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Abstract

In this paper, we consider an iteration process to approximate a common random fixed point of a finite
family of asymptotically quasi-nonexpansive random mappings in convex metric spaces. Our results extend
and improve several known results in recent literature.
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1. Introduction and Preliminaries

Random fixed point theorems are stochastic generalizations of classical fixed point theorems, which are
usually used to obtain the solutions of nonlinear random systems [3]. Some random fixed point theorems
for random mappings on separable metric spaces were first proved by Spacek [18] and Hans [7]. Itoh
[8] introduced multivalued random contractive mappings on separable metric spaces and considered some
random fixed point theorems for the mappings. Choudhury [5] gave a random Ishikawa iteration process to
converge to fixed points of the given random mappings. After that, many authors [1, 2, 5, 11, 12, 13, 14, 17,
16] have worked on random iterative algorithms for contractive and asymptotically nonexpansive random
mappings in separable normed spaces, Banach spaces and uniformly convex Banach spaces.

In 1970, Takahashi [19] introduced a notion of convex metric space which is a more general space, and
each linear normed space is a special example of a convex metric space. Recently [4, 10, 21, 22] have discussed
different iteration processes to obtain fixed point of asymptotically quasi-nonexpansive mappings in convex
metric spaces.
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Inspried and motived by the above facts, we will construct an iteration process which converges strongly
to a common random fixed point of a finite family of asymptotically quasi-nonexpansive random mappings
in convex metric spaces. The results extend and improve the corresponding results in [1, 2, 4, 5, 6, 8, 9, 10,
11, 12, 13, 14, 17, 16, 20, 21, 22].

Let (Ω,Σ) be a mesurable space with Σ being a σ-algebra of subsets of Ω, and let K be a nonempty
subset of a metric space (X, d).

Definition 1.1 ([1]). (i) A mapping ξ : Ω→ X is measurable if ξ−1(U) ∈ Σ for each open subset U of X;
(ii) The mapping T : Ω×K → X is a random mapping if and only if for each fixed x ∈ K, the mapping

T (·, x) : Ω → X is measurable, and it is continuous if for each ω ∈ Ω, the mapping T (ω, ·) : K → X is
continuous;

(iii) A measurable mapping ξ : Ω→ K is a random fixed point of the random mapping T : Ω×K → X
if and only if T (ω, ξ(ω)) = ξ(ω) for each ω ∈ Ω.

We denote by N the set of natural numbers, F (T ) the set of all random fixed points of a random map
T and Tn(ω, x) the nth iteration T (ω, T (ω, T (ω, · · ·T (ω, x) · ··))) of T for each ω ∈ Ω. The letter I denotes
the random mapping T : Ω×K → K defined by I(ω, x) = x and T 0 = I for each ω ∈ Ω.

Next, we introduce some random mappings in metric spaces.

Definition 1.2. Let K be a nonempty subset of a separable metric space (X, d) and T : Ω×K → K be
a random mapping. The mapping T is said to be

(i) a nonexpansive random mapping if

d(T (ω, x), T (ω, y)) ≤ d(x, y)

for each ω ∈ Ω and x, y ∈ K;
(ii) an asymptotically nonexpansive random mapping if there exists a sequence of measurable mappings

{rn(ω)} : Ω→ [0,∞) with lim
n→∞

rn(ω) = 0 such that

d(Tn(ω, x), Tn(ω, y)) ≤ (1 + rn(ω))d(x, y)

for each ω ∈ Ω, n ∈ N and x, y ∈ K;
(iii) an asymptotically quasi-nonexpansive random mapping if there exists a sequence of measurable

mappings {rn(ω)} : Ω→ [0,∞) with lim
n→∞

rn(ω) = 0 such that

d(Tn(ω, η(ω)), ξ(ω)) ≤ (1 + rn(ω))d(η(ω), ξ(ω))

for each ω ∈ Ω and n ∈ N, where ξ ∈ F (T ) 6= ∅ and η : Ω→ K is any measurable mapping.
(iv) an semicompact random mapping if for any sequence of measurable mappings {ξn(ω)} : Ω → K,

with lim
n→∞

d(T (ω, ξn(ω)), ξn(ω)) = 0 for each ω ∈ Ω and n ∈ N, there exists a subsequence {ξnj} of {ξn}
which converges pointwise to ξ, where ξ : Ω→ K is a measurable mapping.

Remark 1.3. It is easy to see that if T is an asymptotically nonexpansive random mapping and F (T ) 6= ∅,
then T is an asymptotically quasi-nonexpansive random mapping.

Definition 1.4 ([19]). A convex structure in a metric space (X, d) is a mapping W : X ×X × [0, 1] → X
satisfying, for each x, y, u ∈ X and each λ ∈ [0, 1]

d(u,W (x, y;λ)) ≤ λd(u, x) + (1− λ)d(u, y).

A metric space together with a convex structure is called a convex metric space.
A nonempty subset K of X is said to be convex if W (x, y;λ) ∈ K for all (x, y;λ) ∈ K ×K × [0, 1]. The

mapping W : K × K × [0, 1] → K is said to be a measurable convex structure if for any two measurable
mappings ξ, η : Ω→ K and each fixed λ ∈ [0, 1], the mapping W (ξ(·), η(·);λ) : Ω→ K is measurable.
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In Banach spaces, Khan et al. [9] introduced the following iteration process for common fixed points of
asymptotically quasi-nonexpansive mappings {Ti : i ∈ J = {1, 2, · · ·, k}}: any initial point x1 ∈ K,

xn+1 = (1− αkn)xn + αknT
n
k y(k−1)n,

y(k−1)n = (1− α(k−1)n)xn + α(k−1)nT
n
(k−1)y(k−2)n,

y(k−2)n = (1− α(k−2)n)xn + α(k−2)nT
n
(k−2)y(k−3)n,

...

y1n = (1− α1n)xn + α1nT
n
1 y0n,

(1.1)

where y0n = xn and {αin} are real sequences in [0, 1] for all n ∈ N. And then, Khan and Ahmed [10]
considered the iteration process (1.1) in convex metric spaces as follows:

xn+1 = W (Tnk y(k−1)n, xn;αkn),

y(k−1)n = W (Tnk−1y(k−2)n, xn;α(k−1)n),

y(k−2)n = W (Tnk−2y(k−3)n, xn;α(k−2)n),
...

y1n = W (Tn1 y0n, xn;α1n),

(1.2)

where y0n = xn and {αin} are real sequences in [0, 1] for all n ∈ N .
From (1.1) and (1.2), we investigate the following random iteration process in convex metric space.

Definition 1.5. Let {Ti : i ∈ J} be a finite familiy of asymptotically quasi-nonexpansive random mappings
from Ω×K to K , where K is a nonempty closed convex subset of a separable convex metric space (X, d).
Let ξ1 : Ω→ K be a measurable mapping, for each ω ∈ Ω, the sequence {ξn(ω)} is defined as follows:

ξn+1(ω) = W (Tnk (ω, η(k−1)n(ω)), ξn(ω);αkn),

η(k−1)n(ω) = W (Tnk−1(ω, η(k−2)n(ω)), ξn(ω);α(k−1)n),

η(k−2)n(ω) = W (Tnk−2(ω, η(k−3)n(ω)), ξn(ω);α(k−2)n),
...

η1n(ω) = W (Tn1 (ω, η0n(ω)), ξn(ω);α1n),

(1.3)

where η0n(ω) = ξn(ω) and {αin} are real sequences in [0, 1] for all n ∈ N.

We need the following two results for proving our main results.

Lemma 1.6 ([20]). Let X be a separable metric space and Y be a metric space. If f : Ω × X → Y is
measurable in ω ∈ Ω and continuous in x ∈ X, and if x : Ω → X is measurable, then f(·, x(·)) : Ω → Y is
measurable.

Lemma 1.7 ([15]). Let {βn} and {γn} be sequences of nonnegative real numbers satisfying the following
conditions:

βn+1 ≤ (1 + γn)βn,
∞∑
n=1

γn <∞

We have
(i) lim

n→∞
βn exists;

(ii) if lim inf
n→∞

βn = 0, then lim
n→∞

βn = 0.
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2. Main results

In this section, we give some conditions for the convergence of the random iteration process (1.3)
to a common random fixed point of a finite family asymptotically quasi-nonexpansive random mappings
{Ti, i ∈ J}. We first prove the following lemma.

Lemma 2.1. Let K be a nonempty closed convex subset of a separable complete convex metric space (X, d).
Let {Ti : i ∈ J} : Ω × K → K be a finite family of asymptotically quasi-nonexpansive random mappings
with rin(ω) : Ω → [0,∞) for each ω ∈ Ω. Suppose that the sequence {ξn(ω)} is defined as (1.3) and∑∞

n=1 αkn <∞. If F =
⋂k
i=1 F (Ti) 6= ∅, then

(i) there exists a constant M0 > 0 such that

d(ξn+1(ω), ξ(ω)) ≤ (1 + αknM0)d(ξn(ω), ξ(ω))

for all ξ(ω) ∈ F and n ∈ N;

(ii) there exists a constant M1 > 0 such that

d(ξn+m(ω), ξ(ω)) ≤M1d(ξn(ω), ξ(ω))

for all ξ(ω) ∈ F and n,m ∈ N.

Proof. (i) Since {Ti : i ∈ J} : Ω ×K → K be a finite family of asymptotically quasi-nonexpansive random
mappings with rin : Ω → [0,∞) for each ω ∈ Ω, there exists a measurable mapping
rn(ω) = max{r1n(ω), r2n(ω), · · ·, rkn(ω)} for each ω ∈ Ω with lim

n→∞
rn(ω) = 0 , such that

d(Tni (ω, η(ω)), ξ(ω)) ≤ (1 + rn(ω))d(η(ω), ξ(ω))

where i ∈ J and η : Ω→ K is any measurable mapping. By (1.3), we have

d(η1n(ω), ξ(ω)) =d(W (Tn1 (ω, η0n(ω)), ξn(ω);α1n), ξ(ω))

≤α1nd(Tn1 (ω, η0n(ω)), ξ(ω)) + (1− α1n)d(ξn(ω), ξ(ω))

≤α1n(1 + rn(ω))d(ξn(ω), ξ(ω)) + (1− α1n)d(ξn(ω), ξ(ω))

≤(1 + α1n(1 + rn(ω)))d(ξn(ω), ξ(ω)).

Since rn(ω) : Ω→ [0,∞) and lim
n→∞

rn(ω) = 0, there exists a constant L > 0 such that

L = sup
n≥1
{1 + rn(ω)} <∞.

Therefore,
d(η1n(ω), ξ(ω)) ≤ (1 + L)d(ξn(ω), ξ(ω)).

Assume that
d(ηin(ω), ξ(ω)) ≤ (1 + L)id(ξn(ω), ξ(ω))

holds for some 1 ≤ i ≤ k − 1. Then

d(η(i+1)n(ω), ξ(ω)) =d(W (Tni+1(ω, ηin(ω)), ξn(ω);α(i+1)n), ξ(ω))

≤α(i+1)nd(Tni+1(ω, ηin(ω)), ξ(ω)) + (1− α(i+1)n)d(ξn(ω), ξ(ω))

≤α(i+1)n(1 + rn(ω))d(ηin(ω), ξ(ω)) + (1− α(i+1)n)d(ξn(ω), ξ(ω))

≤(1− α(i+1)n + α(i+1)nL(1 + L)i)d(ξn(ω), ξ(ω))

≤(1 + L(1 + L)i)d(ξn(ω), ξ(ω))

≤(1 + L)i+1d(ξn(ω), ξ(ω))
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So, by induction, we obtain

d(ηin(ω), ξ(ω)) ≤ (1 + L)id(ξn(ω), ξ(ω))

for all 1 ≤ i ≤ k. Now, by (1.3) and the above inequality, we get

d(ξn+1(ω), ξ(ω)) =d(W (Tnk (ω, η(k−1)n(ω)), ξn(ω);αkn), ξ(ω))

≤αknd(Tnk (ω, η(k−1)n(ω)), ξ(ω)) + (1− αkn)d(ξn(ω), ξ(ω))

≤αkn(1 + rn(ω))d(η(k−1)n(ω), ξ(ω)) + (1− αkn)d(ξn(ω), ξ(ω))

≤(1− αkn + αknL(1 + L)k)d(ξn(ω), ξ(ω))

≤(1 + αknM0)d(ξn(ω), ξ(ω))

where M0 = (1 + L)k > 0.
(ii)Notice that 1 + x ≤ ex for all x ≥ 0. Using this and

∑∞
n=1 αkn <∞, we have

d(ξn+m(ω), ξ(ω)) ≤(1 + αk(n+m−1)M0)d(ξn+m−1(ω), ξ(ω))

≤eαk(n+m−1)M0(1 + αk(n+m−2)M0)d(ξn+m−2(ω), ξ(ω))

≤e[αk(n+m−1)+αk(n+m−2)]M0d(ξn+m−2(ω), ξ(ω))

· · · · · ·

≤eM0Σ
∞
j=1αkjd(ξn(ω), ξ(ω))

≤M1d(ξn(ω), ξ(ω)),

where M1 = eM0Σ
∞
j=1αkj > 0 .

Theorem 2.2. Let K be a nonempty closed convex subset of a separable complete convex metric space
(X, d) with a measurable convex structure W . Let {Ti : i ∈ J} : Ω × K → K be a finite family of
continuous asymptotically quasi-nonexpansive random mappings with rin(ω) : Ω → [0,∞) for each ω ∈ Ω.
Suppose that the sequence {ξn(ω)} is defined as (1.3) and

∑∞
n=1 αkn < ∞. If F =

⋂k
i=1 F (Ti) 6= ∅, then

{ξn(ω)} converges to a common fixed point of {Ti : i ∈ J} if and only if lim inf
n→∞

d(ξn(ω), F ) = 0, where

d(ξn(ω), F ) = inf{d(ξn(ω), η(ω)) : ∀η(ω) ∈ F} for each ω ∈ Ω.

Proof. The necessity is obvious. Thus, we only need prove the sufficiency. From Lemma 2.1 (i), we have

d(ξn+1(ω), F ) ≤ (1 + αknM0)d(ξn(ω), F ).

By Lemma 1.7 and
∑∞

n=1 αkn <∞, we know that

lim
n→∞

d(ξn(ω), F )

exists. Since lim inf
n→∞

d(ξn(ω), F ) = 0, we obtain

lim
n→∞

d(ξn(ω), F ) = 0

for each ω ∈ Ω.
Next, We show that {ξn(ω)} is a Cauchy sequence. Indeed, for any ε > 0, there exists a constant N0

such that for all n ≥ N0, we have

d(ξn(ω), F ) ≤ ε

2M1
.

In particular, there exist a p1(ω) ∈ F and a constant N1 > N0 such that

d(ξN1(ω), p1(ω)) ≤ ε

2M1
.
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It follows from Lemma 2.1 (ii) that for n > N1, we have

d(ξn+m(ω), ξn(ω)) ≤d(ξn+m(ω), p1(ω)) + d(p1(ω), ξn(ω))

≤M1d(ξN1(ω), p1(ω)) +M1d(ξN1(ω), p1(ω))

≤2M1
ε

2M1
= ε.

This implies that {ξn} is a Cauchy sequence in closed convex subset of a complete convex metric space.
Therefore, {ξn(ω)} converges to a point in K.

Suppose lim
n→∞

ξn(ω) = p(ω) for each ω ∈ Ω. Since Ti are continuous, by Lemma 1.6, we know that for

any measurable mapping f : Ω → K, Tni (ω, f(ω)) : Ω → K are measurable mappings. Thus, {ξn(ω)} is a
sequence of measurable mappings. Hence, p(ω) : Ω→ K is also measurable. Notice that

d(p(ω), F ) ≤ d(ξn(ω), p(ω)) + d(ξn(ω), F ),

together with lim
n→∞

d(ξn(ω), F ) = 0 and lim
n→∞

d(ξn(ω), p(ω)) = 0, we can conclude that d(p(ω), F ) = 0.

Therefore, p(ω) ∈ F .

Remark 2.3. (i) Theorem 2.2 extends the corresponding results in [1, 2, 5, 6, 8, 11, 12, 13, 14, 17, 16] to
the convex metric space, which is a more general space;

(ii) Theorem 2.2 extends the corresponding results in [4, 9, 10, 20, 21, 22] to a finite family of asymp-
totically quasi-nonexpansive random mappings, which are stochastic generalizations of asymptotically
quasi-nonexpansive mappings;

(iii) In Theorem 2.2, we remove the condition: “
∑∞

n=1 rin < ∞, i ∈ J”, which is required in many other
papers (see, e.g., [1, 2, 4, 9, 10, 16, 20, 22]). And the condition “

∑∞
n=1 αin < ∞, i ∈ J” is replaced

with “
∑∞

n=1 αkn <∞”.

By Remark 1.3, we can get the following result:

Corollary 2.4. Let K be a nonempty closed convex subset of a separable complete convex metric space (X, d)
with a measurable convex structure W . Let {Ti : i ∈ J} : Ω ×K → K be a finite family of asymptotically
nonexpansive random mappings with rin(ω) : Ω→ [0,∞) for each ω ∈ Ω. Suppose that the sequence {ξn(ω)}
is defined as (1.3) and

∑∞
n=1 αkn < ∞. If F =

⋂k
i=1 F (Ti) 6= ∅, then {ξn(ω)} converges to a common fixed

point of {Ti : i ∈ J} if and only if lim inf
n→∞

d(ξn(ω), F ) = 0, where d(ξn(ω), F )=inf{d(ξn(ω), η(ω)) : ∀η(ω)∈F}
for each ω ∈ Ω.

Theorem 2.5. Let K be a nonempty closed convex subset of a separable complete convex metric space
(X, d) with a measurable convex structure W . Let {Ti : i ∈ J} : Ω×K → K be a finite family of continuous
asymptotically quasi-nonexpansive random mappings with rin(ω) : Ω → [0,∞) for each ω ∈ Ω. Suppose
that the sequence {ξn(ω)} is defined as (1.3) ,

∑∞
n=1 αkn < ∞ and F =

⋂k
i=1 F (Ti) 6= ∅. If for some given

1 ≤ l ≤ k and each ω ∈ Ω,

(i) lim
n→∞

d(Tl(ω, ξn(ω)), ξn(ω)) = 0,

(ii) there exists a constant M2 > 0 such that

d(Tl(ω, ξn(ω)), ξn(ω)) ≥M2d(ξn(ω), F ).

Then {ξn(ω)} converges to a common fixed point of {Ti : i ∈ J}.
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Proof. From the conditions (i) and (ii), we have

lim
n→∞

d(ξn(ω), F ) = 0.

Therefore, from the proof of Theorem 2.2, we know that {ξn(ω)} converges to a common fixed point of
{Ti : i ∈ J}

Theorem 2.6. Let K be a nonempty closed convex subset of a separable complete convex metric space
(X, d) with a measurable convex structure W . Let {Ti : i ∈ J} : Ω×K → K be a finite family of continuous
asymptotically quasi-nonexpansive random mappings with rin(ω) : Ω→ [0,∞) for each ω ∈ Ω. Suppose that
the sequence {ξn(ω)} is defined as (1.3),

∑∞
n=1 αkn <∞ and F =

⋂k
i=1 F (Ti) 6= ∅. If

(i) for all 1 ≤ i ≤ k and each ω ∈ Ω, lim
n→∞

d(Ti(ω, ξn(ω)), ξn(ω)) = 0 ;

(ii) for some 1 ≤ l′ ≤ k, Tl′ is semicompact.

Then {ξn(ω)} converges to a common fixed point of {Ti : i ∈ J}.

Proof. Since Tl′ is semicompact and limn→∞ d(Tl′(ω, ξn(ω)), ξn(ω)) = 0, there exists a subsequence
{ξnj (ω)} ⊂ {ξn(ω)} such that limj→∞ ξnj (ω) = ξ′(ω) for each ω ∈ Ω. Since Ti are continuous, it fol-
lows that {ξn} is a sequence of measurable mappings. Therefore, ξ′(ω) : Ω→ K is also measurable. Hence,
it follows from

d(Ti(ω, ξ
′(ω)), ξ′(ω)) = lim

n→∞
d(Ti(ω, ξnj (ω)), ξnj (ω)) = 0

that ξ′(ω) ∈ F . By Lemma 2.1 (i), we have

d(ξn+1(ω), ξ′(ω)) ≤ (1 + αknM0)d(ξn(ω), ξ′(ω)).

According to Lemma 1.7 and
∑∞

n=1 αkn <∞, there exists a constant δ ≥ 0 such that

lim
n→∞

d(ξn(ω), ξ′(ω)) = δ.

Since lim
j→∞

ξnj (ω) = ξ′(ω), we have δ = 0. Therefore, {ξn(ω)} converges to a common fixed point of

{Ti : i ∈J}.
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