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Abstract

The purpose of this paper is to establish some weak convergence theorems of modified two-step iteration
process with errors for two asymptotically quasi-nonexpansive non-self mappings in the setting of real
uniformly convex Banach spaces if E satisfies Opial’s condition or the dual E∗ of E has the Kedec-Klee
property. Our results extend and improve some known corresponding results from the existing literature.
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1. Introduction

Let K be a nonempty subset of a real Banach space E. Let T : K → K be a mapping, then we denote
the set of all fixed points of T by F (T ). The set of common fixed points of two mappings S and T will be
denoted by F = F (S) ∩ F (T ). A mapping T : K → K is said to be:

(i) asymptotically nonexpansive if there exists a sequence {kn} ∈ [1,∞) with limn→∞ kn = 1 and

‖Tnx− Tny‖ ≤ kn‖x− y‖ (1.1)
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for all x, y ∈ K and n ≥ 1,

(ii) asymptotically quasi-nonexpansive if F (T ) 6= ∅ and there exists a sequence {kn} ∈ [1,∞) such that
limn→∞ kn = 1 and

‖Tnx− p‖ ≤ kn‖x− p‖ (1.2)

for all x ∈ K, p ∈ F (T ) and n ≥ 1,

(iii) uniformly L-Lipschitzian if there exists a constant L > 0 such that

‖Tnx− Tny‖ ≤ L‖x− y‖ (1.3)

for all x, y ∈ K and n ≥ 1.

The class of asymptotically nonexpansive maps was introduced by Goebel and Kirk [8] as an important
generalization of the class of nonexpansive maps (i.e., mappings T : K → K such that ‖Tx−Ty‖ ≤ ‖x−y‖,
∀x, y ∈ K) who proved that if K is a nonempty closed convex subset of a real uniformly convex Banach
space and T is an asymptotically nonexpansive self-mapping of K, then T has a fixed point.

Iterative techniques for approximating fixed points of nonexpansive mappings and asymptotically nonex-
pansive mappings have been studied by various authors (see e.g., [2]-[4],[7],[10],[12],[15]-[18], [20]-[25]) using
the Mann iteration method (see e.g.,[13])/the modified Mann iteration method or the Ishikawa iteration
method (see e.g.,[9])/the modified Ishikawa iteration method. (See, also [19] and [26]).

In 1978, Bose [1] proved that if K is a bounded closed convex nonempty subset of a uniformly convex
Banach space E satisfying Opial’s [14] condition and T : K → K is an asymptotically nonexpansive map-
ping, then the sequence {Tnx} converges weakly to a fixed point of T provided T is asymptotically regular
at x ∈ K, i.e., limn→∞ ‖Tnx− Tn+1x‖ = 0. Passty [16] and also Xu [27] proved that the requirement that
E satisfies Opial’s condition can be replaced by the condition that E has a Frechet differentiable norm.
Furthermore, Tan and Xu [22, 23] later proved that the asymptotic regularity of T can be weakened to the
weakly asymptotic regularity of T at x, i.e., ω − limn→∞ ‖Tnx− Tn+1x‖ = 0.

In [20, 21], Schu introduced a modified Mann process to approximate fixed points of asymptotically
nonexpansive self-maps defined on nonempty closed convex and bounded subset of a Hilbert space H. In
1994, Rhoades [18] extended the Schu’s result to uniformly convex Banach space using a modified Ishikawa
iteration scheme.

In all the above results, the operator T remains a self-mapping of a nonempty closed convex subset K
of a uniformly convex Banach space E. If, however, the domain of T , D(T ), is a proper subset of E (and
this is the case in several applications), and T maps D(T ) into E, then the iteration processes of Mann
and Ishikawa studied by these authors; and their modifications introduced by Schu may fail to be well defined.

The aim of this paper is to establish some weak convergence theorems for two asymptotically quasi-
nonexpansive non-self mappings in the framework of real uniformly convex Banach spaces. Our results
extend, improve and unify some known corresponding results from the existing literature.
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2. Preliminaries

Let E be a real normed linear space. The modulus of convexity of E is the function δE : (0, 2] → [0, 1]
defined by

δE(ε) = inf
{

1− ‖x+ y

2
‖ : ‖x‖ = ‖y‖ = 1, ε = ‖x− y‖

}
E is uniformly convex if and only if δE(ε) > 0 for all ε ∈ (0, 2].

A subset K of E is said to be a retract of E if there exists a continuous map P : E → K such that
Px = x for all x ∈ K. Every closed convex subset of a uniformly convex Banach space is a retract. A map
P : E → E is said to be a retraction if P 2 = P . It follows that if a map P is a retraction, then Py = y for
all y in the range of P .

Definition 2.1. Let E be a real normed linear space, K a nonempty subset of E. Let P : E → K be the
nonexpansive retraction of E onto K. A map T : K → E is said to be:

(i) asymptotically nonexpansive [5] if there exists a sequence {kn} ⊂ [1,∞) with kn → 1 as n→∞ such
that for all x, y ∈ K, the following inequality holds:

‖T (PT )n−1x− T (PT )n−1y‖ ≤ kn‖x− y‖, ∀ n ≥ 1, (2.1)

(ii) asymptotically quasi-nonexpansive if F (T ) 6= ∅ and there exists a sequence {kn} ⊂ [1,∞) with
kn → 1 as n→∞ such that for all x, y ∈ K and x∗ ∈ F (T ), the following inequality holds:

‖T (PT )n−1x− T (PT )n−1x∗‖ ≤ kn‖x− x∗‖, ∀ n ≥ 1, (2.2)

(iii) uniformly L-Lipschitzian if there exists a constant L > 0 such that for all x, y ∈ K,

‖T (PT )n−1x− T (PT )n−1y‖ ≤ L‖x− y‖, ∀ n ≥ 1. (2.3)

Let K be a nonempty closed convex subset of a uniformly convex Banach space E. The iteration scheme:
x1 ∈ K and

xn+1 = P (anxn + bnT1(PT1)
n−1yn + cnln), ∀ n ≥ 1,

yn = P (ānxn + b̄nT2(PT2)
n−1xn + c̄nmn), ∀ n ≥ 1, (2.4)

where ln,mn ∈ K and {ln}∞n=1, {mn}∞n=1 are bounded, an+bn+cn = 1 = ān+b̄n+c̄n, 0 ≤ an, bn, cn, ān, b̄n, c̄n ≤
1, for all n ≥ 1,

∑∞
n=1 cn < ∞,

∑∞
n=1 c̄n < ∞, and P is as in definition 2.1, is called modified Ishikawa

iteration scheme with errors in the sense of Xu [28] for two mappings.

Remark 2.2. If T is a self map, then P becomes the identity map so that (2.1), (2.2) and (2.3) coincide
with (1.1), (1.2) and (1.3) respectively. Moreover, iteration scheme (2.4) reduces to the modified Ishikawa
iteration scheme with errors.

Now, we study the iteration scheme which is independent of (2.4) is as follows:

xn+1 = P (anT1(PT1)
n−1xn + bnT2(PT2)

n−1yn + cnln), ∀ n ≥ 1,

yn = P (ānxn + b̄nT1(PT1)
n−1xn + c̄nmn), ∀ n ≥ 1, (2.5)

where ln,mn ∈ K and {ln}∞n=1, {mn}∞n=1 are bounded, an+bn+cn = 1 = ān+b̄n+c̄n, 0 ≤ an, bn, cn, ān, b̄n, c̄n ≤
1, for all n ≥ 1,

∑∞
n=1 cn <∞,

∑∞
n=1 c̄n <∞, and P is as in definition 2.1, is called modified Ishikawa type

iteration scheme with errors in the sense of Xu [28] for two mappings.

In the sequel, we shall need the following lemmas.
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Lemma 2.3. (See [24]). Let {rn},{sn} and {tn} be sequences of nonnegative real numbers satisfying

rn+1 ≤ (1 + sn)rn + tn, ∀ n ≥ 1.

If
∑∞

n=1 sn < ∞ and
∑∞

n=1 tn < ∞, then limn→∞ rn exists. In particular, if {rn} has a subsequence
converging to zero, then limn→∞ rn = 0.

Lemma 2.4. (See [21]). Let E be a uniformly convex Banach space and 0 < a ≤ tn ≤ b < 1 for all n ≥ 1.
Suppose that {xn} and {yn} are two sequences in E satisfying lim supn→∞ ‖xn‖ ≤ r, lim supn→∞ ‖yn‖ ≤ r,
limn→∞ ‖tnxn + (1− tn)yn‖ = r for some r ≥ 0. Then limn→∞ ‖xn − yn‖ = 0.

Lemma 2.5. (See [11]) Let E be a real reflexive Banach space with its dual E∗ has the Kadec-Klee prop-
erty. Let {xn} be a bounded sequence in E and p, q ∈ ww(xn) (where ww(xn) denotes the set of all weak
subsequential limits of {xn}). Suppose limn→∞ ‖txn + (1− t)p− q‖ exists for all t ∈ [0, 1]. Then p = q.

Lemma 2.6. (See [2]) Let K be a nonempty bounded closed convex subset of a uniformly convex Banach
space E. Then there exists a strictly increasing continuous convex function φ : [0,∞)→ [0,∞) with φ(0) = 0
such that for any Lipschitzian mapping T : K → E with the Lipschitz constant L ≥ 1, and element {xj}nj=1

in K and any nonnegative number {tj}nj=1 with
∑n

j=1 tj = 1, the following inequality holds:

‖T
( n∑

j=1

tjxj

)
−

n∑
j=1

tjTxj‖ ≤ Lφ−1
{

max
1≤j, k≤n

(‖xj − xk‖ −
1

L
‖Txj − Txk‖)

}
.

We recall that a Banach space E is said to satisfy Opial’s condition [14] if, for any sequence {xn} in E,
xn → x weakly implies that

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖

for all y ∈ E with y 6= x.

A Banach space E has the Kadec-Klee property [6] if for every sequence {xn} in E, xn → x weakly and
‖xn‖ → ‖x‖ it follows that ‖xn − x‖ → 0.

3. Main Results

In this section, we establish some weak convergence theorems of the iteration scheme (2.5) by using
Opial condition and Kadec-Klee property in the framework of real uniformly convex Banach space. First
we need the following lemma to prove our main results of this paper.

Lemma 3.1. Let E be a real uniformly convex Banach space and K be a nonempty closed convex subset
which is also a nonexpansive retract of E. Let T1, T2 : K → E be two uniformly L-Lipschitzian asymptotically
quasi-nonexpansive non-self mappings with sequences {kn}, {hn} ⊂ [1,∞) such that F = ∩2i=1F (Ti) 6= φ.
Suppose N1 = limn kn ≥ 1 and N2 = limn hn ≥ 1 such that

∑∞
n=1(knhn − 1) <∞. From arbitrary x1 ∈ K,

the sequence {xn} defined iteratively by (2.5) with the restrictions
∑∞

n=1 cn < ∞ and
∑∞

n=1 bnc̄n < ∞. Let
{an} and {ān} be sequences in [δ, 1− δ] for some δ ∈ (0, 1). Then we have the following:

(a) limn→∞ ‖xn − x∗‖ exists for all x∗ ∈ F .

(b) limn→∞ ‖xn − T1xn‖ = 0 and limn→∞ ‖xn − T2xn‖ = 0.
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Proof. For all x∗ ∈ F , we set

M1 = max{sup
n≥1
‖ln − x∗‖, sup

n≥1
‖mn − x∗‖}.

Then from (2.5), we have

‖xn+1 − x∗‖ = ‖P (anT1(PT1)
n−1xn + bnT2(PT2)

n−1yn + cnln)− Px∗‖
≤ ‖anT1(PT1)n−1xn + bnT2(PT2)

n−1yn + cnln − x∗‖
≤ an‖T1(PT1)n−1xn − x∗‖+ bn‖T2(PT2)n−1yn − x∗‖

+cn‖ln − x∗‖
≤ ankn‖xn − x∗‖+ bnhn‖yn − x∗‖+ cnM1 (3.1)

and

‖yn − x∗‖ = ‖P (ānxn + b̄nT1(PT1)
n−1xn + c̄nmn)− Px∗‖

≤ ‖ānxn + b̄nT1(PT1)
n−1xn + c̄nmn − x∗‖

≤ ān‖xn − x∗‖+ b̄n‖T1(PT1)n−1xn − x∗‖
+c̄n‖mn − x∗‖

≤ ān‖xn − x∗‖+ b̄nkn‖xn − x∗‖+ c̄nM1

≤ [ān + b̄n]kn‖xn − x∗‖+ c̄nM1

= [1− c̄n]kn‖xn − x∗‖+ c̄nM1

≤ kn‖xn − x∗‖+ c̄nM1 (3.2)

which implies that

‖yn − x∗‖ ≤ kn‖xn − x∗‖+ c̄nM1

≤ knhn‖xn − x∗‖+ c̄nM1. (3.3)

Using (3.1) and (3.3), we obtain that

‖xn+1 − x∗‖ ≤ ankn‖xn − x∗‖+ bnhn[knhn‖xn − x∗‖+ c̄nM1] + cnM1

≤ anknhn‖xn − x∗‖+ bnknhn[knhn‖xn − x∗‖+ c̄nM1] + cnM1

≤ (an + bn)k2nh
2
n‖xn − x∗‖+ [bnknhnc̄n + cn]M1

= (1− cn)k2nh
2
n‖xn − x∗‖+ [bnknhnc̄n + cn]M1

≤ k2nh
2
n‖xn − x∗‖+ (bnc̄n + cn)knhnM1

≤ k2nh
2
n‖xn − x∗‖+ (bnc̄n + cn)M2

= [1 + (k2nh
2
n − 1)]‖xn − x∗‖+An (3.4)

where

M2 = sup
n≥1
{knhn}M1, An = (bnc̄n + cn)M2.

By putting λn = (k2nh
2
n − 1), the inequality (3.4) can be written as follows

‖xn+1 − x∗‖ ≤ (1 + λn)‖xn − x∗‖+An. (3.5)
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By hypothesis of the theorem, we find
∞∑
n=1

λn =
∞∑
n=1

(k2nh
2
n − 1)

=

∞∑
n=1

(knhn + 1)(knhn − 1)

≤ (N1N2 + 1)
∞∑
n=1

(knhn − 1) <∞.

Since by assumptions of the theorem
∑∞

n=1 cn <∞ and
∑∞

n=1 bnc̄n <∞, it follows that
∑∞

n=1An <∞ and∑∞
n=1 λn <∞, thus by Lemma 2.3, we have limn→∞ ‖xn − x∗‖ exists. Let limn→∞ ‖xn − x∗‖ = r for some

r ≥ 0. From (3.3), we have

‖yn − x∗‖ ≤ knhn‖xn − x∗‖+ c̄nM1, ∀n ≥ 1.

Taking limsupn→∞ in both sides, we obtain

lim sup
n→∞

‖yn − x∗‖ ≤ lim sup
n→∞

‖xn − x∗‖ = lim
n→∞

‖xn − x∗‖ = r. (3.6)

Since T1 is asymptotically quasi-nonexpansive non-self mapping, we have

‖T1(PT1)n−1xn − x∗‖ ≤ kn‖xn − x∗‖, ∀n ≥ 1.

Taking limsupn→∞ in both sides, we obtain

lim sup
n→∞

‖T1(PT1)n−1xn − x∗‖ ≤ r. (3.7)

In a similar way, we have

‖T2(PT2)n−1yn − x∗‖ ≤ hn‖yn − x∗‖, ∀n ≥ 1.

By using (3.6), we obtain

lim sup
n→∞

‖T2(PT2)n−1yn − x∗‖ ≤ r. (3.8)

Also, it follows from

r = lim
n→∞

‖xn+1 − x∗‖

= lim
n→∞

‖anT1(PT1)n−1xn + bnT2(PT2)
n−1yn + cnln − x∗‖

= lim
n→∞

‖an[(T1(PT1)
n−1xn − x∗) +

cn
2an

(ln − x∗)]

+ bn[(T2(PT2)
n−1yn − x∗) +

cn
2bn

(ln − x∗)]‖

= lim
n→∞

‖an[(T1(PT1)
n−1xn − x∗) +

cn
2an

(ln − x∗)]

+ (1− an)[(T2(PT2)
n−1yn − x∗) +

cn
2bn

(ln − x∗)]‖

and Lemma 2.4 that

lim
n→∞

‖T1(PT1)n−1xn − T2(PT2)n−1yn + (
cn

2an
− cn

2bn
)(ln − x∗)‖ = 0. (3.9)

Since limn→∞ ‖( cn
2an
− cn

2bn
)(ln − x∗)‖ = 0, we obtain that

lim
n→∞

‖T1(PT1)n−1xn − T2(PT2)n−1yn‖ = 0. (3.10)
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Now

‖xn+1 − x∗‖ = ‖anT1(PT1)n−1xn + bnT2(PT2)
n−1yn + cnln − x∗‖

= ‖(T1(PT1)n−1xn − x∗) + bn(T2(PT2)
n−1yn

− T1(PT1)n−1xn) + cn(ln − T1(PT1)n−1xn)‖
≤ ‖T1(PT1)n−1xn − x∗‖+ bn‖T2(PT2)n−1yn − T1(PT1)n−1xn‖
+ cn‖ln − T1(PT1)n−1xn‖

yields that

r ≤ lim inf
n→∞

‖T1(PT1)n−1xn − x∗‖

so that (3.7) gives

lim
n→∞

‖T1(PT1)n−1xn − x∗‖ = r. (3.11)

On the other hand,

‖T1(PT1)n−1xn − x∗‖ ≤ ‖T1(PT1)n−1xn − T2(PT2)n−1yn‖+ ‖T2(PT2)n−1yn − x∗‖
≤ ‖T1(PT1)n−1xn − T2(PT2)n−1yn‖+ hn‖yn − x∗‖

so we have

r ≤ lim inf
n→∞

‖yn − x∗‖. (3.12)

By using (3.6) and (3.12), we obtain

lim
n→∞

‖yn − x∗‖ = r. (3.13)

Thus

r = lim
n→∞

‖yn − x∗‖

= lim
n→∞

‖ānxn + b̄nT1(PT1)
n−1xn + c̄nmn − x∗‖

= lim
n→∞

‖b̄n[(T1(PT1)
n−1xn − x∗) +

c̄n
2b̄n

(mn − x∗)]

+ ān[xn − x∗) +
c̄n

2ān
(mn − x∗)]‖

= lim
n→∞

‖b̄n[(T1(PT1)
n−1xn − x∗) +

c̄n
2b̄n

(mn − x∗)]

+ (1− b̄n)[xn − x∗) +
c̄n

2ān
(mn − x∗)]‖.

Using (3.11), (3.13) and Lemma 2.4, the above inequality gives

lim
n→∞

‖T1(PT1)n−1xn − xn‖ = 0. (3.14)

Now

‖yn − xn‖ ≤ b̄n‖T1(PT1)n−1xn − xn‖+ c̄n‖mn − xn‖. (3.15)

Using (3.14) and by hypothesis of the theorem in (3.15), we obtain

lim
n→∞

‖yn − xn‖ = 0. (3.16)
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Also note that

‖xn+1 − xn‖ = ‖anT1(PT1)n−1xn + bnT2(PT2)
n−1yn + cnln − xn‖

= ‖(1− bn − cn)T1(PT1)
n−1xn + bnT2(PT2)

n−1yn + cnln − xn‖
≤ ‖T1(PT1)n−1xn − xn‖+ bn‖T2(PT2)n−1yn − T1(PT1)n−1xn‖

+cn‖ln − T1(PT1)n−1xn‖
→ 0 as n→∞, (3.17)

so that

‖xn+1 − yn‖ ≤ ‖xn+1 − xn‖+ ‖yn − xn‖ → 0 as n→∞. (3.18)

Furthermore, from

‖xn+1 − T2(PT2)n−1yn‖ ≤ ‖xn+1 − xn‖+ ‖xn − T1(PT1)n−1xn‖
+‖T1(PT1)n−1xn − T2(PT2)n−1yn‖

we find that

lim
n→∞

‖xn+1 − T2(PT2)n−1yn‖ = 0. (3.19)

Then

‖xn+1 − T1xn+1‖ ≤ ‖xn+1 − T1(PT1)nxn+1‖+ ‖T1(PT1)nxn+1 − T1(PT1)nxn‖
+‖T1(PT1)nxn − T1xn+1‖

≤ ‖xn+1 − T1(PT1)nxn+1‖+ L‖xn+1 − xn‖
+L‖T1(PT1)n−1xn − xn+1‖

≤ ‖xn+1 − T1(PT1)nxn+1‖+ L‖xn+1 − xn‖
+Lbn‖T1(PT1)n−1xn − T2(PT2)n−1yn‖
+Lcn‖T1(PT1)n−1xn − ln‖

yields

lim
n→∞

‖xn − T1xn‖ = 0. (3.20)

Now

‖xn − T2(PT2)n−1xn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − T2(PT2)n−1yn‖
+‖T2(PT2)n−1yn − T2(PT2)n−1xn‖

≤ ‖xn − xn+1‖+ ‖xn+1 − T2(PT2)n−1yn‖
+L‖yn − xn‖ → 0 as n→∞. (3.21)

Thus

‖xn+1 − T2xn+1‖ ≤ ‖xn+1 − T2(PT2)nxn+1‖+ ‖T2(PT2)nxn+1 − T2xn+1‖
≤ ‖xn+1 − T2(PT2)nxn+1‖+ L‖T2(PT2)n−1xn+1 − xn+1‖

≤ ‖xn+1 − T2(PT2)nxn+1‖+ L
(
‖T2(PT2)n−1xn+1 − T2(PT2)n−1yn‖

+‖T2(PT2)n−1yn − xn+1‖
)

≤ ‖xn+1 − T2(PT2)nxn+1‖+ L2‖xn+1 − yn‖
+L‖T2(PT2)n−1yn − xn+1‖
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implies

lim
n→∞

‖xn − T2xn‖ = 0. (3.22)

This completes the proof.

Theorem 3.2. Let E be a real uniformly convex Banach space satisfying Opial’s condition and K, Ti (i =
1, 2) and {xn} be as in Lemma 3.1. If F = F (T1) ∩ F (T2) 6= φ, then the sequence {xn} converges weakly to
a common fixed point of the mappings T1 and T2.

Proof. Let p ∈ F = F (T1)∩F (T2) 6= φ. Then, by Lemma 3.1, ‖xn−p‖ exists. Assume that xni → u weakly
and xnj → v weakly as n → ∞. Then u, v ∈ F . We prove that u = v. If u 6= v, by Opial’s condition, we
have

lim
n→∞

‖xn − u‖ = lim
i→∞
‖xni − u‖

< lim
i→∞
‖xni − v‖

= lim
n→∞

‖xn − v‖

< lim
j→∞

‖xnj − u‖

= lim
n→∞

‖xn − u‖

which is a contradiction. Therefore, we have the conclusion i.e. u = v. Thus the sequence {xn} converges
weakly to a common fixed point of the mappings T1 and T2. This completes the proof.

Lemma 3.3. Let E be a real uniformly convex Banach space and K be a nonempty closed convex subset
which is also a nonexpansive retract of E. Let T1, T2 : K → E be two uniformly L-Lipschitzian asymptotically
quasi-nonexpansive nonself mappings with sequences {kn}, {hn} ⊂ [1,∞) such that F = ∩2i=1F (Ti) 6= φ.
Suppose N1 = limn kn ≥ 1 and N2 = limn hn ≥ 1 such that

∑∞
n=1(knhn − 1) <∞. From arbitrary x1 ∈ K,

the sequence {xn} defined iteratively by (2.5) with the restrictions
∑∞

n=1 cn < ∞ and
∑∞

n=1 bnc̄n < ∞. Let
{an} and {ān} be sequences in [δ, 1− δ] for some δ ∈ (0, 1). Then limn→∞ ‖txn + (1− t)p− q‖ exists for all
p, q ∈ F and t ∈ [0, 1].

Proof. By Lemma 3.1, we know that {xn} is bounded. Letting

an(t) = ‖txn + (1− t)p− q‖

for all t ∈ [0, 1]. Then limn→∞ an(0) = ‖p − q‖ and limn→∞ an(1) = ‖xn − q‖ exists by Lemma 3.1. It,
therefore, remains to prove the Lemma 3.3 for t ∈ (0, 1). For all x ∈ K, we define the mapping Wn : K → K
by

Wn x = P (anT1(PT1)
n−1x+ bnT2(PT2)

n−1P (ānx+ b̄nT1(PT1)
n−1x+ c̄nmn) + cnln).

Then

‖Wnx−Wny‖ ≤ [1 + (k2nh
2
n − 1)]‖x− y‖

= [1 + λn]‖x− y‖
= Hn‖x− y‖ (3.23)

for all x, y ∈ K, where Hn = [1 + λn] and λn = (k2nh
2
n − 1) with

∑∞
n=1 λn < ∞ and Hn → 1 as n → ∞.

Setting

Sn,m = Wn+m−1Wn+m−2 . . .Wn, m ≥ 1 (3.24)
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and

bn,m = ‖Sn,m(txn + (1− t)p)− (tSn,mxn + (1− t)Sn,mq)‖. (3.25)

From (3.23) and (3.24), we have

‖Sn,mx− Sn,my‖ ≤ HnHn+1 . . . Hn+m−1‖x− y‖

≤
( n+m−1∏

j=n

Hj

)
‖x− y‖

= σn‖x− y‖ (3.26)

for all x, y ∈ K, where σn =
∏n+m−1

j=n Hj and Sn,mxn = xn+m, Sn,mp = p for all p ∈ F . Thus

an+m(t) = ‖txn+m + (1− t)p− q‖
≤ bn,m + ‖Sn,m(txn + (1− t)p)− q‖
≤ bn,m + σnan(t). (3.27)

It follows from (3.25), (3.26) and Lemma 2.6 that

bn,m ≤ σnφ−1(‖xn − p‖ − σ−1n ‖xn+m − p‖).

By Lemma 3.1 and limn→∞ σn = 1, we have limn,m→∞ bn,m = 0 and so

lim sup
m→∞

am(t) ≤ lim
n,m→∞

bn,m + lim inf
n→∞

σnan(t) = lim inf
n→∞

an(t).

This shows that limn→∞ an(t) exists, that is,

lim
n→∞

‖txn + (1− t)p− q‖

exists for all t ∈ [0, 1]. This completes the proof.

Theorem 3.4. Let E be a real uniformly convex Banach space such that its dual E∗ has the Kadec-
Klee property and K be a nonempty closed convex subset which is also a nonexpansive retract of E. Let
T1, T2 : K → E be two uniformly L-Lipschitzian asymptotically quasi-nonexpansive nonself mappings with se-
quences {kn}, {hn} ⊂ [1,∞) such that F = ∩2i=1F (Ti) 6= φ. Suppose N1 = limn kn ≥ 1 and N2 = limn hn ≥ 1
such that

∑∞
n=1(knhn− 1) <∞. From arbitrary x1 ∈ K, the sequence {xn} defined iteratively by (2.5) with

the restrictions
∑∞

n=1 cn < ∞ and
∑∞

n=1 bnc̄n < ∞. Let {an} and {ān} be sequences in [δ, 1 − δ] for some
δ ∈ (0, 1). If the mappings I − T1 and I − T2, where I denotes the identity mapping, are demiclosed at zero.
Then {xn} converges weakly to a common fixed point of the mappings T1 and T2.

Proof. By Lemma 3.1, we know that {xn} is bounded and since E is reflexive, there exists a subsequence
{xnj} of {xn} which converges weakly to some p ∈ K. By Lemma 3.1, we have

lim
n→∞

‖xnj − T1xnj‖ = 0, lim
n→∞

‖xnj − T2xnj‖ = 0.

Since the mappings I − T1 and I − T2 are demiclosed at zero, therefore T1p = p and T2p = p, which means
p ∈ F . Now, we show that {xn} converges weakly to p. Suppose {xni} is another subsequence of {xn}
converges weakly to some q ∈ K. By the same method as above, we have q ∈ F and p, q ∈ ww(xn). By
Lemma 3.3, the limit

lim
n→∞

‖txn + (1− t)p− q‖

exists for all t ∈ [0, 1] and so p = q by Lemma 2.5. Thus, the sequence {xn} converges weakly to p ∈ F .
This completes the proof.
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Remark 3.5. If we put cn = c̄n = 0, T1 = I and T2 = T then Theorem 3.2 extends Theorem 2.1 of Schu [21]
to the case of more general class of non-self maps considered in this paper.

Remark 3.6. Theorem 3.4 extends Theorem 3.10 of Chidume et al. [5] to the case of modified Ishikawa type
iteration process with errors in the sense of Xu [28] for two mappings considered in this paper.
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