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Abstract

In this paper, by using Schauder fixed point theorem, we study the existence of at least one positive solution
to a coupled system of fractional boundary value problems given by{

−Dν1
0+
y1(t) = λ1a1(t)f(t, y1(t), y2(t)) + e1(t),

−Dν2
0+
y2(t) = λ2a2(t)g(t, y1(t), y2(t)) + e2(t),

where ν1, ν2 ∈ (n− 1, n] for n > 3 and n ∈ N , subject to the boundary conditions y
(i)
1 (0) = 0 = y

(i)
2 (0), for

0 ≤ i ≤ n− 2, and [Dα
0+y1(t)]t=1 = 0 = [Dα

0+y2(t)]t=1, for 1 ≤ α ≤ n− 2.
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1. Introduction

In this paper, we are interested in the existence of positive solution of the following coupled system of
fractional boundary value problems(FBVPs for short) given by:{

−Dν1
0+
y1(t) = λ1a1(t)f(t, y1(t), y2(t)) + e1(t),

−Dν2
0+
y2(t) = λ2a2(t)g(t, y1(t), y2(t)) + e2(t),

(1.1)
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where t ∈ (0, 1), ν1, ν2 ∈ (n− 1, n] for n > 3 and n ∈ N , and λ1, λ2 > 0, with the boundary value condition:

y
(i)
1 (0) = 0 = y

(i)
2 (0), 0 ≤ i ≤ n− 2, (1.2)

[Dα
0+y1(t)]t=1 = 0 = [Dα

0+y2(t)]t=1, 1 ≤ α ≤ n− 2, (1.3)

where f, g ∈ C([0, 1]× [0,∞)× [0,∞), [0,∞)), a1, a2, e1, e2 ∈ C([0, 1], [0,∞)).
Fractional calculus is a generalization of ordinary differentiation and integration to arbitrary noninteger

order. The fractional differential equations play an important role in various fields of science and engineering.
With the help of fractional calculus, we can describe the natural phenomena and mathematical model more
accurately. So, the fractional differential equations have received much attention and the theory and applica-
tion have been greatly developed (see [1]-[25]). Recently, the existence of solutions of the initial and boundary
value problems for nonlinear fractional equations are extensively studied (see [1],[2],[5]-[7],[9],[10],[18]-[22]),
and some are coupled systems of nonlinear fractional differential equations (see [2],[5],[6],[9],[19],[20]).

In [9], by using Krasnoselskii fixed point theorem, C.S. Goodrich considered:{
−Dν1

0+
y1(t) = λ1a1(t)f(y1(t), y2(t)),

−Dν2
0+
y2(t) = λ2a2(t)g(y1(t), y2(t)),

(1.4)

with the same boundary value problem like (1.2) and (1.3), and establish the existence of at least one positive
solution.

In [18], M.ur Rehman, R.A. Khan investigated the existence of solutions for a class of nonlinear multi-
point boundary value problems for fractional differential equations:{

Dα
t y(t) = f(t, y(t), Dβ

t y(t)), t ∈ (0, 1),

y(0) = 0, Dβ
t y(1)− Σm−2

i=1 ζiD
β
t y(ξi) = y0,

(1.5)

where 1 < α ≤ 2, 0 < β < 1, 0 < ξi < 1(i = 1, 2, . . . ,m − 2), ζi ≥ 0 with γ =
m−2∑
i=1

ζiξ
α−β−1
i < 1. Their

analysis relied on the Schauder fixed point theorem.
In [19], S.R. Sun, Q.P. Li, Y.N Li considered an initial value problem for a coupled system of multi-term

nonlinear fractional differential equations:{
Dαu(t) = f(t, v(t), Dβ1v(t), . . . , DβN v(t)), Dα−iu(0) = 0, i = 1, 2, . . . , n1,
Dσv(t) = g(t, u(t), Dρ1u(t), . . . , DρNu(t)), Dσ−jv(0) = 0, j = 1, 2, . . . , n2,

(1.6)

where t ∈ (0, 1], α > β1 > β2 > · · · > βN > 0, σ > ρ1 > ρ2 > · · · > ρN > 0, n1 = α + 1, n2 = σ + 1 for
α, σ 6∈ N and n1 = α, n2 = σ for α, σ ∈ N , βq, ρq < 1 for any q ∈ {1, 2, . . . , N}. Also, by means of the
Schauder fixed point theorem, an existence result for the solution are obtained.

In [20], X.W. Su studied a boundary value problem of the coupled system:
Dαu(t) = f(t, v(t), Dµv(t)), 0 < t < 1,
Dβv(t) = f(t, u(t), Dνu(t)), 0 < t < 1,
u(0) = u(1) = v(0) = v(1) = 0,

(1.7)

where 1 < α, β < 2, µ, ν > 0, α− ν ≥ 1, β − µ ≥ 1. Due to the Schauder fixed point theorem, an existence
result for the solution is obtained.

In our paper, we also utilize Schauder fixed point theorem to obtain three results on the existence of
positive solutions for the system of fractional boundary value problem (1.1)-(1.3).

With this context in mind, the outline of this paper is as follows. In Section 2 we shall recall certain
results from the theory of the continuous fractional calculus. In Section 3 we shall provide some conditions
under which FBVPs (1.1)-(1.3) will have at least one positive solution.
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2. Preliminaries

We first wish to collect some basic lemmas that will be important to us in the sequel.

Definition 2.1. ([10]) Let ν > 0 with ν ∈ R. Suppose that y : [a,∞) → R. Then the ν-th Riemann-
Liouville fractional integral is defined to be

D−ν
a+
y(t) :=

1

Γ(ν)

∫ t

a
y(s)(t− s)ν−1ds,

whenever the right-hand side is defined. Similarly, with ν > 0 and ν ∈ R, we define the ν-th Riemann-
Liouville fractional derivative to be

Dν
a+y(t) :=

1

Γ(n− ν)

dn

dtn

∫ t

a

y(s)

(t− s)ν+1−nds,

where n ∈ N is the unique positive integer satisfying n− 1 ≤ ν < n and t > a.

Lemma 2.2. ([8]) Let g ∈ Cn([0, 1]) be given. Then the unique solution to problem −Dν
0+y(t) = g(t)

together with the boundary conditions y(i)(0) = 0 = [Dα
0+y(t)]t=1, where 1 ≤ α ≤ n− 2 and 0 ≤ i ≤ n− 2, is

y(t) =

∫ 1

0
G(t, s)g(s)ds, (2.1)

where

G(t, s) =

{
tν−1(1−s)ν−α−1−(t−s)ν−1

Γ(ν) , 0 ≤ s ≤ t ≤ 1,
tν−1(1−s)ν−α−1

Γ(ν) , 0 ≤ t ≤ s ≤ 1,
(2.2)

is the Green function for this problem.

Lemma 2.3. ([8]) Let G(t,s) be as given in the statement of Lemma 2.2. Then we find that:

(i) G(t, s) is a continuous function on the unit square [0, 1]× [0, 1];

(ii) G(t, s) ≥ 0 for each (t, s) ∈ [0, 1]× [0, 1];

(iii) max
t∈[0,1]

G(t, s) = G(1, s), for each s ∈ [0, 1].

Lemma 2.4. ([8]) Let G(t,s) be as given in the statement of Lemma 2.2. Then there exists a constant
γ ∈ (0, 1) such that

min
t∈[ 1

2
,1]
G(t, s) ≥ γ max

t∈[0,1]
G(t, s) = γG(1, s). (2.3)

3. Main results

In this paper, let E represent the Banach space of C([0, 1]) when equipped with the usual supremum
norm, ‖·‖. Then put X := E×E, where X is equipped with the norm ‖(y1, y2)‖ := ‖y1‖+‖y2‖ for (y1, y2) ∈
X. Observe that X is also a Banach space (see [8]). In addition, define the operators T1, T2 : X → E by

(T1(y1, y2))(t) :=

∫ 1

0
G1(t, s)[λ1a1(s)f(s, y1(s), y2(s)) + e1(s)]ds

and

(T2(y1, y2))(t) :=

∫ 1

0
G2(t, s)[λ2a2(s)g(s, y1(s), y2(s)) + e2(s)]ds,
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where G1(t, s) is the Green function of Lemma 2.2 with ν replaced by ν1 and, likewise, G2(t, s) is the Green
function of Lemma 2.2 with ν replaced by ν2. Now, we define an operator S : X → X by

(S(y1, y2))(t) : = ((T1(y1, y2))(t), (T2(y1, y2))(t))

= (
∫ 1

0 G1(t, s)[λ1a1(s)f(s, y1(s), y2(s)) + e1(s)]ds,∫ 1
0 G2(t, s)[λ2a2(s)g(s, y1(s), y2(s)) + e2(s)]ds).

(3.1)

We claim that whenever (y1, y2) ∈ X is a fixed point of the operator defined in (1.1), it follows that y1(t)
and y2(t) solve FBVPs (1.1)-(1.3).

We shall look for fixed points of the operator S, seeing as these fixed points coincide with solutions
of FBVPs (1.1)-(1.3). For use in the sequel, let γ1 and γ2 the constants given by Lemma 2.4 associated,
respectively, to the Green functions G1 and G2.

Next, we suppose that f : [0, 1]×R+ → R is a Caratheodory function, that is,

(i) for almost all t ∈ [0, 1], f(t, ·) : R+ → R is continuous;

(ii) for every l ∈ R+, f(·, l) : [0, 1]→ R is measurable.

We give a notation: if for almost all t ∈ [0, 1], b ≥ 0, b ∈ L1(0, 1), we denote b � 0.
For the sake of convenience, we set

r∗ = max

{
sup
t∈[0,1]

∫ 1

0

G1(t, s)

tν1−1
e1(s)ds, sup

t∈[0,1]

∫ 1

0

G2(t, s)

tν2−1
e2(s)ds

}
,

r∗ = min

{
inf
t∈[0,1]

∫ 1

0

G1(t, s)

tν1−1
e1(s)ds, inf

t∈[0,1]

∫ 1

0

G2(t, s)

tν2−1
e2(s)ds

}
.

Now, we define a set P by

P := {(y1, y2) ∈ X : y1(t), y2(t) ≥ 0, t ∈ [0, 1]}.

Now we consider the problem (1.1)-(1.3), where f is a Caratheodory function.
Case 1. r∗ > 0.

Theorem 3.1. Suppose that there exist b � 0 and λ > 0 such that

0 ≤ f(t, y1, y2), g(t, y1, y2) ≤ b(t)

yλ1
, ∀(y1, y2) ∈ P and y1 6= 0, t ∈ [0, 1],

where

λ1

∫ 1

0

G1(1, s)a1(s)b(s)

sλ(ν−1)
ds, λ2

∫ 1

0

G2(1, s)a2(s)b(s)

sλ(ν−1)
ds < +∞, (3.2)

where ν = max{ν1, ν2}. If r∗ > 0, then FBVPs (1.1)-(1.3) have at least one positive solution.

Proof. Let Ω = {(y1, y2) ∈ P : tν−1r ≤ y1(t), y2(t) ≤ tν
∗−1R,∀t ∈ [0, 1]}, where ν∗ = min{ν1, ν2} and

R > r > 0 are undetermined positive constants. Then Ω is a bounded convex closed set.
Furthermore, a relatively straightforward application of the Arzela-Ascoil theorem, which we omit, re-

veals that S is a completely continuous operator. Next, we show that S(Ω) ⊂ Ω. In fact, we fix r := r∗ and
from assumption, we have r > 0. For all t ∈ [0, 1] and (y1, y2) ∈ Ω, we get

T1(y1, y2)(t) ≥
∫ 1

0
G1(t, s)e1(s)ds ≥ tν1−1r∗ = tν1−1r ≥ tν−1r.

On the other hand, we set

β∗ = max

{
λ1

1

tν1−1

∫ 1

0

G1(1, s)a1(s)b(s)

sλ(ν−1)
ds, λ2

1

tν2−1

∫ 1

0

G2(1, s)a2(s)b(s)

sλ(ν−1)
ds

}
.
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Hence,

T1(y1, y2)(t) ≤ λ1

∫ 1
0 G1(1, s)a1(s)f(s, y1(s), y2(s))ds+

∫ 1
0 G1(t, s)e1(s)ds

≤ λ1

∫ 1
0
G1(1,s)a1(s)b(s)

yλ1 (s)
ds+ r∗tν1−1

≤ tν1−1(β
∗

rλ
+ r∗) ≤ tν∗−1(β

∗

rλ
+ r∗).

Set R = (β
∗

rλ
+ r∗), then we have T1(y1, y2)(t) ≥ tν−1r and T1(y1, y2)(t) ≤ tν

∗−1R. Similarly, we get

T2(y1, y2)(t) ≥ tν−1r and T2(y1, y2)(t) ≤ tν∗−1R.
Consequently, S(Ω) ⊂ Ω. In summary, each of the conditions of Schauder fixed point theorem is satisfied.

The proof is complete.

Case 2. r∗ = 0.

Theorem 3.2. Suppose that there exist b � 0, b̂ � 0 and 1 > λ > 0, such that

b̂(t)

yλ1
≤ f(t, y1, y2), g(t, y1, y2) ≤ b(t)

yλ1
, ∀(y1, y2) ∈ P and y1 6= 0, t ∈ [0, 1] (3.3)

and (3.2) is satisfied. If r∗ = 0, then FBVPs (1.1)-(1.3) have at least one positive solution.

Proof. Like Theorem 3.1, we just need to search the fixed 0 < r < R, such that S(Ω) ⊂ Ω.
Similarly, we have

T1(y1, y2)(t) ≤ tν∗−1(
β∗

rλ
+ r∗).

On the other hand, set

β̂∗ = min

{
λ1γ1

1

tν1−1

∫ 1

1
2

G1(1, s)a1(s)b̂(s)

sλ(ν∗−1)
ds, λ2γ2

1

tν2−1

∫ 1

1
2

G2(1, s)a2(s)b̂(s)

sλ(ν∗−1)
ds

}
,

where γ1, γ2 are defined by Lemma 2.4. So,

T1(y1, y2)(t) ≥ λ1

∫ 1
0 G1(t, s)a1(s)f(s, y1(s), y2(s))ds

≥ λ1

∫ 1
1
2
G1(t, s)a1(s)f(s, y1(s), y2(s))ds

≥ λ1γ1

∫ 1
1
2
G1(1, s)a1(s) b̂(s)

yλ1 (s)
ds

≥ tν1−1 β̂∗
Rλ
≥ tν−1 β̂∗

Rλ
.

Hence, we only need to find r and R satisfying β∗

rλ
+ r∗ ≤ R and β̂∗

Rλ
≥ r. Like Theorem 3.1, we can obtain

the conclusion.

Case 3. r∗ < 0.

Theorem 3.3. Suppose that there exist b � 0, b̂ � 0 and 1 > λ > 0, such that (3.2) and (3.3) are satisfied.
If r∗ < 0 with

r∗ ≥ [
β̂∗

(β∗)λ
λ2]

1
1−λ2 (1− 1

λ2
), (3.4)

then FBVPs (1.1)-(1.3) have at least one positive solution.

Proof. Like Theorem 3.2, we only need to find 0 < r < R satisfying

β∗

rλ
≤ R, β̂∗

Rλ
+ r∗ ≥ r. (3.5)
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Let R = β∗

rλ
, if β̂∗

(β∗)λ
rλ

2
+ r∗ ≥ r, then β̂∗

Rλ
+ r∗ ≥ r is satisfied. Or it is equal to

r∗ ≥ f(r) := r − β̂∗
(β∗)λ

rλ
2
.

It is easy to prove that f has the minimum value at r0, where r0 = [ λ
2β̂∗

(β∗)λ
]

1
1−λ2 .

Now, set r = r0, thus when r∗ ≥ f(r0), (3.5) is satisfied, that is to say, (3.4) is satisfied. The proof is
complete.
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