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Abstract

The aim of this paper is to present some common fixed point theorems for g-weakly isotone increasing
mappings satisfying a generalized contractive type condition under a continuous function in the framework
of ordered b-metric spaces. Our results extend the results of Nashine et al. [H. K. Nashine, B. Samet,
C. Vetro, Monotone generalized nonlinear contractions and fixed point theorems in ordered metric spaces,
Math. Comput. Modelling 54 (2011) 712–720] from the context of ordered metric spaces to the setting of
ordered b-metric spaces. Moreover, some examples of applications of the main result are given. Finally, we
establish an existence theorem for a solution of an integral equation. c©2014 All rights reserved.
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1. Introduction and preliminaries

Recently, many researchers have focused on different contractive conditions in complete metric spaces
endowed with a partial order and obtained many fixed point results in such spaces. For more details on
fixed point results, their applications, comparison of different contractive conditions and related results in
ordered metric spaces we refer the reader to [1, 2, 4, 6, 7, 8, 11, 19, 24] and the references mentioned therein.

Let (X,�) be a partially ordered set and let f, g be two self-maps on X. We will use the following
terminology:
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(a) elements x, y ∈ X are called comparable if x � y or y � x holds;

(b) a subset K of X is said to be well ordered if every two elements of K are comparable;

(c) f is called nondecreasing w.r.t. � if x � y implies fx � fy;

(d) the pair (f, g) is said to be weakly increasing if fx � gfx and gx � fgx for all x ∈ X [6];

(e) f is said to be g-weakly isotone increasing if for all x ∈ X we have fx � gfx � fgfx [21].

Note that two weakly increasing mappings need not be nondecreasing. There exist some examples to
illustrate this fact in [5].

If f, g : X → X are weakly increasing, then f is g-weakly isotone increasing. Also, in the above
definition (e), if f = g, we say that f is is weakly isotone increasing. In this case for each x ∈ X, we have
fx � ffx.

Definition 1.1. Let (X,�) be a partially ordered set and d be a metric on X. We say that (X,�, d) is
regular if the following conditions hold:

(i) if a non-decreasing sequence xn → x, n→∞, then xn � x for all n,

(ii) if a non-increasing sequence yn → y, n→∞, then yn � y for all n.

Recently, Nashine et al. [21] have given an improved version of Theorem 2.2 of Ćirić et al. [9], and proved
the following theorem.

Theorem 1.2. Let (X,�, d) be a complete ordered metric space. Assume that there is a continuous function
ψ : [0,∞)→ [0,∞) with ψ(t) < t for each t > 0 and ψ(0) = 0 and that f, g : X → X are two mappings such
that

d(fx, gy) ≤ max{ψ(d(x, y)), ψ(d(x, fx)), ψ(d(y, gy)), ψ(
d(x, gy) + d(y, fx)

2
)}

holds for all comparable x, y ∈ X. Also suppose that f is g-weakly isotone increasing and one of f or g is
continuous. Then f and g have a common fixed point.

The aim of this paper is to present some common fixed point theorems for g-weakly isotone increasing
mappings satisfying a generalized contractive type condition under a continuous function ψ in the framework
of ordered b-metric spaces. Our results extend and generalize the results of Nashine et al. [21] (resp., [20])
from the context of ordered metric spaces (resp., ordered partial metric spaces) to the setting of ordered
b-metric spaces.

For this purpose, we need some preliminaries from the literature on b-metric spaces.
Czerwik introduced in [10] the concept of a b-metric space. Since then, several papers dealt with fixed

point theory for single-valued and multivalued operators in b-metric spaces (see, e.g., [12, 14, 16, 17, 18, 23,
25, 27]). Pacurar [23] proved results on sequences of almost contractions and fixed points in b-metric spaces.
Recently, Hussain and Shah [14] obtained results on KKM mappings in cone b-metric spaces. Khamsi [17],
as well as Jovanović et al. [16], showed that each cone metric space over a normal cone induces a b-metric
structure.

Consistent with [10], the following definition will be needed in the sequel.

Definition 1.3. ([10]) Let X be a (nonempty) set and s ≥ 1 be a given real number. A function d :
X ×X → R+ is a b-metric if, for all x, y, z ∈ X, the following conditions are satisfied:

(b1) d(x, y) = 0 iff x = y,

(b2) d(x, y) = d(y, x),

(b3) d(x, z) ≤ s[d(x, y) + d(y, z)].



J. M. L. Roshan, V. Parvaneh, Z. Kadelburg, J. Nonlinear Sci. Appl. 7 (2014), 229–245 231

The pair (X, d) is called a b-metric space.

It should be noted that the class of b-metric spaces is effectively larger than that of metric spaces, since
a b-metric is a metric if (and only if) s = 1. We present an easy example to show that in general a b-metric
need not be a metric.

Example 1.4. Let (X, d) be a metric space, and ρ(x, y) = (d(x, y))p, where p > 1 is a real number. Then
ρ is a b-metric with s = 2p−1.

However, (X, ρ) is not necessarily a metric space. For example, if X = R is the set of real numbers and
d(x, y) = |x− y| is the usual Euclidean metric, then ρ(x, y) = (x− y)2 is a b-metric on R with s = 2, but it
is not a metric on R.

We also need the following definition.

Definition 1.5. Let X be a nonempty set. Then (X,�, d) is called a partially ordered b-metric space if d
is a b-metric on a partially ordered set (X,�).

Recently, N. Hussain et al. [12] have presented an example (with slight error) of a b-metric which is not
continuous (see corrected version in [13, Example 1]). Thus, while working in b-metric space, the following
lemma is useful.

Lemma 1.6. ([3]) Let (X, d) be a b-metric space with s ≥ 1, and suppose that {xn} and {yn} are b-convergent
to x, y, respectively. Then we have

1

s2
d(x, y) ≤ lim inf

n→∞
d(xn, yn) ≤ lim sup

n→∞
d(xn, yn) ≤ s2d(x, y).

In particular, if x = y, then we have limn→∞ d(xn, yn) = 0. Moreover, for each z ∈ X, we have,

1

s
d(x, z) ≤ lim inf

n→∞
d(xn, z) ≤ lim sup

n→∞
d(xn, z) ≤ sd(x, z).

Lemma 1.7. Let (X, d) be a b-metric space and let {xn} be a sequence in X such that

lim
n→∞

d (xn, xn+1) = 0. (1.1)

If {xn} is not a b-Cauchy sequence, then there exist ε > 0 and two sequences {m(k)} and {n(k)} of positive
integers such that for the following four sequences

d
(
xm(k), xn(k)

)
, d

(
xm(k), xn(k)+1

)
, d

(
xm(k)+1, xn(k)

)
and d

(
xm(k)+1, xn(k)+1

)
,

it holds:

ε ≤ lim inf
k→∞

d
(
xm(k), xn(k)

)
≤ lim sup

k→∞
d
(
xm(k), xn(k)

)
≤ sε,

ε

s
≤ lim inf

k→∞

(
xm(k), xn(k)+1

)
≤ lim sup

k→∞
d
(
xm(k), xn(k)+1

)
≤ s2ε,

ε

s
≤ lim inf

k→∞
d
(
xm(k)+1, xn(k)

)
≤ lim sup

k→∞
d
(
xm(k)+1, xn(k)

)
≤ s2ε,

ε

s2
≤ lim inf

k→∞
d
(
xm(k)+1, xn(k)+1

)
≤ lim sup

k→∞
d
(
xm(k)+1, xn(k)+1

)
≤ s3ε.

Proof. If {xn} is not a Cauchy sequence, then there exist ε > 0 and sequences {m(k)} and {n(k)} of positive
integers such that

n(k) > m(k) > k, d
(
xm(k), xn(k)−1

)
< ε, d

(
xm(k), xn(k)

)
≥ ε (1.2)
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for all positive integers k. Now, from (1.2) and using the triangle inequality we have

ε ≤ d
(
xm(k), xn(k)

)
≤ s

[
d
(
xm(k), xn(k)−1

)
+ d

(
xn(k)−1, xn(k)

)]
< sε+ sd

(
xn(k)−1, xn(k)

)
. (1.3)

Taking the upper and lower limits as k →∞ in (1.3), and using (1.1) we obtain that

ε ≤ lim inf
k→∞

d
(
xm(k), xn(k)

)
≤ lim sup

k→∞
d
(
xm(k), xn(k)

)
≤ sε. (1.4)

Using the triangle inequality again we have

d
(
xm(k), xn(k)

)
≤ s

[
d
(
xm(k), xn(k)+1

)
+ d

(
xn(k)+1, xn(k)

)]
≤ s2

[
d
(
xm(k), xn(k)

)
+ d

(
xn(k)+1, xn(k)

)]
+ sd

(
xn(k)+1, xn(k)

)
. (1.5)

Taking the upper and lower limits as k →∞ in (1.5) and using (1.1) and (1.4), we have

ε ≤ s lim sup
k→∞

d(xm(k), xn(k)+1) ≤ s3ε,

or, equivalently,
ε

s
≤ lim sup

k→∞
d(xm(k), xn(k)+1) ≤ s2ε.

The remaining two conditions of the lemma can be proved in a similar way.

Motivated by the work in [20] and [21], we prove some common fixed point theorems for g-weakly isotone
increasing mappings satisfying a generalized contractive type condition in partially ordered b-metric spaces.
As applications, we present some results on periodic points of self-mappings, and we prove an existence
theorem for solutions of an integral equation.

2. Main results

Let (X,�, d) be an ordered b-metric space with s > 1, and f, g : X → X be two mappings. Throughout
this paper, unless otherwise stated, for all x, y ∈ X, let

Ms(x, y) = max

{
ψ(d(x, y)), ψ(d(x, fx)), ψ(d(y, gy)), ψ

(
d(x, gy) + d(y, fx)

2s

)}
, (2.1)

where ψ : [0,∞)→ [0,∞) is a continuous function with ψ(t) < t for each t > 0 and ψ(0) = 0.

Theorem 2.1. Let (X,�, d) be a complete partially ordered b-metric space. Let f, g : X → X be two
mappings such that f is g-weakly isotone increasing. Suppose that for every two comparable elements x, y ∈
X, we have

s4d(fx, gy) ≤Ms(x, y). (2.2)

Then, the pair (f, g) has a common fixed point z in X if one of f or g is continuous. Moreover, the set of
common fixed points of f and g is well ordered if and only if f and g have one and only one common fixed
point.

Proof. Let x0 be an arbitrary point of X. Choose x1 ∈ X such that fx0 = x1 and x2 ∈ X such that
gx1 = x2. Continuing in this way, construct a sequence {xn} defined by:

x2n+1 = fx2n, and x2n+2 = gx2n+1,

for all n ≥ 0. As f is g-weakly isotone increasing, we have

x1 = fx0 � gfx0 = gx1 = x2 � fgfx0 = fx2 = x3.
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Repeating this process, we obtain xn � xn+1, for all n ≥ 1.
We will complete the proof in three steps.
Step I. We prove that limk→∞ d(xk, xk+1) = 0.
Suppose d(xk0 , xk0+1) = 0, for some k0. Then, xk0 = xk0+1. In the case k0 = 2n, x2n = x2n+1 gives

x2n+1 = x2n+2. Indeed,

s4d(x2n+1, x2n+2) = s4d(fx2n, gx2n+1) ≤Ms(x2n, x2n+1), (2.3)

where

Ms(x2n, x2n+1) = max{ψ(d(x2n, x2n+1)), ψ(d(x2n, fx2n)), ψ(d(x2n+1, gx2n+1)),

ψ
(d(x2n, gx2n+1) + d(x2n+1, fx2n)

2s

)
}

= max{ψ(d(x2n, x2n+1)), ψ(d(x2n, x2n+1)), ψ(d(x2n+1, x2n+2)),

ψ(
d(x2n, x2n+2) + d(x2n+1, x2n+1)

2s
)}

= max{0, 0, ψ(d(x2n+1, x2n+2)), ψ(
d(x2n, x2n+2)

2s
)}

= max{ψ(d(x2n+1, x2n+2)), ψ(
d(x2n+1, x2n+2)

2s
)}.

If Ms(x2n, x2n+1) = ψ(d(x2n+1, x2n+2)), then, from (2.3), we have

s4d(x2n+1, x2n+2) ≤ ψ(d(x2n+1, x2n+2)) < d(x2n+1, x2n+2),

a contradiction.

If Ms(x2n, x2n+1) = ψ(
d(x2n+1, x2n+2)

2s
), then, from (2.3), we have

s4d(x2n+1, x2n+2) ≤ ψ(
d(x2n+1, x2n+2)

2s
) <

d(x2n+1, x2n+2)

2s
,

hence, [2s5 − 1]d(x2n+1, x2n+2) < 0, that is, x2n+1 = x2n+2.
Similarly, if k0 = 2n + 1, then x2n+1 = x2n+2 gives x2n+2 = x2n+3. Consequently, the sequence {xk}

becomes constant for k ≥ k0 and xk0 is a coincidence point of f and g. For this, let k0 = 2n. Then, we
know that x2n = x2n+1 = x2n+2. Hence,

x2n = x2n+1 = fx2n = x2n+2 = gx2n+1.

This means that fx2n = gx2n+1. Now, since x2n = x2n+1, we have fx2n = gx2n.
In the other case, when k0 = 2n+ 1, similarly, one can show that x2n+1 is a coincidence point of the pair

(f, g).
Suppose now that d(xk, xk+1) > 0 for each k. We claim that the inequality

d(xk+1, xk+2) ≤ d(xk, xk+1) (2.4)

holds for each k = 1, 2, . . . .
Let k = 2n and for an n ≥ 0,

d(x2n+1, x2n+2) > d(x2n, x2n+1) > 0. (2.5)

Then, as x2n � x2n+1, using (2.2) we obtain that

s4d(x2n+1, x2n+2) = s4d(fx2n, gx2n+1) ≤Ms(x2n, x2n+1), (2.6)
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where

Ms(x2n, x2n+1) = max{ψ(d(x2n, x2n+1)), ψ(d(x2n, fx2n)), ψ(d(x2n+1, gx2n+1)),

ψ(
d(x2n, gx2n+1) + d(x2n+1, fx2n)

2s
)}

= max{ψ(d(x2n, x2n+1)), ψ(d(x2n+1, x2n+2)), ψ(
d(x2n, x2n+2)

2s
)}. (2.7)

If Ms(x2n, x2n+1) = ψ(d(x2n+1, x2n+2)), then from (2.6),

s4d(x2n+1, x2n+2) ≤ ψ(d(x2n+1, x2n+2)) < d(x2n+1, x2n+2),

which is a contradiction.

If Ms(x2n, x2n+1) = ψ(
d(x2n, x2n+2)

2s
), then from (2.6),

s4d(x2n+1, x2n+2) ≤ ψ(
d(x2n, x2n+2)

2s
) <

d(x2n, x2n+2)

2s
≤ d(x2n, x2n+1) + d(x2n+1, x2n+2)

2
< d(x2n+1, x2n+2),

which is also a contradiction.
If Ms(x2n, x2n+1) = ψ(d(x2n, x2n+1)), then from (2.6),

s4d(x2n+1, x2n+2) ≤ ψ(d(x2n, x2n+1)) < d(x2n+1, x2n+2),

which is a contradiction.
Hence, (2.5) is false, that is, d(x2n+1, x2n+2) ≤ d(x2n, x2n+1) holds for all n. Therefore, (2.4) is proved

for k = 2n.
Similarly, it can be shown that

d(x2n+2, x2n+3) ≤ d(x2n+1, x2n+2).

Hence, {d(xk, xk+1)} is a nondecreasing sequence of nonnegative real numbers. Therefore, there is an r ≥ 0
such that

lim
k→∞

d(xk, xk+1) = r.

Assume that r > 0. From (2.7), we have

Ms(x2n, x2n+1) < max{ψ (d(x2n, x2n+1)) , ψ (d(x2n+1, x2n+2)) , ψ(
d(x2n, x2n+1) + d(x2n+1, x2n+2)

2
)}

< max{d(x2n, x2n+1), d(x2n+1, x2n+2),
d(x2n, x2n+1) + d(x2n+1, x2n+2)

2
}. (2.8)

Now, taking the upper limit as n→∞ in (2.8), we obtain

lim sup
n→∞

Ms(x2n, x2n+1) ≤ r. (2.9)

Taking the upper limit as n→∞ in (2.6), and using (2.9), we have s4r ≤ r. Therefore (s4 − 1)r ≤ 0, a
contradiction. Hence,

r = lim
k→∞

d(xk, xk+1) = 0.

Step II. We now show that {xn} is a b-Cauchy sequence in X. That is, for every ε > 0, there exists
k ∈ N such that for all m,n ≥ k, d(xm, xn) < ε.

We assume to the contrary, that {xn} is not a b-Cauchy sequence. Then from Lemma 1.7, there exists
ε > 0 for which we can find subsequences {xm(k)} and {xn(k)} of {xn} such that n(k) > m(k) ≥ k and:

(a) m(k) = 2t and n(k) = 2t′ + 1, where t and t′ are nonnegative integers,
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(b) d(xm(k), xn(k)) ≥ ε, and
(c) n(k) is the smallest number such that the condition (b) holds; i.e., d(xm(k), xn(k)−1) < ε.
Then we have

ε ≤ lim sup
k→∞

d
(
xm(k), xn(k)

)
≤ sε, (2.10)

ε

s
≤ lim sup

k→∞
d
(
xm(k), xn(k)+1

)
≤ s2ε, (2.11)

ε

s
≤ lim sup

k→∞
d
(
xm(k)+1, xn(k)

)
≤ s2ε, (2.12)

ε

s2
≤ lim sup

k→∞
d
(
xm(k)+1, xn(k)+1

)
≤ s3ε. (2.13)

Since n(k) > m(k), we have xm(k) � xn(k), so from (2.2), we have

s4d(xm(k)+1, xn(k)+1) = s4d(fxm(k), gxn(k)) ≤Ms(xm(k), xn(k)), (2.14)

where

Ms(xm(k), xn(k)) = max{ψ(d(xm(k), xn(k))), ψ(d(xm(k), fxm(k))), ψ(d(xn(k), gxn(k))),

ψ(
d(xm(k), gxn(k)) + d(xn(k), fxm(k))

2s
)}

= max{ψ(d(xm(k), xn(k))), ψ(d(xm(k), xm(k)+1)), ψ(d(xn(k), xn(k)+1)),

ψ(
d(xm(k), xn(k)+1) + d(xn(k), xm(k)+1)

2s
)}

< max{d(xm(k), xn(k)), d(xm(k), xm(k)+1), d(xn(k), xn(k)+1),

d(xm(k), xn(k)+1) + d(xn(k), xm(k)+1)

2s
}.

Taking the upper limit as k →∞ and using (2.2), (2.10), (2.11), and (2.12), we have

lim sup
k→∞

Ms(xm(k), xn(k)) ≤ max{lim sup
k→∞

d(xm(k), xn(k)), lim sup
k→∞

d(xm(k), xm(k)+1), lim sup
k→∞

d(xn(k), xn(k)+1),

lim sup
k→∞

d(xm(k), xn(k)+1) + d(xn(k), xm(k)+1)

2s
}

≤ max{sε, 0, 0, s
2ε+ s2ε

2s
} = sε.

Hence, by taking the upper limit as k →∞ in (2.14), and using (2.13) we have

s4 lim sup
k→∞

d(xm(k)+1, xn(k)+1) ≤ lim sup
k→∞

Ms(xm(k), xn(k)) ≤ sε,

which implies that lim supk→∞ d(xm(k)+1, xn(k)+1) ≤
ε

s3
<

ε

s2
, a contradiction to (2.13). Hence {xn} is a

b-Cauchy sequence.
Step III. We will show that f and g have a common fixed point.
Since {xn} is a b-Cauchy sequence in the complete b-metric space X, there exists z ∈ X such that

lim
n→∞

d(x2n, z) = lim
n→∞

d(x2n+1, z) = lim
n→∞

d(fx2n, z) = 0. (2.15)

By the triangle inequality, we have

d(fz, z) ≤ s[d(fz, fx2n) + d(fx2n, z)] = s[d(fz, fx2n) + d(x2n+1, z)]. (2.16)
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Suppose that f is continuous. Letting n→∞ in (2.16) and applying (2.15) we have

d(fz, z) ≤ s[ lim
n→∞

d(fz, fx2n) + lim
n→∞

d(fx2n, z)] = 0,

which implies that fz = z.
Let d(z, gz) > 0. As z and z are comparable, by (2.2) we have

s4d(z, gz) = s4d(fz, gz) ≤Ms(z, z), (2.17)

where

Ms(z, z) = max{ψ(d(z, z)), ψ(d(z, fz)), ψ(d(z, gz)), ψ(
d(z, gz) + d(z, fz)

2s
)} < d(z, gz).

Hence, (2.17) gives s4d(z, gz) < d(z, gz), which is a contradiction. Thus, d(z, gz) = 0.
Similarly, if g is continuous, the desired result is obtained.

Remark 2.2. In the case when ψ is a nondecreasing function, the contractive condition (2.2) is equivalent
to the condition

s4d(fx, gy) ≤ ψ(M ′s(x, y)),

where

M ′s(x, y) = max

{
d(x, y), d(x, fx), d(y, gy),

d(x, gy) + d(y, fx)

2s

}
.

However, if ψ is not monotone, the condition (2.2) is weaker (see [20, Example 3.8]).

In the following theorem, we omit the assumption of continuity of f or g.

Theorem 2.3. Let (X,�, d) be a complete partially ordered b-metric space. Let f, g : X → X be two
mappings such that f is g-weakly isotone increasing. Suppose that for every two comparable elements x, y ∈
X, we have

s4d(fx, gy) ≤Ms(x, y).

Then the pair (f, g) has a common fixed point z in X if X is regular. Moreover, the set of common fixed
points of f and g is well ordered if and only if f and g have one and only one common fixed point.

Proof. Following the proof of Theorem 2.1, there exists z ∈ X such that

lim
n→∞

d(xn, z) = 0.

Now we prove that z is a common fixed point of f and g.
Since x2n+1 → z, as n→∞, from regularity of X, x2n+1 � z. Therefore, from (2.2), we have

s4d(fz, gx2n+1) ≤Ms(z, x2n+1), (2.18)

where

Ms(z, x2n+1) = max{ψ(d(z, x2n+1)), ψ(d(z, fz)), ψ(d(x2n+1, gx2n+1)), ψ(
d(z, gx2n+1) + d(x2n+1, fz)

2s
)}.

Taking the limit as n→∞ in (2.18) and using Lemma 1.6, we obtain that

s3d(fz, z) = s4
1

s
d(fz, z) ≤ s4 lim sup

n→∞
d(fz, gx2n+1) ≤ lim sup

n→∞
Ms(z, x2n+1)

= max{lim sup
n→∞

d(z, x2n+1), lim sup
n→∞

d(z, fz), lim sup
n→∞

d(x2n+1, gx2n+1),

lim sup
n→∞

d(z, gx2n+1) + d(x2n+1, fz)

2s
}

≤ max{0, d(z, fz), 0,
d(z, fz)

2
} = d(z, fz),

which implies that fz = z.
Similarly, it can be shown that z is a fixed point of g.
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Taking f = g in Theorems 2.1 and 2.3, we obtain the following fixed point result:

Corollary 2.4. Let (X,�, d) be a complete partially ordered b-metric space. Let f : X → X be a mapping
such that f is weakly isotone increasing. Suppose that for every two comparable elements x, y ∈ X we have

s4d(fx, fy) ≤Ms(x, y), (2.19)

where

Ms(x, y) = max{ψ(d(x, y)), ψ(d(x, fx)), ψ(d(y, fy)), ψ(
d(x, fy) + d(y, fx)

2s
)}.

Then f has a fixed point z in X if either:
(a) f is continuous, or
(b) X is regular.
Moreover, the set of fixed points of f is well ordered if and only if f has one and only one fixed point.

We present now results for so-called quasicontractions.

Theorem 2.5. Let (X,�, d) be a complete partially ordered b-metric space with s > 1. Let f, g : X → X be
two mappings such that f is g-weakly isotone increasing. Suppose that for every two comparable elements
x, y ∈ X, we have

s4d(fx, gy) ≤ N(x, y), (2.20)

where
N(x, y) = max{ψ(d(x, y)), ψ(d(x, fx)), ψ(d(y, gy)), ψ(d(x, gy)), ψ(d(y, fx))},

and ψ : [0,∞) → [0,∞) is a continuous function with ψ(t) < t
2s for each t > 0 and ψ(0) = 0. Then, the

pair (f, g) has a common fixed point z in X if one of f or g is continuous. Moreover, the set of common
fixed points of f and g is well ordered if and only if f and g have one and only one common fixed point.

Proof. Define the sequence {xn} as given in the proof of Theorem 2.1. We will complete the proof in three
steps.

Step I. We prove that limk→∞ d(xk, xk+1) = 0.
Suppose d(xk0 , xk0+1) = 0, for some k0. Then, xk0 = xk0+1. In the case k0 = 2n, x2n = x2n+1 gives

x2n+1 = x2n+2. If d(x2n+1, x2n+2) > 0, then from (2.20) we have

s4d(x2n+1, x2n+2) = s4d(fx2n, gx2n+1) ≤ N(x2n, x2n+1), (2.21)

where

N(x2n, x2n+1) = max{ψ(d(x2n, x2n+1)), ψ(d(x2n, fx2n)), ψ(d(x2n+1, gx2n+1)),

ψ(d(x2n, gx2n+1)), ψ(d(x2n+1, fx2n))}
= max{ψ(d(x2n, x2n+1)), ψ(d(x2n, x2n+1)), ψ(d(x2n+1, x2n+2)),

ψ(d(x2n, x2n+2)), ψ(d(x2n+1, x2n+1))}
= max{0, 0, ψ(d(x2n+1, x2n+2)), ψ(d(x2n, x2n+2))}
= max{ψ(d(x2n+1, x2n+2)), ψ(d(x2n+1, x2n+2))}
= ψ(d(x2n+1, x2n+2)).

Then, from (2.21), we have

s4d(x2n+1, x2n+2) ≤ ψ(d(x2n+1, x2n+2)) <
1

2s
d(x2n+1, x2n+2).

Hence, [2s5 − 1]d(x2n+1, x2n+2) < 0, which is a contradiction, so x2n+1 = x2n+2.
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Similarly, if k0 = 2n + 1, then x2n+1 = x2n+2 gives x2n+2 = x2n+3. Consequently, the sequence {xk}
becomes constant for k ≥ k0 and xk0 is a coincidence point of f and g. For this, let k0 = 2n. Then, we
know that x2n = x2n+1 = x2n+2. Hence,

x2n = x2n+1 = fx2n = x2n+2 = gx2n+1.

This means that fx2n = gx2n+1. Now, since x2n = x2n+1, we have fx2n = gx2n.
In the other case, when k0 = 2n+ 1, similarly, one can show that x2n+1 is a coincidence point of the pair

(f, g).
Suppose that d(xk, xk+1) > 0, for each k. We now claim that the inequality

d(xk+1, xk+2) ≤ d(xk, xk+1) (2.22)

holds for each k = 1, 2, . . . .
Let k = 2n and, for an n ≥ 0,

d(x2n+1, x2n+2) > d(x2n, x2n+1) > 0. (2.23)

Then, as x2n � x2n+1, using (2.20) we obtain that

s4d(x2n+1, x2n+2) = s4d(fx2n, gx2n+1) ≤ N(x2n, x2n+1), (2.24)

where

N(x2n, x2n+1) = max{ψ(d(x2n, x2n+1)), ψ(d(x2n, fx2n)), ψ(d(x2n+1, gx2n+1)),

ψ(d(x2n, gx2n+1)), ψ(d(x2n+1, fx2n))}
= max{ψ(d(x2n, x2n+1)), ψ(d(x2n+1, x2n+2)), ψ(d(x2n, x2n+2))}. (2.25)

If N(x2n, x2n+1) = ψ(d(x2n+1, x2n+2)), then from (2.24),

s4d(x2n+1, x2n+2) ≤ ψ(d(x2n+1, x2n+2)) <
1

2s
d(x2n+1, x2n+2),

which is a contradiction.
If N(x2n, x2n+1) = ψ(d(x2n, x2n+2)), then from (2.24),

s4d(x2n+1, x2n+2) ≤ ψ(d(x2n, x2n+2)) <
1

2s
d(x2n, x2n+2)

≤ 1

2s
s[d(x2n, x2n+1) + d(x2n+1, x2n+2)] < d(x2n+1, x2n+2),

which is a contradiction.
If N(x2n, x2n+1) = ψ(d(x2n, x2n+1)), then from (2.24),

s4d(x2n+1, x2n+2) ≤ ψ(d(x2n, x2n+1)) <
1

2s
d(x2n, x2n+1) <

1

2s
d(x2n+1, x2n+2),

a contradiction.
Hence, (2.23) is false, that is, d(x2n+1, x2n+2) ≤ d(x2n, x2n+1), for all n. Therefore, (2.22) is proved for

k = 2n.
Similarly, we have

d(x2n+2, x2n+3) ≤ d(x2n+1, x2n+2),

for all n. Hence {d(xk, xk+1)} is a nondecreasing sequence of nonnegative real numbers. Therefore, there is
an r ≥ 0 such that

lim
k→∞

d(xk, xk+1) = r.
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Assume that r > 0. From (2.25), we have

N(x2n, x2n+1) <
1

2s
max{d(x2n, x2n+1), d(x2n+1, x2n+2), d(x2n, x2n+2)}

≤ 1

2s
max{d(x2n, x2n+1), d(x2n+1, x2n+2), sd(x2n, x2n+1) + sd(x2n+1, x2n+2)}. (2.26)

Now, taking the upper limit as n→∞ in (2.26), we obtain

lim sup
n→∞

N(x2n, x2n+1) ≤
1

2s
max{r, 2sr} = r. (2.27)

Taking the upper limit as n→∞ in (2.24), and using(2.27), we have s4r ≤ r. Therefore (s4 − 1)r ≤ 0, a
contradiction with s > 1. Hence,

r = lim
k→∞

d(xk, xk+1) = 0. (2.28)

Step II. We now show that {xn} is a b-Cauchy sequence in X. That is, for every ε > 0, there exists
k ∈ N such that for all m,n ≥ k, d(xm, xn) < ε.

We assume to the contrary, that {xn} is not a b-Cauchy sequence. Then from Lemma 1.7 there exists
ε > 0 for which we can find subsequences {xm(k)} and {xn(k)} of {xn} such that n(k) > m(k) ≥ k and:

(a) m(k) = 2t and n(k) = 2t′ + 1, where t and t′ are nonnegative integers,
(b) d(xm(k), xn(k)) ≥ ε, and
(c) n(k) is the smallest number such that the condition (b) holds; i.e., d(xm(k), xn(k)−1) < ε.
We have the following relations:

ε ≤ lim sup
k→∞

d(xm(k), xn(k)) ≤ sε, (2.29)

ε

s
≤ lim sup

k→∞
d(xm(k), xn(k)+1) ≤ s2ε, (2.30)

ε

s
≤ lim sup

k→∞
d(xn(k), xm(k)+1) ≤ s2ε, (2.31)

ε

s2
≤ lim sup

k→∞
d(xm(k)+1, xn(k)+1) ≤ s3ε. (2.32)

Since n(k) > m(k), we have xm(k) � xn(k), so from (2.20), we have

s4d(xm(k)+1, xn(k)+1) = s4d(fxm(k), gxn(k))
)
≤ N(xm(k), xn(k)), (2.33)

where

N(xm(k), xn(k)) = max{ψ(d(xm(k), xn(k))), ψ(d(xm(k), fxm(k))), ψ(d(xn(k), gxn(k))),

ψ(d(xm(k), gxn(k))), ψ(d(xn(k), fxm(k)))}
= max{ψ(d(xm(k), xn(k))), ψ(d(xm(k), xm(k)+1)), ψ(d(xn(k), xn(k)+1)),

ψ(d(xm(k), xn(k)+1)), ψ(d(xn(k), xm(k)+1))}

<
1

2s
max{d(xm(k), xn(k)), d(xm(k), xm(k)+1), d(xn(k), xn(k)+1),

d(xm(k), xn(k)+1), d(xn(k), xm(k)+1)}.

Taking the upper limit as k →∞ and using (2.28), (2.29), (2.30), and (2.31), we have

lim sup
k→∞

N(xm(k), xn(k)) ≤
1

2s
max{lim sup

k→∞
d(xm(k), xn(k)), lim sup

k→∞
d(xm(k), xm(k)+1), lim sup

k→∞
d(xn(k), xn(k)+1),

lim sup
k→∞

d(xm(k), xn(k)+1), lim sup
k→∞

d(xn(k), xm(k)+1)}

≤ 1

2s
max{sε, 0, 0, s2ε, s2ε} =

sε

2
.
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Taking the upper limit as k →∞ in (2.33) and using (2.32), we have

s2ε = s4
ε

s2
≤ s4 lim sup

k→∞
d(xm(k)+1, xn(k)+1) ≤ lim sup

k→∞
N(xm(k), xn(k)) ≤

sε

2
,

which implies that s ≤ 1
2 , a contradiction to s > 1. Hence {xn} is a b-Cauchy sequence.

Step III. We will show that f and g have a common fixed point.
Since {xn} is a b-Cauchy sequence in the complete b-metric space X, there exists z ∈ X such that

lim
n→∞

d(x2n, z) = lim
n→∞

d(x2n+1, z) = lim
n→∞

d(fx2n, z) = 0, (2.34)

By the triangle inequality, we have

d(fz, z) ≤ s[d(fz, fx2n) + d(fx2n, z)] = s[d(fz, fx2n) + d(x2n+1, z)]. (2.35)

Suppose that f is continuous. Letting n→∞ in (2.35) and applying (2.34) we have

d(fz, z) ≤ s[ lim
n→∞

d(fz, fx2n) + lim
n→∞

d(fx2n, z)] = 0,

which implies that fz = z.
Let d(z, gz) > 0. As z and z are comparable, by (2.20) we have

s4d(z, gz) = s4d(fz, gz) ≤ N(z, z), (2.36)

where
N(z, z) = max{ψ(d(z, z)), ψ(d(z, fz)), ψ(d(z, gz)), ψ(d(z, gz)), ψ(d(z, fz))} < d(z, gz).

Hence, (2.36) gives s4d(z, gz) < d(z, gz), which is a contradiction. Hence, d(z, gz) = 0.
Similarly, if g is continuous, the desired result is obtained.

In the following theorem, we omit the assumption of continuity of f or g.

Theorem 2.6. Let (X,�, d) be a complete partially ordered b-metric space. Let f, g : X → X be two
mappings such that f is g-weakly isotone increasing. Suppose that for every two comparable elements x, y ∈
X, we have

s4d(fx, gy) ≤ N(x, y).

Then, the pair (f, g) has a common fixed point z in X if X is regular. Moreover, the set of common fixed
points of f and g is well ordered if and only if f and g have one and only one common fixed point.

Proof. Following the proof of Theorem 2.5, there exists z ∈ X such that

lim
n→∞

d(xn, z) = 0.

Now we prove that z is a common fixed point of f and g.
Since x2n+1 → z, as n→∞, from regularity of X, x2n+1 � z. Therefore, from (2.20), we have

s4d(fz, gx2n+1) ≤ N(z, x2n+1), (2.37)

where

N(z, x2n+1) = max{ψ(d(z, x2n+1)), ψ(d(z, fz)), ψ(d(x2n+1, gx2n+1)), ψ(d(z, gx2n+1)), ψ(d(x2n+1, fz))}.
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Taking the limit as n→∞ in (2.37) and using Lemma 1.6, we obtain that

s3d(fz, z) = s4
1

s
d(fz, z) ≤ s4 lim sup

n→∞
d(fz, gx2n+1) ≤ lim sup

n→∞
N(z, x2n+1)

<
1

2s
max{lim sup

n→∞
d(z, x2n+1), lim sup

n→∞
d(z, fz), lim sup

n→∞
d(x2n+1, gx2n+1),

lim sup
n→∞

d(z, gx2n+1), lim sup
n→∞

d(x2n+1, fz)}

≤ 1

2s
max{0, d(z, fz), 0, 0, d(z, fz)} =

1

2s
d(z, fz),

which implies that fz = z.
Similarly, it can be shown that z is a fixed point of g.

We illustrate our results by the following examples.

Example 2.7. Let X = {0, 1, 2} and d : X×X → R be defined by d(x, x) = 0 for x ∈ X, d(0, 1) = d(1, 2) =
1, d(0, 2) = 9

4 , d(x, y) = d(y, x) for x, y ∈ X. Then, by [26], (X, d) is a b-metric space (with s = 9
8 > 1)

which is not a metric space. Define an order on X by �= {(0, 0), (1, 1), (2, 2), (1, 0), (2, 0)} and obtain a
complete ordered b-metric space.

Consider the mapping f : X → X given by

f :

(
0 1 2
0 0 1

)
.

Then, f2 :

(
0 1 2
0 0 0

)
and it follows that fx � f2x, i.e., f is weakly isotone increasing and, obviously,

continuous. Finally, take ψ(t) = kt for any k satisfying 729
1024 < k < 1. The contractive condition (2.19) have

to be checked only for x = 0, y = 1 and for x = 0, y = 2. In the first case, fx = fy = 0 and (2.19) is
trivially satisfied. In the second case, we get that

s4d(f0, f2) =

(
9

8

)4

d(0, 1) =
94

46
=

93

45
· 9

4
< k · d(0, 2)

= k ·max{d(0, 2), d(0, f0), d(2, f2),
4

9
(d(0, f2) + d(2, f0))} = Ms(0, 2),

and all the conditions of Corollary 2.4 are satisfied. The mapping f has a unique fixed point z = 0.
Note that if we considered the same example without order, then we would have also to consider the case

x = 1, y = 2. However, then the contractive condition would not hold, since it would reduce to 94/46 < k
which is not true since k < 1.

Motivated by Example 2 in [25], we present the following example.

Example 2.8. Let X = [0,∞) be equipped with the b-metric d(x, y) = |x−y|2, x, y ∈ X where s = 22−1 = 2
according to Example 1.4, and define a relation � on X by x � y iff y ≤ x, where ≤ is the usual ordering
on R. Define functions f, g : X → X by

fx = ln
(

1 +
x

9

)
and gx = ln

(
1 +

x

7

)
.

Define ψ : [0,+∞)→ [0,+∞) by ψ(t) = kt with 4
9 ≤ k < 1. Then we have the following:

(1) (X,�, d) is a complete partially ordered b-metric space.

(2) f is g-weakly isotone increasing with respect to �.
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(3) f and g are continuous.

(4) for every two comparable elements x, y ∈ X the inequality (2.2) holds, where Ms(x, y) is given by
(2.1).

Proof. The proof of (1) is clear. To prove (2), for each x ∈ X, we have 1 + x
9 ≤ e

x
9 and 1 + x

7 ≤ e
x
7 . Hence,

fx = ln(1 + x
9 ) ≤ x, gx = ln(1 + x

7 ) ≤ x. Thus for each x ∈ X we have gfx = ln(1 + fx
7 ) ≤ fx and

fgfx = ln(1 + gfx
9 ) ≤ gfx, i.e., fx � gfx � fgfx. Thus, f is g-weakly isotone increasing with respect to

�. It is easy to see that f and g are continuous. To prove (4), consider x, y ∈ X with x � y, i.e., y ≤ x.
We have the following cases:

Case 1: If
y

7
≤ x

9
then we have

1 ≤
1 +

x

9

1 +
y

7

≤
1 +

x

7

1 +
y

7

=⇒ 0 ≤ ln

1 +
x

9

1 +
y

7

 ≤ ln

1 +
x

7

1 +
y

7

 .

Now, by using the mean value theorem for the function ln(1 + t) on t ∈
[y
7 ,

x
7

]
we have

s4d(fx, gy) = 16
(

ln(1 +
x

9
)− ln(1 +

y

7
)
)2

= 16

ln

1 +
x

9

1 +
y

7

2

≤ 16

ln

1 +
x

7

1 +
y

7

2

= 16
(

ln(1 +
x

7
)− ln(1 +

y

7
)
)2
≤ 16

(x
7
− y

7

)2
≤ kd(x, y) = ψ (d(x, y)) ≤M2(x, y).

So we have s4d(fx, fy) ≤Ms(x, y)).

Case 2: If
x

9
<
y

7
then we have

0 <
y

7
− x

9
≤ y

7
=⇒

(y
7
− x

9

)2
≤ y2

49
.

By using the mean value theorem for the function ln(1 + t) on t ∈ [x9 ,
y
7 ] we have

s4d(fx, gy)) = 16
(

ln(1 +
x

9
)− ln(1 +

y

7
)
)2
≤ 16

(y
7
− x

9

)2
≤ 16

49
y2

=
4

9

(
6y

7

)2

≤ k
(

6y

7

)2

≤ k
(
y − ln(1 +

y

7
)
)2

= ψ (d(y, gy)) ≤M2(x, y).

Hence, again s4d(fx, fy) ≤Ms(x, y)) holds.
By combining all cases together, we conclude that f , g and ψ satisfy all the hypotheses of Theorem 2.1

and hence f and g have a common fixed point. Indeed, 0 is the unique common fixed point of f and g.

3. Periodic point results

Let X be a nonempty set and denote by F (f) = {x ∈ X : fx = x} the fixed point set of a mapping
f : X → X. Clearly, F (f) ⊂ F (fn) for every n ∈ N, but the converse does not hold. If F (f) = F (fn) for
every n ∈ N, then f is said to have property P . For more details, we refer the reader to [1, 15] and the
references mentioned therein.

Theorem 3.1. Let X and f be as in Corollary 2.4. Then f has the property P .
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Proof. From Corollary 2.4, F (f) 6= ∅. Let u ∈ F (fn) for some n > 1. We will show that u = fu.
Assume to the contrary, that u 6= fu, i.e., d(u, fu) > 0. We have fn−1u � fnu, as f is weakly isotone

increasing. Using (2.19), we obtain that

d(fu, u) = d(fn+1u, fnu) = d(ffnu, ffn−1u) ≤ 1

s4
Ms(f

nu, fn−1u),

where

Ms(f
nu, fn−1u) = max{d(fnu, fn−1u), d(fnu, fn+1u), d(fn−1u, fnu),

d(fnu, fnu) + d(fn−1u, fn+1u)

2s
}

≤ max{d(fnu, fn−1u), d(fnu, fn+1u),
d(fn−1u, fnu) + d(fnu, fn+1u)

2
}

= max{d(fnu, fn−1u), d(fnu, fn+1u)}.

If Ms(f
nu, fn−1u) = d(fnu, fn+1u), then from (3.1), we have

d(u, fu) = d(fnu, fn+1u) ≤ 1

s4
d(fnu, fn+1u),

which is a contradiction since s > 1. Hence, we have

d(fu, u) = d(fn+1u, fnu) ≤ 1

s4
d(fnu, fn−1u).

Starting from d(fn−1u, fnu), and repeating the above process, we get

d(u, fu) = d(fn+1u, fnu) ≤ 1

s4
d(fnu, fn−1u) ≤ [

1

s4
]2[d(fn−2u, fn−1u)

· · ·

≤ [
1

s4
]nd(u, fu) < d(u, fu),

which is again a contradiction. Thus, u = fu.

4. Existence theorem for a solution of an integral equation

Consider the integral equation

x(t) =

∫ T

0
K(t, r, x(r)) dr + g(t), t ∈ [0, T ], (4.1)

where T > 0. The purpose of this section is to give an existence theorem for a solution of (4.1) that belongs
to X = C(I,R) (the set of continuous real functions defined on I = [0, T ]), by using the obtained result in
Corollary 2.4. Obviously, this space with the b-metric given by

d(x, y) = max
t∈I
|x(t)− y(t)|p,

for all x, y ∈ X is a complete b-metric space with s = 2p−1 and p ≥ 1 (see Example 1.4).
We endow X with the partial order � given by

x � y ⇐⇒ x(t) ≤ y(t), for all t ∈ [0, T ].

It was proved in [22] that (X,�, d) is regular (the proof is valid also in the b-metric case).
We suppose that K : I × I × R→ R and g : I → R are continuous. Now, we define F : X → X

Fx(t) =

∫ T

0
K(t, r, x(r)) dr + g(t), t ∈ I

for all x ∈ X. Then, a solution of (4.1) is a fixed point of T . We will prove the following result.
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Theorem 4.1. Suppose that the following hypotheses hold:

(i) for all t, r ∈ I and u ∈ X, we have

K(t, r, u(t)) ≤ K(t, r,

∫ T

0
K(r, τ, u(τ)) dτ + g(r));

(ii) there exist a continuous function ξ : I × I → [0,∞) and a non-decreasing continuous function ψ :
[0,∞)→ [0,∞) with ψ(l) < l for each l > 0 and ψ(0) = 0 such that

|K(t, r, x(r))−K(t, r, y(r))|p ≤ ξ(t, r)ψ (|x(r)− y(r)|p) ,

for all t, r ∈ I and x, y ∈ X with x � y;

(iii) maxt∈I(
∫ T
0 ξ(t, r) dr) ≤ 1

24p−4T p−1 .

Then, the integral equation (4.1 )has a solution u∗ ∈ X.

Proof. From (i), for all t ∈ I, we have

Fx(t) =

∫ T

0
K(t, r, x(r)) dr + g(t) ≤

∫ T

0
K(t, r,

∫ T

0
K(r, τ, x(τ)) dτ + g(r)) dr + g(t)

=

∫ T

0
K(t, r, Fx(r))dr + g(t) = F (Fx)(t).

Hence, we have Fx � F (Fx) for all x ∈ X.
Now let 1 ≤ q <∞ with 1

p + 1
q = 1. For all x, y ∈ X such that y � x, by (ii) and (iii), we have

24p−4|Fx(t)− Fy(t)|p ≤ 24p−4(

∫ T

0
|K(t, r, x(r))−K(t, r, y(r))| dr)p

≤ 24p−4[(

∫ T

0
1q dr)

1
q (

∫ T

0
|K(t, r, x(r))−K(t, r, y(r))|p dr)

1
p ]p

= 24p−4T
p
q (

∫ T

0
|K(t, r, x(r))−K(t, r, y(r))|p dr)

≤ 24p−4T
p
q (

∫ T

0
ξ(t, r)ψ(|x(r)− y(r)|p) dr)

≤ 24p−4T
p
q (

∫ T

0
ξ(t, r)ψ(d(x, y)) dr)

≤ 24p−4T p−1(

∫ T

0
ξ(t, r) dr)ψ(Ms(x, y))

≤ ψ(Ms(x, y)).

Thus, from Corollary 2.4, the integral equation (4.1) has a solution u∗ ∈ X.
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