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Abstract

In this paper, we establish strong convergence theorems of the modified SP-iteration generalized asymp-
totically quasi-nonexpansive mapping in CAT(0) spaces which extend and improve the recent ones announced
by Phuengrattana and Suantai [W. Phuengrattana, S. Suantai, J. Comput. Appl. Math., 235 (2011), 3006–
3014], Sahin and Basarir [A. Sahin, M. Basarir, J. Inequal. Appl., 2013 (2013), 10 pages], Nanjaras and
Panyanak [B. Nanjaras, B. Panyanak, Fixed Point Theory Appl., 2010 (2010), 14 pages] and some others.
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1. Introduction

The initials of the term CAT are in honor of Cartan, Alexandrov, and Toponogov, who have made
important contributions to the understanding of curvature via inequalities for the distance function. Let
(X, d) be a metric space and x, y ∈ X with d(x, y) = l. A geodesic path from x to y is a isometry c : [0, l]→ X
such that c(0) = x and c(l) = y. The image of a geodesic part is called a geodesic segment. A metric space
X is a (uniquely) geodesic space, if every two point of X are joined by only one geodesic segment. We will
use [x, y] to denote a geodesic segment joining x and y. A subset C of a geodesic space is said to be convex
if [x, y] ∈ C for any x, y ∈ C.
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A metric space X is a CAT(0) space if it is geodesically connected and if every geodesic triangle in X is
at least as thin as its comparison triangle in the Euclidean plane.

It is important that the concept of asymptotically nonexpansive, which is closely related to the theory
of fixed points in Banach spaces, is introduced by Goebel and Kirk [7]. An early fundamental result due
to Goebel and Kirk [7] proved that every asymptotically nonexpansive self-mapping of a nonempty closed
bounded and convex subset of a uniformly convex Banach space has a fixed point. Zhou et al. [21] introduced
a class of new generalization asymptotically nonexpansive.

Kirk [9, 11] first studied the theory of fixed point in CAT(0) space. Lim [14] introduced the concept
of ∆-convergence in a general metric space. In 2008, Kirk and Panyanak [12] specialized Lim’s concept to
CAT(0) spaces and proved that it is very similar to weak convergence in the Banach space setting. Every
nonexpansive (single-valued) mapping defined on closed bounded convex subset of complete CAT(0) space
always has a fixed point, since then the fixed point theory in CAT(0) space has been rapidly developed and
many paper has appeared [3, 5, 6, 8, 10, 13, 17, 18, 19, 20].

The Man iteration process is defined by the sequence {xn},{
x1 ∈ C,
xn+1 = αnTxn + (1− αn)xn, n ≥ 1,

(1.1)

where {αn} is a sequence in (0, 1).
The Ishikawa iteration process is defined by the sequence {xn},

x1 ∈ C,
xn+1 = αnTxn + (1− αn)xn,

yn = βnTxn + (1− βn)xn, n ≥ 1,

(1.2)

where {αn} and {βn} are sequence in (0, 1).
The Noor iteration process is defined by the sequence {xn},

x1 ∈ C,
zn = γnTxn + (1− γn)xn,

yn = βnTzn + (1− βn)xn,

xn+1 = αnTyn + (1− αn)xn, n ≥ 1,

(1.3)

where {αn}, {βn} and {γn} is a sequence in (0, 1).
Recently, Phuengrattana and Suantai [16] introduced the SP-iteration process is defined by the sequence

{xn}, 
x1 ∈ C,
zn = γnTxn + (1− γn)xn,

yn = βnTzn + (1− βn) zn,

xn+1 = αnTyn + (1− αn) yn, n ≥ 1,

(1.4)

where {αn}, {βn} and {γn} are sequence in [0, 1].
The purpose of this paper was to prove strong and ∆-convergence of the modified SP-iteration process for

generalized asymptotically quasi-nonexpansive mapping in CAT(0) spaces. Our results extend and improve
the corresponding recent results announced by [17]. This paper is organized as follows. In Sections 2 and
??, we present preliminaries and results of strong and ∆-convergence, respectively.

2. Preliminaries

Complete CAT(0) spaces are often called Hadamard spaces (see [1]). If x, y1, y2 are points of a CAT(0)
space and y0 is the midpoint of the segment [y1, y2], which we will denote by (y1 ⊕ y2) /2, then the CAT(0)
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inequality implies

d2

(
x,
y1 ⊕ y2

2

)
≤ 1

2
d2 (x, y1) +

1

2
d2 (x, y2)− 1

4
d2 (y1, y2) . (2.1)

The inequality (2.1) is the (2.1) inequality of Bruhat and Titz [2].
A geodesic metric spaces is a CAT(0) space if and only if it satisfies the (CN) inequality.
A subset K of a CAT(0) space X is convex if for any x, y ∈ K, we have [x, y] ⊂ K.

Lemma 2.1 ([5]). Let X be a CAT(0) space.

(1) For any x, y, z ∈ X and t ∈ [0, 1],

d ((1− t)x⊕ ty, z) ≤ (1− t) d (x, z) + αd (y, z) . (2.2)

(2) For any x, y, z ∈ X and t ∈ [0, 1],

d2 ((1− t)x⊕ ty, z) ≤ (1− t) d2 (x, z) + td2 (y, z)− t (1− t) d2 (x, y) . (2.3)

Let C be nonempty subset of a CAT(0) space. We denote the set of fixed points of T by F (T ) =
{x ∈ C : Tx = x} .

Definition 2.2 ([22]). A mapping T : C → C called:

(1) Nonexpansive if d (Tx, Ty) ≤ d (x, y) for all x, y ∈ C.

(2) Quasi-nonexpansive if d (Tx, p) ≤ d (x, p) for all x ∈ X and for all p ∈ F (T ).

(3) Asymptotically quasi-nonexpansive if there exists kn ∈ [0, 1) for all n ≥ 1 with lim
n→∞

kn = 0 such that

d (Tnx, p) ≤ (1 + kn) d (x, p) for all x ∈ C, for all p ∈ F (T ).

(4) Generalized asymptotically quasi-nonexpansive if F (T ) 6= ∅ and there exist two sequences of real
numbers {un} and {cn} with lim

n→∞
un = 0 = lim

n→∞
cn such that d (Tnx, p) ≤ d (x, p)+(1 + un) d (x, p)+cn

for all x ∈ C, p ∈ F (T ) and n ≥ 1.

(5) Uniformly L-Lipschitzian if for some L > 0, d (Tnx, Tny) ≤ Ld (x, y) for all x, y ∈ C and n ≥ 1.

(6) Semi-compact if for any bounded sequence {xn} in C with d (xn, T
nxn) → 0 as n → ∞, there is a

convergent subsequence of {xn}.

Let {xn} be a sequence in a metric space (X, d), and let C be a subset of X. We say that {xn}, (1)
is of monotone type (A) with respect to C if for each p ∈ C, there exist two sequences {rn} and {sn} of

nonnegative real numbers such that
∞∑
n=1

rn < ∞,
∞∑
n=1

sn < ∞ and d (xn+1, p) ≤ (1 + rn) d (xn, p) + sn, (2)

of monotone type (B) with respect to C if there exist sequence {rn} and {sn} of nonnegative real numbers
such that d (xn+1, C) ≤ (1 + rn) d (xn, C) + sn.

A mapping T : C → C with F (T ) 6= ∅ is said to satisfy condition (I) if there exists a non-decreasing func-
tion f : [0,∞)→ [0,∞) with f(0) = 0 and f(r) > 0 for all r ∈ (0,∞) such that d (x, Tx) ≥ f (d (x, F (T ))),
for all x ∈ C.

Let {xn} be a bounded sequence in CAT(0) space X. For x ∈ X, set

r (x, {xn}) = lim sup
n→∞

d (x, xn) . (2.4)

The asymptotic radius r ({xn}) of {xn} is given by

r ({xn}) = inf {r (x, {xn}) : x ∈ X} , (2.5)

and the asymptotic center A ({xn}) of {xn} is the set

A ({xn}) = {x ∈ X : r (x, {xn}) = r ({xn})} . (2.6)
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Lemma 2.3 ([4]). If C be a closed convex subset of a complete CAT(0) space X and if {xn} be a bounded
sequence in C, then the asymptotic center of {xn} is in C.

Lemma 2.4 ([4]). Every bounded sequence in a complete CAT(0) space always has a ∆-convergent subse-
quence.

Lemma 2.5 ([5]). Let X be a complete CAT(0) space and {xn} be a bounded sequence in X with A ({xn}) =
{p} and {un} be a subsequence of {xn} with A ({un}) = {u} and the sequence {d (xn, u)} converges, then
p = u.

Lemma 2.6 ([15]). Let X be a CAT(0) space, x ∈ X be given point and {tn} be a sequence in [b, c] with
b, c ∈ (0, 1) and 0 < b (1− c) ≤ 1

2 . Let {xn} and {yn} be any sequence in X such that lim sup
n→∞

d (xn, x) ≤ r,

lim sup
n→∞

d (yn, x) ≤ r and lim
x→∞

d ((1− tn)xn ⊕ tnyn, x) = r, for some r ≥ 0. Then lim
x→∞

d (xn, yn) = 0.

Lemma 2.7 ([20]). Let {an}, {bn} and {cn} be three nonnegative sequences satisfying

an+1 ≤ (1 + bn) an + cn, n ≥ 1.

If
∑∞

n=1 cn <∞ and
∑∞

n=1 bn <∞,then
(1) limn→∞an exists,
(2) If {an} has a subsequence which converges strongly to zero, then limn→∞an = 0.

3. Main results

In this section, we establish some convergence results of SP- iterations to a fixed point for generalized
asymptotically quasi-nonexpansive mappings in the general class of CAT(0) spaces.

Theorem 3.1. Let (X, d) be a complete CAT(0) space and let C be a nonempty closed convex subset of X.
Let T : C → C be a generalized asymptotically quasi-nonexpansive mapping with {sn} , {tn} ⊂ [0,∞) such

that
∞∑
n=1

sn <∞ and
∞∑
n=1

tn <∞. Suppose that F (T ) is closed. For arbitrarily chosen x1 ∈ C, the sequence

{xn} be the SP-iteration defined as follows:
zn = γnT

nxn ⊕ (1− γn)xn,

yn = βnT
nzn ⊕ (1− βn) zn,

xn+1 = αnT
nyn ⊕ (1− αn) yn,

(3.1)

where {γn} , {βn} , {αn} are real sequence in [0, 1]. Then the sequence {xn} is of monotone type (A) and
monotone type (B) with respect to F (T ). Moreover, {xn} converges strongly to a fixed point q of the mapping
T if and only if

lim inf
n→∞

d (xn, F (T )) = 0,

where d (x, F (T )) = infq∈F (T ) {d (x, q)} .

Proof. Following (2.2), Definition 2.2(4) and (3.1), we have

d (zn, q) = d (γnT
nxn ⊕ (1− γn)xn, q)

≤ γnd (Tnxn, q) + (1− γn) d (xn, q)

≤ γn [(1 + sn) d (xn, q) + tn] + (1− γn) d (xn, q)

≤ (1 + sn) [γn + 1− γn] d (xn, q) + γntn

= (1 + sn) d (xn, q) + γntn

(3.2)
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and
d (yn, q) = d (βnT

nzn ⊕ (1− βn) zn, q)

≤ βnd (Tnzn, q) + (1− βn) d (zn, q)

≤ βn [(1 + sn) d (zn, q) + tn] + (1− βn) d (zn, q)

≤ (1 + sn) [βn + 1− βn] d (zn, q) + βntn

= (1 + sn) d (zn, q) + βntn.

(3.3)

Substituting (3.2) into (3.3) and combining, we have

d (yn, q) ≤ (1 + sn) [(1 + sn) d (xn, q) + γntn] + βntn

≤ (1 + sn)2d (xn, q) + (1 + sn) γntn + βntn,
(3.4)

and
d (xn+1, q) = d (αnT

nyn ⊕ (1− αn) yn, q)

≤ αnd (Tnyn, q) + (1− αn) d (yn, q)

≤ αn [(1 + sn) d (yn, q) + tn] + (1− αn) d (yn, q)

≤ (1 + sn) [αn + 1− αn] d (yn, q) + αntn

= (1 + sn) d (yn, q) + αntn.

(3.5)

Substituting (3.4) into (3.5) and combining, we have

d (xn+1, q) ≤ (1 + sn)
[
(1 + sn)2d (xn, q) + (1 + sn) γntn + βntn

]
+ αntn

≤ (1 + sn)3d (xn, q) + (1 + sn)2γntn + βntn + αntn

= (1 + ψn) d (xn, q) + ϕn,

(3.6)

where ψn = 3sn + 3s2
n + s3

n and ϕn = (1 + sn)2γntn + βntn + αntn. Since
∞∑
n=1

sn <∞ and
∞∑
n=1

tn <∞, it

follows that
∞∑
n=1

ψn <∞ and
∞∑
n=1

ϕn <∞. Now, from (3.6), we get

d (xn+1, q) ≤ (1 + ψn) d (xn, q) + ϕn), (3.7)

d (xn+1, F (T )) ≤ (1 + ψn) d (xn, F (T )) + ϕn). (3.8)

In these inequalities, respectively, we prove that {xn} is a sequence of monotone type (A) and monotone
type (B) with respect to F (T ).

Now, we prove that {xn} converges strongly to a fixed point of the mapping T if and only if
lim inf
n→∞

d (xn, F (T )) = 0. If xn → q ∈ F (T ), then lim
n→∞

d (xn, q) = 0. Since 0 ≤ (xn, F (T )) ≤ d (xn, q),

we have lim inf
n→∞

d (xn, F (T )) = 0.

Conversely, suppose that lim inf
n→∞

d (xn, F (T )) = 0. From (3.8) using Lemma 2.7, we have that

lim
n→∞

d (xn, F (T )) exists. Further, by hypothesis lim inf
n→∞

d (xn,F (T ))= 0, we conclude that lim
n→∞

d (xn, F (T )) =

0. Next, we show that {xn} is a Cauchy sequence. Since 1 + a ≤ ea for a ≥ 0, hence from (3.7), we have

d (xn+m, q) ≤ (1 + ψn+m−1) d (xn+m−1, q) + ϕn+m−1

≤ eψn+m−1d (xn+m−1q) + ϕn+m−1

≤ eψn+m−1

[
eψn+m−1d (xn+m−2, q) + ϕn+m−2

]
+ ϕn+m−1

...
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≤ e
n+m−1∑
k=n

ψk

d (xn, q) + e

n+m−1∑
k=n

ψk

(
n+m−1∑
k=n

ϕk

)

≤Md (xn, q) +M

(
n+m−1∑
k=n

ϕk

)
,

where M = e

n+m−1∑
k=n

ψk

, for M > 0 and for the natural numbers m,n and q ∈ F (T ). Since lim
n→∞

d (xn, F (T )) =

0, therefore for any ε > 0, there exists a natural number N0 such that d (xn, F (T )) < ε
8M and

n+m−1∑
k=n

ϕk <
ε

4M

for all n > n0. And so, we can find q∗ ∈ F (T ) such that d (xn0 , q
∗) < ε

4M . thus, for all n > n0 and m ≥ 1,
we have

d (xn+m, xn) ≤ d (xn+m, q
∗) + d (xn, q

∗)

≤Md (xn0 , q
∗) +M

∞∑
k=n0

ϕk +Md (xn0 , q
∗) +M

∞∑
k=n0

ϕk

= 2M

d (xn0 , q
∗) +

∞∑
k=n0

ϕk

 ≤ 2M
( ε

4M
+

ε

4M

)
= ε.

(3.9)

This proves that {xn} is a Cauchy sequence. Hence, By the completeness of X. we assume that lim
n→∞

xn = a.

Since C is closed, therefore a ∈ C. Next, we show that a ∈ F (T ). Following two inequalities:

d (a, q) ≤ d (a, xn) + d (xn, q) ∀q ∈ F (T ), n ≥ 1,

d (a, xn) ≤ d (a, q) + d (xn, q) ∀q ∈ F (T ), n ≥ 1,
(3.10)

give that
− d (a, xn) ≤ d (a, F (T ))− d (xn, F (T )) ≤ d (a, xn) , n ≥ 1. (3.11)

That is
|d (a, F (T ))− d (xn, F (T ))| ≤ d (a, xn) , n ≥ 1. (3.12)

Since lim
n→∞

xn = a and lim
n→∞

d (xn, F (T )) = 0, we conclude that a ∈ F (T ). The proof is completed.

Corollary 3.2. Let (X, d) be a complete CAT(0) space and let C be a nonempty closed convex subset of X.
Let T : C → C be a generalized asymptotically quasi-nonexpansive mapping with {sn} , {tn} ⊂ [0,∞) such

that
∞∑
n=1

sn < ∞ and
∞∑
n=1

tn < ∞. Suppose that F (T ) is closed. For arbitrarily chosen x1 ∈ C, let {xn}

be the SP-iteration sequence defined by (3.1).Then the sequence {xn} converges strongly to a common fixed
point q of the mapping T if and only if there exists some subsequence

{
xnj

}
of {xn} which converges to

q ∈ F (T ).

Corollary 3.3. Let (X, d) be a complete CAT(0) space and let C be a nonempty closed convex subset of X.

Let T : C → C be asymptotically quasi-nonexpansive mapping with {sn} , {tn} ⊂ [0,∞) such that
∞∑
n=1

sn <∞

and
∞∑
n=1

tn < ∞. Suppose that F (T ) is closed. For arbitrarily chosen x1 ∈ C, let {xn} be the SP-iteration

sequence defined by (3.1). Then the sequence xn is of monotone type (A) and monotone type (B) with respect
to F (T ). Moreover, {xn} converges strongly to a fixed point q of the mapping T if and only if

lim inf
n→∞

d (xn, F (T )) = 0.

Proof. Follows from Theorem 3.1 with tn = 0 for all n ≥ 1.
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Corollary 3.4. Let X be Banach space and let C be a nonempty closed convex subset of X. Let T : C → C be

asymptotically quasi-nonexpansive mapping with {sn} , {tn} ⊂ [0,∞) such that
∞∑
n=1

sn <∞ and
∞∑
n=1

tn <∞.

Suppose that F (T ) is closed. For arbitrarily chosen x1 ∈ C, let {xn} be the SP-iteration sequence defined by
(3.1). Then the sequence xn is of monotone type (A) and monotone type (B) with respect to F (T ). Moreover,
{xn} converges strongly to a fixed point q of the mapping T if and only if

lim inf
n→∞

d (xn, F (T )) = 0.

Proof. Take λx⊕ (1− λ) y = λx+ (1− λ) y in Corollary 3.2.

Lemma 3.5. Let (X, d) be a complete CAT(0) space and let C be a nonempty closed convex subset of
X. Let T : C → C be a uniformly continuous generalized asymptotically quasi-nonexpansive mapping with

{sn} , {tn} ⊂ [0,∞) such that
∞∑
n=1

sn < ∞ and
∞∑
n=1

tn < ∞. Suppose that F (T ) 6= ∅. Let {xn} be the

SP-iteration sequence defined by (3.1). Let {αn} ⊂ [δ, 1− δ] and {βn} ⊂ [δ, 1− δ] for some δ ∈ (0, 1) . Then
(1) lim

n→∞
d (Tnyn, yn) = 0,

(2) lim
n→∞

d (Tnzn, zn) = 0,

(3) lim
n→∞

d (Tnxn, xn) = 0.

Proof. Let q ∈ F (T ). By Theorem 3.1, we have lim
n→∞

d (xn, q) exists and {xn} is bounded. Without loss of

generality. Let lim
n→∞

d (xn, q) = b ≥ 0. Taking lim sup on both sides in inequality (3.4), we have

lim sup
n→∞

d (yn, q) ≤ b. (3.13)

Since
d (Tnyn, q) ≤ (1 + sn) d (yn, q) + tn, (3.14)

we have
lim sup
n→∞

d (Tnyn, q) ≤ b. (3.15)

On the other hand, since

lim
n→∞

d (xn+1, q) = lim
n→∞

d (αnT
nyn ⊕ (1− αn) yn, q) = b, (3.16)

by Lemma 2.6, we have
lim
n→∞

d (Tnyn, yn) = 0. (3.17)

Hence assertion (1) of the lemma is proved.
In addition, since

d (xn+1, q) ≤ d (xn+1, T
nyn) + d (Tnyn, q)

≤ (1− αn) d (yn, T
nyn) + (1 + sn) d (yn, q) + tn,

(3.18)

we have lim inf
n→∞

d (yn, q) ≥ b. By combined (3.16) and it yields that lim
n→∞

d (yn, q) = b. This implies

lim
n→∞

d (βnT
nzn ⊕ (1− βn) zn, q) = b. (3.19)

Taking lim sup on both sides in inequality (3.3), we have

lim sup
n→∞

d (zn, q) ≤ b. (3.20)

Since
d(Tnzn, q) ≤ (1 + sn) d (zn, q) + tn, (3.21)
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we have
lim sup
n→∞

d (Tnzn, q) ≤ b. (3.22)

By Lemma 2.6, we have

lim
n→∞

d (Tnzn, zn) = 0. (3.23)

Hence assertion (2) of the lemma is proved.
Thus, by the same method, we can prove that

lim
n→∞

d (Tnxn, xn) = 0. (3.24)

Hence assertion (3) of the lemma is proved. The proof is completed.

Lemma 3.6. Let (X, d) be a complete CAT(0) space and let C be a nonempty closed convex subset of X.
Let T : C → C be a uniformly L-Lipschitzian generalized asymptotically quasi-nonexpansive mapping with

{sn} , {tn} ⊂ [0,∞) such that
∞∑
n=1

sn < ∞ and
∞∑
n=1

tn < ∞. Suppose that F (T ) 6= ∅. Let {xn} be the SP-

iteration sequence defined by (3.1). Let {αn} ⊂ [δ, 1− δ] and {βn} ⊂ [δ, 1− δ] for some δ ∈ (0, 1) . Then
lim
n→∞

d (Txn, xn) = 0.

Proof. From Lemma 3.5, we have

lim
n→∞

d (Tnzn, zn) = 0, lim
n→∞

d (Tnyn, yn) = 0 and lim
n→∞

d (Tnxn, xn) = 0. (3.25)

Hence, we get
d (xn+1, yn) = d (αnT

nyn ⊕ (1− αn) yn, yn)

≤ αnd (Tnyn, yn)→ 0 as n→∞.
(3.26)

Similarly, we have
d (yn, zn) ≤ βnd (Tnzn, zn)→ 0 as n→∞. (3.27)

and

d (zn, xn) ≤ αnd (Tnxn, xn)→ 0 as n→∞. (3.28)

It follows that

d (xn+1, xn) ≤ d (xn+1, yn) + d (yn, zn) + d (zn, xn)→ 0 as n→∞. (3.29)

Since T is uniformly L-Lipschitzian, we have

d (Txn, xn) ≤ d (xn, xn+1) + d
(
xn+1, T

n+1xn+1

)
+ d

(
Tn+1xn+1, T

n+1xn
)

+ d
(
Tn+1xn, Txn

)
≤ (1 + L) d (xn+1, xn) + d

(
xn+1, T

n+1xn+1

)
+ Ld (Tnxn, xn)

→ 0 as n→∞,

(3.30)

which implies
lim
n→∞

d (Txn, xn) = 0. (3.31)

The proof is completed.

Theorem 3.7. Let X,C, T, {αn} , {βn} , {γn} , {xn} satisfy the hypotheses of Theorem 3.1. Then the se-
quence {xn} ∆-converges to a fixed point of T.
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Proof. By Lemma 3.6, we have lim
n→∞

d (Txn, xn) = 0 , In fact, lim
n→∞

d (xn, q) exists for all q ∈ F (T ). This

implies that sequence {xn} is bounded. Let W∆ (xn) = ∪A ({un}) ⊆ F (T ) and W∆ (xn) consists exactly of
one point. In fact, let u ∈W∆(xn), then there exists subsequence {un} of {xn} such that ∪A ({un}) = {u}.
By Lemma 2.4 and Lemma 2.3, there exists a subsequence {rn} of {un} such that ∆- lim

n→∞
rn = r ∈ C. By

Lemma 2.6, r ∈ F (T ). By Theorem 3.1, lim
n→∞

d (xn, r) exists. Assume that u 6= r. By the uniqueness of

asymptotic centers, we have
lim sup
n→∞

d (rn, r) < lim sup
n→∞

d (rn, u)

≤ lim sup
n→∞

d (un, u)

≤ lim sup
n→∞

d (un, r)

= lim sup
n→∞

d (xn, r)

≤ lim sup
n→∞

d (rn, r) .

(3.32)

This is a contradiction. Hence u = r ∈ F (T ). Finally, we prove {xn} ∆-converges a fixed point of T. We
claim that x = r. If not, then the existence of lim

n→∞
d (xn, r) and uniqueness of asymptotic centers imply

that there exists a contradiction as (3.32) and therefore x = r ∈ F (T ). Thus, W∆ (xn) = {xn}. This shows
that {xn} ∆-converges a fixed point of T. The proof is completed.

Theorem 3.8. Let X,C, T, {αn} , {βn} , {γn} , {xn} satisfy the hypotheses of Theorem 3.1. Assume, in
addition that T is semi-compact. Then the sequence {xn} converges strongly to a fixed point of T.

Proof. From Theorem 3.1, sequence {xn} is bounded. By Lemma 3.6, we have lim
n→∞

d(Txn, xn) = 0 and by

the semi-compactness of T, there exists a subsequence {xnk
} ⊂ {xn} such that {xnk

} converges strongly to
some point q ∈ C. By uniformly continuity of T, we have

d(Tq, q) = lim
n→∞

d(Txnk
, xnk

) = 0. (3.33)

This implies that q ∈ F (T ). By Theorem 3.1, lim
n→∞

d(xn, q) exists. Thus, q is the strong limit of sequence

{xn}. The sequence {xn} converges strongly to a fixed point q of T. The proof is completed.

Theorem 3.9. Let X,C, T, {αn} , {βn} , {γn} , {xn} satisfy the hypotheses of Theorem 3.1. Assume, in
addition that T satisfies condition (I). Then the sequence {xn} converges strongly to a fixed point of T.

Proof. From Theorem 3.1, lim
n→∞

d(xn, F (T )) exists. By condition (I) and Lemma 3.6, we have

lim
n→∞

f(d(xn, F (T ))) ≤ lim
n→∞

d(xn, Txn) = 0. (3.34)

This is, lim
n→∞

f(d(xn, F (T ))) = 0. Since f is a non-decreasing function satisfying f(0) = 0 and f(r) > 0, for

all r ∈ (0,∞), we have lim
n→∞

d(xn, F (T )) = 0. By Theorem 3.1 implies that sequence {xn} converges strongly

to a fixed point q of T. The proof is completed.
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