy, < 00

is satisfied.

Proof. In fact, we have

// 55;1 tads — //| aéx,fSExwL\ffy)lddS

3 &

R//’ Vi, szzs‘i‘\/»fy d,/

R Ez)

dv,ds

/ /W’%@H w,)léd
R R

Since 1) is admissible, we obtain

// §S3A dads = Cy, < 00.

a2

The admissibility condition for the continuous shearlet transform is given by the following lemma.

Lemma 3.5 ([3]). Let f,v) € L*(R?); then
dadsdt
[ ] [ 1sturtas PSS = Coll e,

R2 R R

where a € R, s € R, t € R2.

(3.2)

(3.3)
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4. Uncertainty principle of Heisenberg type for continuous shearlet transform
We will prove the main results of our paper in this section.

Theorem 4.1. Let oy € L?>(R?); then for arbitrary f € L?(R?)\{0}, we have

ads : . C
(R/ |/ t2Swaast>2djgdt) / §2f(£)2d£> > YR (11)

2 R Rt

Proof. We get from admissibility condition (3.2 for

C¢/€2|f e = [ [ 1ies.a 2dads/£2|f Bas = [ [ [ 1@ Pies. a0 as

R Rt R? R Rt

Put formula (3.1]) into above equation and get

Ow/érf P = dec|a, 7 [ [ [ @IRISH s 01O

R2 R Rt

= [ | [ eimistusesoi©P s a

R? R Rt

dads

dg

The Heisenberg—Pauli-Weyl inequality leads to

1 1
2

(ﬁ/ t25H¢f<a,s,t>2dt) / 52ft[SH¢f<a,s,t>]<5>2ds) >, [ I8Hus(a st
2 2 RZ

dads

for all a € RT. Integrating with respect to , we obtain

1

(R/tQSH¢f a,s,b)| th) /§2|]-"t SHyf(a, s, 1)](€)| dg) dzgls
12 Rt
o dadsst
22///]SH¢f(a,s,t) o

R2 R Rt

[NIES

The right-hand side of the above inequality can be rewritten as Cy|| f||%2 (R?)" Therefore, we get

[ ] [ #ismsioss ) v feo ng)

2 R Rt

(R///tQSwa a,s t)2dadsdt)2 (C¢/§2f(§)2d£)2

> R R+
(»/ / / 2158, £, st>2d“d‘9dt> (W/ /] §2Ft[SH¢f(a,s,t)](§)Qda;lgdg)

dadsdt
=1y / [SH 0,5, 0P 5™ = JCull Ty

R?2 R Rt

[NIE
[N
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From the above inequality, we have

dadsd : 2 1
(R/ [ [ e1smasasnpes t) VG (W/ £2f(£)2d€) > S Cull Iy

2 R Rt
dadsdt
(W///ﬂsmf a,5.1)P ) /£2|f ) df) > V2
2 R Rt
So, we obtain the Heisenberg type uncertainty principle for the continuous shearlet transform. O

Theorem 4.2. Let ¢y € L?(R?), arbitrary f € L*>(R*)\{0}, and 1 < p < 2, then

b .
(R/ [ [e1stusasop M““) (R épf(f)”dé) ZQQQ 1122 (42)

2 R Rt

Proof. We prove this theorem as follows.

CQ/fplf ”df(//w (68, Aa) 2dads) /fplf )P

R Rt
d d
///fp\f (€8 Au) e
R2 R Rt
dad
—decla [ [ [@imisHus s 0P e
R2 R R+

/ / / &P\ FSHyf (a,5,8)](€)7 d“dsdg
R2 R Rt

The generalization of Heisenberg—Pauli-Weyl inequality in [2] Theorem 1.2] leads to

1
p

(R/ tpSHma,s,t)pdt) (ﬁ§pft[SH¢f(a78,t)](£)pd§) > 5 [ ISHof (a5,

RQ

The right-hand side of the above inequality can be rewritten as Cy|| f||%. (r2)» SO that we have

(/] ] rimsiosor ) 5 (feve pdg)

2 R R+

(ﬁ/ [ [ #istasasop d“ds‘”)p( E / &£ (6) pds)

2 R Rt

(R///tpSwa a, 5,1)|P dadsdt>l (W///gpﬂ SH,f(a,s t)}(g)pda;ijdg)

dadsdt
>3 [ [ [ 18t s 0PRSS = S0l

R2 R Rt

3=

B =
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From the above inequality, we get

dadsdt | \/C ; "¢
(R/ | [ st sop®s t) ﬁ’(n épf(ﬁ)pdé) > 2
ar 2 )

=

2 R R+

R % a% C
(R///tpSH¢fa s, )P dadet) (R fpf(é)pdé) > Q\Q/;”f”%%m)' H

2 R R+
By putting p = 2 in Theorem we get Theorem So, Theorem is a special case of Theorem

=

Theorem 4.3. Let ¢y € L?>(R?), f € L*(R*)\{0}, and ¢ > 2. Then

dadsd E cyo
(R///thﬂwf a,s,t)? ads t) (R/qu de) = 2¢ Hszz(Rz).
2 R R+

Proof. By using the Holder inequality

///thwa(a’s’t)Qdajidt> (W///Sﬂwf(a,s,t)zdajid)l3
2 +
(R/// 2|SHyf(a,s,t)] qdadsdt) // SH, f(a, 5,1) 23>1lgdad5dt) 1-2

QN

3

2RR+ 2RRt !

> [ [ [ (@8t ) H fa s 250
R2 R Rt
dadsdt
= [ [ [ #1stusas st
R2 R Rt
we obtain .
3
<fff t*|SHy f(a, s,t) 26‘“;‘5“)
(R/ [ [ wistusas t)?d“d““) e . (4.3)
2q
e (ff J ISHyf(a.s t>|2dadsdt>
2RR+
Similarly, we infer from formula that
1
2

‘ <f2§2|f RS > (LSQ\JC(S)P%) s

; R R T

(R qu<§>2d£) > = )

2

(f|f |2d§> (cwf r%zg)
<f£2!f |2d5) .

Cdfq :
(f [ 17 Swa(a,s,t)](S)mff?dé)
R? R R+

1
2

Q=
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Applying Lemma [3.2] to the above inequality, we get

; J €IF(©)fde |
[enfora) = " O (4.4)
2 [ 1SHyf(a,s, 1)
R2 R Rt

Multiplying l-i and . then by using formula and (3.3), we obtain

(R///thwaa s t)‘Qdadsdt i /§q|f(£)|2d§ 7

2 R R+

N}
ST

[ | ] PISHyf(a,s, 1)t f£2|f IR

R2 R R+

2
) 1-2 C’d)
f f f |SHy f(a,s t)|2dadsdt
R2 R Rt
( _gch
q
2 ff f |SHy f(a, s t)‘Qdadsdt
R2 R R+
422” || .
Lo | f oi
- L2(R2) :inqu . ]
_2 5 12(R2)

2 (Collfagey)

Theorem [4.1] is a special case of Theorem [£.3] obtained by putting ¢ = 2 in it.
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