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dDipartimento di Matematica e Informatica, Università degli Studi di Palermo, Via Archirafi 34, 90123 Palermo, Italy

Communicated by R. Saadati

Abstract

In this paper, we explore (ϕ,L)-weak contractions of Berinde by obtaining Suzuki-type fixed point results.
Thus, we obtain generalized fixed point results for Kannan’s, Chatterjea’s and Zamfirescu’s mappings on a
0-complete partial metric space. In this way we obtain very general fixed point theorems that extend and
generalize several related results from the literature. c©2014 All rights reserved.
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1. Introduction and preliminaries

Historically, the concept of completeness of metric spaces has interesting and important applications in
classical analysis. On the other hand, Banach’s fixed point theorem [8] is one of the most useful results in
nonlinear analysis. Therefore, many authors considered the equivalence of the existence of fixed points of
mappings by proving some equivalence theorems for the completeness of metric spaces. Precisely, Kirk [28]
and Subrahmanyam [40] obtained that a metric space (X, d) is complete if and only if each Caristi’s mapping
defined on X has a unique fixed point, and by [40], (X, d) is complete if and only if each Kannan’s mapping
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has a unique fixed point, but this is not the case with Banach’s fixed point theorem. Despite of this fact,
Suzuki [41] obtained a variant of Banach’s fixed point theorem that characterizes metric completeness by
using different types of contractions. Subsequently, many authors gave different generalizations of this result
(see details in [33]–[42]). Very recently, Paesano and Vetro [38] proved analogous fixed point results for a
self-mapping on a partial metric space and on a partially ordered metric space. Moreover, they obtained a
characterization of partial metric 0-completeness in terms of fixed point theory. This result extends Suzuki’s
characterization of metric completeness.

Recently, Berinde introduced some new mappings that he called weak contraction mappings in a metric
space [9, 10, 11]. He showed that Banach’s, Kannan’s, Chatterjea’s and Zamfirescu’s mappings are weak
contractions. Subsequently, a lot of generalizations of these results in different types of spaces appeared in
the literature (see, e.g., [1]–[19]; note that Berinde-type weak contractions were later usually called almost
contractions).

In [12] Berinde introduced a nonlinear-type weak contraction using a comparison function and proved
a fixed point result for such contractions. A function ϕ : R+ → R+, where R+ = [0,+∞), is called a
comparison function if it satisfies:

(i) ϕ is increasing,

(ii) limn→+∞ ϕ
n(t) = 0 for all t ∈ R+ (here, ϕn is the n-th iterate of ϕ).

If ϕ satisfies (i) and

(iii)
∑∞

n=0 ϕ
n(t) converges for all t ∈ R+,

then ϕ is said to be a (c)-comparison function.
One can find some properties and some examples of comparison and (c)-comparison functions in [11].

In particular, it is easy to see that ϕ(t) < t for each comparison function ϕ and each t > 0.

Definition 1.1. Let (X, d) be a metric space and T : X → X be a self-mapping. T is said to be a weak
ϕ-contraction (or (ϕ,L)-weak contraction) if there exist a comparison function ϕ and L ≥ 0 such that

d(Tx, Ty) ≤ ϕ(d(x, y)) + Ld(y, Tx) (1.1)

for all x, y ∈ X.

Then, Berinde proved that if (X, d) is a complete metric space and T is a (ϕ,L)-weak contraction, then
T has a fixed point.

Clearly, any weak contraction (or (δ, L)-weak contraction) is a weak ϕ-contraction (in Definition 1.1
assume ϕ(t) = δt, where δ ∈ (0, 1)), but the converse may not be true. Note that the class of weak
ϕ-contractions includes Matkowski type nonlinear contractions [30].

Similarly to the case of weak contractions, by the symmetry of the metric d, the weak ϕ-contractiveness
of the mapping T means also that

d(Tx, Ty) ≤ ϕ(d(x, y)) + Ld(x, Ty) (1.2)

for all x, y ∈ X. In other words, condition (1.1) can be replaced by

d(Tx, Ty) ≤ ϕ(d(x, y)) + Lmin{d(y, Tx), d(x, Ty)}. (1.3)

In 2011 Suzuki proved a fixed point theorem [43] for generalized weak contractions with constants in
complete metric spaces. Moreover, for each r ∈ [0, 1), (1 + r)−1 is the best constant in the Suzuki’s fixed
point theorem. Inspired by this paper, we deduce Suzuki-type fixed point results for generalized weak
contractions in 0-complete partial metric spaces. Also we obtain that (1 + r)−1 is the best constant in these
results, for every r ∈ [0, 1). Hence, in this way we give very general fixed point theorems that extend and
generalize several related fixed point results from the literature.
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2. Partial metric spaces

Recall (see, e.g., [3]–[31]) that a partial metric on a nonempty set X is a function p : X ×X → R+ such
that for all x, y, z ∈ X:

(i) x = y ⇔ p(x, x) = p(x, y) = p(y, y),

(ii) p(x, x) ≤ p(x, y),

(iii) p(x, y) = p(y, x),

(iv) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

A partial metric space is a pair (X, p) of a nonempty set X and a partial metric p on X. It is clear that,
if p(x, y) = 0 then, from (i) and (ii), x = y. However, p(x, x) = 0 might not hold for each x ∈ X.

Each partial metric p on X generates a T0 topology τp on X which has as a base the family of open
p-balls {Bp(x, ε) : x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε} for all x ∈ X and ε > 0.

If p is a partial metric on X, then two equivalent standard metrics, ps and pw can be defined on X by

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y),

pw(x, y) = p(x, y)−min{p(x, x), p(y, y)}.

Definition 2.1. A sequence {xn} in (X, p) converges to a point x ∈ X (with respect to τp) if and only if
limm,n→+∞ p(xn, xm) = limn→+∞ p(xn, x) = p(x, x).

Definition 2.2. A sequence {xn} in (X, p) is called a Cauchy sequence if

lim
m,n→+∞

p(xm, xn)

exists and is finite.

If limm,n→+∞ p(xn, xm) = 0, then {xn} is said to be a 0-Cauchy sequence in (X, p).

Definition 2.3. A partial metric space (X, p) is said to be complete if every Cauchy sequence {xn} in X
converges, with respect to τp, to a point x ∈ X such that limm,n→+∞ p(xm, xn) = p(x, x).

(X, p) is 0-complete [39] if every 0-Cauchy sequence {xn} in X converges to some x ∈ X (with respect to
τp) such that p(x, x) = 0. Therefore, (X, p) is 0-complete if and only if every 0-Cauchy sequence converges
with respect to τps . It is clear that every 0-Cauchy sequence in (X, p) is a Cauchy sequence in (X, p).
Therefore, if (X, p) is complete then it is 0-complete. The opposite is not true (see [39]).

In general, p(x, y) is not a continuous function in two variables, in the sense that xn → x and yn → y
(in τp) imply that p(xn, yn)→ p(x, y), as n→ +∞. However, the following holds:

Lemma 2.4 ([2, 25]). Let (X, p) be a partial metric space and {xn} ⊂ X. If xn → z as n → +∞ and
p(z, z) = 0 then, for each x ∈ X,

lim
n→+∞

p(xn, x) = p(z, x).

Definition 2.5 ([3]). Let (X, p) be a partial metric space. A mapping T : X → X is called a (δ, L)-weak
contraction if there exist δ ∈ [0, 1) and L ≥ 0 such that

p(Tx, Ty) ≤ δp(x, y) + Lpw(y, Tx) (2.1)

for all x, y ∈ X.
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From the symmetry of the partial metric p and the respective standard metric pw, the (δ, L)-weak
contraction condition implicitly includes the following dual one

p(Tx, Ty) ≤ δp(x, y) + Lpw(x, Ty) (2.2)

for all x, y ∈ X. These conditions might be replaced by the following one

p(Tx, Ty) ≤ δp(x, y) + Lmin{pw(y, Tx), pw(x, Ty)}. (2.3)

Remark 2.6. In Definition 2.5, if p is an ordinary metric and ϕ(t) = δt, then the inequalities (2.1)–(2.3)
reduce to (1.1)–(1.3), respectively.

Note that any Banach contraction is a (δ, L)-weak contraction. Also, Altun and Acar in [3] obtained that
Kannan’s and Chatterjea’s mappings are (δ, L)-weak contractions on a partial metric space. Hence, they
obtained some fixed point results such as Banach’s, Kannan’s, Chatterjea’s, Zamfirescu’s contraction-type
theorems by using (ϕ,L)-weak contractions on a partial metric space.

3. Main results

Before giving the main result, we present the following lemma, which was given in [26, 41] in the case of
standard metric. The proof is the same for the partial metric and so we omit it.

Lemma 3.1. Let (X, p) be a partial metric space and let T : X → X be a mapping. Let x ∈ X satisfy
p(Tx, T 2x) ≤ rp(x, Tx) for some r ∈ [0, 1). Then for y ∈ X, either

1

1 + r
p(x, Tx) ≤ p(x, y) or

1

1 + r
p(Tx, T 2x) ≤ p(Tx, y)

holds.

Now we present the main result.

Theorem 3.2. Let (X, p) be a 0-complete partial metric space and T : X → X be a mapping. Assume there
exist a (c)-comparison function ϕ, r ∈ [0, 1) and L ≥ 0 such that

(1 + r)−1p(x, Tx) ≤ p(x, y) =⇒ p(Tx, Ty) ≤ ϕ(p(x, y)) + Lpw(y, Tx) (3.1)

for all x, y ∈ X. Then for every x ∈ X, {Tnx} converges to a fixed point z of T such that p(z, z) = 0.

Proof. Since (1 + r)−1p(x, Tx) ≤ p(x, Tx), we have

p(Tx, T 2x) ≤ ϕ(p(x, Tx)) + Lpw(Tx, Tx) = ϕ(p(x, Tx)). (3.2)

Fix u ∈ X and define u0 = u, un = Tun−1 for n ∈ N. Then from (3.2), we have

p(Tun−1, Tun) = p(Tn−1u, Tnu) ≤ ϕ(p(un−1, un))

and so
p(un, un+1) ≤ ϕ(p(un−1, un)).

We obtain by induction
p(un, un+1) ≤ ϕn(p(u, Tu))

for all n ∈ N. By triangle inequality, for m > n, we have

p(un, um) ≤
m−1∑
i=n

p(ui, ui+1)−
m−2∑
i=n

p(ui+1, ui+1)

≤
m−1∑
i=n

p(ui, ui+1) ≤
+∞∑
i=n

p(ui, ui+1) ≤
+∞∑
i=n

ϕi(p(u, Tu)).
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Since ϕ is a (c)-comparison function, then
∑+∞

i=0 ϕ
i(p(u, Tu)) is convergent and so {un} is a 0-Cauchy

sequence in X. Since X is 0-complete, it follows that {xn} converges, with respect to τp, to a point z ∈ X
such that

lim
n→+∞

p(un, z) = p(z, z) = 0.

Now we claim that p(z, Tz) = 0. Assume that p(z, Tz) > 0. Since un → z as n → +∞, there exists
n0 ∈ N such that for all n ≥ n0, p(un, z) ≤ 1

3p(z, Tz). Also, by Lemma 3.1 and (3.2), we can find a
subsequence {nj} of {n} such that

(1 + r)−1p(Tnju, Tnj+1u) ≤ p(Tnju, z).

By (3.1), we have

p(z, Tz) ≤ p(z, unj+1) + p(unj+1, T z)

= p(z, unj+1) + p(Tunj , T z)

≤ p(z, unj+1) + ϕ(p(unj , z)) + Lpw(z, unj+1)

≤ p(z, unj+1) + ϕ

(
1

3
p(z, Tz)

)
+ Lpw(z, unj+1)

and letting n→ +∞ we obtain

0 < p(z, Tz) ≤ 1

3
p(z, Tz),

which is a contradiction. Therefore, p(z, Tz) = 0 and z = Tz.

Next we give a simple illustrative example.

Example 3.3. Let X = [0, 1] endowed with the partial metric p : X ×X → R+ defined by

p(x, y) =


max{x, y}+ a, x 6= y

a, x = y 6= 1
2

0, x = y = 1
2 ,

where a ∈ (0, 1). Also define T : X → X by

Tx =


1
2 , x ∈ [0, 12 ]
1
4 , x ∈ (12 , 1)
1
3 , x = 1.

Let r ∈ [0, 1), L = 2 and consider a (c)-comparison function ϕ : R+ → R+ given by ϕ(t) = st for all t ∈ R+,
where 0 < r < s < 1 and s > 2a

2a+1 .

Since p(x, x) = a 6= 0 for all x 6= 1
2 , it follows that p is not a metric. Obviously, (X, p) is 0-complete and

pw(x, y) =


max{x, y}, x 6= y 6= 1

2

max{x, y}+ a, x 6= y, x = 1
2 (or y = 1

2)

0, x = y.

Now, we discuss the condition (3.1). Indeed, if x = y then the condition (3.1) trivially holds. Let us,
therefore, assume that x 6= y and distinguish the following eight cases:

1◦ x ∈ [0, 12 ], y ∈ [0, 12 ]. Then Tx = Ty = 1
2 , p(Tx, Ty) = 0; hence, the right-hand side of (3.1) trivially

holds and so the implication is true.
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2◦ x ∈ [0, 12 ], y ∈ (12 , 1). Then Tx = 1
2 , Ty = 1

4 . The left-hand side of (3.1) reduces to 1
1+r ·

(
1
2 + a

)
≤ y+a

and holds true. The right-hand side reduces to{
1
2 + a ≤ s(y + a) + 2y if x 6= 1

2
1
2 + a ≤ s(y + a) + 2(y + a) if x = 1

2

and, in both cases, holds true since y > 1
2 .

3◦ x ∈ [0, 12 ], y = 1. Then Tx = 1
2 , Ty = 1

3 . The left-hand side of (3.1) reduces to 1
1+r ·

(
1
2 + a

)
≤ 1 + a

and holds true. The right-hand side reduces to{
1
2 + a ≤ s(1 + a) + 2 if x 6= 1

2
1
2 + a ≤ s(1 + a) + 2(1 + a) if x = 1

2

and, in both cases, holds true.
4◦ x ∈ (12 , 1), y ∈ [0, 12 ]. Then Tx = 1

4 , Ty = 1
2 . The left-hand side of (3.1) reduces to 1

1+r ·(x+a) ≤ x+a
and holds true. The right-hand side reduces to{

1
2 + a ≤ s(x+ a) + 2 max{y, 14} if y 6= 1

2
1
2 + a ≤ s(x+ a) + 2 max{y, 14}+ 2a if y = 1

2

and, in both cases, holds true for all x, y.
5◦ x ∈ (12 , 1), y ∈ (12 , 1). Then Tx = Ty = 1

4 . The left-hand side of (3.1) reduces to 1
1+r · (x + a) ≤

max{x, y}+ a and holds true. The right-hand side reduces to a ≤ s(max{x, y}+ a) + 2y.
6◦ x ∈ (12 , 1), y = 1. Then Tx = 1

4 , Ty = 1
3 . The left-hand side of (3.1) reduces to 1

1+r · (x+ a) ≤ 1 + a

and holds true. The right-hand side reduces to 1
3 + a ≤ s(1 + a) + 2 and holds true.

7◦ x = 1, y ∈ [0, 12 ]. Then Tx = 1
3 , Ty = 1

2 . The left-hand side of (3.1) reduces to 1
1+r · (1 + a) < 1 + a

and holds true. The right-hand side reduces to{
1
2 + a ≤ s(1 + a) + 2 max{y, 13} if y 6= 1

2
1
2 + a ≤ s(1 + a) + 2 max{y, 13}+ 2a if y = 1

2

and, in both cases, holds true.
8◦ x = 1, y ∈ (12 , 1). Then Tx = 1

3 , Ty = 1
4 . The left-hand side of (3.1) reduces to 1

1+r (1 + a) < 1 + a

and holds true. The right-hand side reduces to 1
3 + a ≤ s(1 + a) + 2y and holds true since y > 1

2 .
Thus, in all possible cases the condition (3.1) is satisfied. Thus we can apply Theorem 3.2 to this example

and z = 1
2 is a fixed point of T .

As a direct consequence of Theorem 3.2, we obtain Theorem 3 of Altun and Acar in [3]:

Corollary 3.4 ([3]). Let (X, p) be a 0-complete partial metric space and T : X → X be a (ϕ,L)-weak
contraction, where ϕ is a (c)-comparison function and L ≥ 0. Then T has a fixed point.

Also, taking ϕ(t) = rt for all t ∈ R+ and some r ∈ [0, 1), we obtain the following result.

Corollary 3.5. Let (X, p) be a 0-complete partial metric space and T : X → X be a mapping. Assume
there exist r ∈ [0, 1) and L ≥ 0 such that

(1 + r)−1p(x, Tx) ≤ p(x, y) =⇒ p(Tx, Ty) ≤ r p(x, y) + Lpw(y, Tx)

for all x, y ∈ X. Then for every x ∈ X, {Tnx} converges to a fixed point of T .

Now, we show that (1+r)−1 is the best constant in the previous corollary, i.e., for (r, L)-weak contraction
mappings.
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Theorem 3.6. For each r ∈ [0, 1), there exist a 0-complete partial metric space (X, p), a mapping T : X →
X and L ≥ 0 such that T has no fixed points and

(1 + r)−1p(x, Tx) < p(x, y) =⇒ p(Tx, Ty) ≤ r p(x, y) + Lpw(y, Tx) (3.3)

for all x, y ∈ X.

Proof. Let X = [0, 1] and define a 0-complete (partial) metric by

p(x, y) = pw(x, y) =

{
max{x, y}, x 6= y

0, x = y.

We define a mapping T : X → X by

Tx =


1
2 , x ∈ [0, 12)
1
4 , x ∈ [12 , 1)
1
3 , x = 1.

Then we take L = 2 and show that T has no fixed points.
If x = y then p(x, y) = 0; it follows that the left-hand side of (3.3) cannot hold and the thesis of the

theorem is true. Let us, therefore, assume that x 6= y and distinguish the following eight cases:
1◦ x ∈ [0, 12), y ∈ [0, 12). Then Tx = Ty = 1

2 , p(Tx, Ty) = 0; hence, the right-hand side of (3.3) trivially
holds and so the implication is true.

2◦ x ∈ [0, 12), y ∈ [12 , 1). Then Tx = 1
2 , Ty = 1

4 . The left-hand side of (3.3) reduces to 1
1+r ·

1
2 < y and

holds true (except if r = 0 and y = 1
2). The right-hand side reduces to 1

2 ≤ ry + 2y and holds true since
y ≥ 1

2 .
3◦ x ∈ [0, 12), y = 1. Then Tx = 1

2 , Ty = 1
3 . The left-hand side of (3.3) reduces to 1

1+r ·
1
2 < 1 and holds

true. The right-hand side reduces to 1
2 ≤ r + 2 and holds true.

4◦ x ∈ [12 , 1), y ∈ [0, 12). Then Tx = 1
4 , Ty = 1

2 . The left-hand side of (3.3) reduces to 1
1+r · x < x and

holds true (except if r = 0). The right-hand side reduces to 1
2 ≤ rx+ 2 max{y, 14} and holds true for all x, y.

5◦ x ∈ [12 , 1), y ∈ [12 , 1). Then Tx = Ty = 1
4 , p(Tx, Ty) = 0; again, the right-hand side of (3.3) trivially

holds and so the implication is true.
6◦ x ∈ [12 , 1), y = 1. Then Tx = 1

4 , Ty = 1
3 . The left-hand side of (3.3) reduces to 1

1+r · x < 1 and holds

true. The right-hand side reduces to 1
3 ≤ r + 2 and holds true, too.

7◦ x = 1, y ∈ [0, 12). Then Tx = 1
3 , Ty = 1

2 . The left-hand side of (3.3) reduces to 1
1+r < 1 and holds

true (except if r = 0). The right-hand side reduces to 1
2 ≤ r + 2 max{y, 13} and holds true.

8◦ x = 1, y ∈ [12 , 1). Then Tx = 1
3 , Ty = 1

4 . The left-hand side of (3.3) reduces to 1
1+r < 1 and holds

true (except if r = 0). The right-hand side reduces to 1
3 ≤ r + 2y and holds true since y ≥ 1

2 .
Thus, in all possible cases the condition (3.3) is satisfied. This completes the proof of the theorem.

As in the metric case, the hypotheses of Theorem 3.2 do not guarantee the uniqueness of the fixed point.
However, we conclude this paper giving a sufficient condition for uniqueness, which is similar to the ones in
the metric case (see [7]) and in the partial metric case (see [3]) for “non-Suzuki”-type mappings.

Theorem 3.7. Let (X, p) be a 0-complete partial metric space and T : X → X be a (ϕ,L)-weak contraction.
Also suppose there exist a comparison function ϕ1 and L1 ≥ 0 such that

1

1 + r
p(x, Tx) ≤ p(x, y) =⇒ p(Tx, Ty) ≤ ϕ1(p(x, y)) + L1p

w(x, Tx) (3.4)

for all x, y ∈ X. Then T has a unique fixed point z such that p(z, z) = 0.
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Proof. By Theorem 3.2, there is a point z ∈ X such that Tz = z and p(z, z) = 0. Suppose that there is
another point w ∈ X such that Tw = w and p(w,w) = 0 and assume that p(z, w) > 0. Then

1

1 + r
p(z, Tz) = 0 ≤ p(z, w),

so we can put z = x and y = w in (3.4) to obtain

0 < p(z, w) = p(Tz, Tw) ≤ ϕ1(p(z, w)) + L1p
w(z, Tz) = ϕ1(p(z, w)) < p(z, w),

a contradiction. Hence, p(z, w) = 0 and z = w.
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Math. 24 (2008), 10–19.
[14] V. Berinde, Approximating common fixed points of noncommuting discontinuous weakly contractive mappings in metric

spaces, Carpathian J. Math. 25 (2009), 13–22.
[15] V. Berinde, Some remarks on a fixed point theorem for Ćirić-type almost contractions, Carpathian J. Math. 25 (2009),
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