

Journal of Nonlinear Science and Applications

Print: ISSN 2008-1898 Online: ISSN 2008-1901

Stability of derivations in fuzzy normed algebras

Yeol Je Cho^{a,b}, Choonkill Park^c, Young-Oh Yang^{d,*}

^aDepartment of Mathematics Education and the RINS, Gyeongsang National University, Chinju 660-701, Korea.

^bDepartment of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.

^cResearch Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea.

^dDepartment of Mathematics, Jeju National University, Jeju 690-756, Korea.

Communicated by R. Saadati

Abstract

In this paper, we find a fuzzy approximation of derivation for an m-variable additive functional equation. In fact, using the fixed point method, we prove the Hyers-Ulam stability of derivations on fuzzy Lie C^* -algebras for the the following additive functional equation

$$\sum_{i=1}^{m} f\left(mx_{i} + \sum_{j=1, \, j \neq i}^{m} x_{j}\right) + f\left(\sum_{i=1}^{m} x_{i}\right) = 2f\left(\sum_{i=1}^{m} mx_{i}\right)$$

for a given integer m with $m \ge 2$. ©2015 All rights reserved.

Keywords: Fuzzy normed space, additive functional equation, fixed point, derivation, C^* -algebra, Lie C^* -algebra, Hyers-Ulam stability. 2010 MSC: 47H10, 54H25.

1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [9] concerning the stability of group homomorphisms:

Let $(G_1, *)$ be a group and let (G_2, \diamond, d) be a metric group with the metric $d(\cdot, \cdot)$. Given $\epsilon > 0$, does there exist a $\delta(\epsilon) > 0$ such that if a mapping $h: G_1 \to G_2$ satisfies the inequality $d(h(x * y), h(x) \diamond h(y)) < \delta$ for all $x, y \in G_1$, then there is a homomorphism $H: G_1 \to G_2$ with $d(h(x), H(x)) < \epsilon$ for all $x \in G_1$?

Received 2014-07-11

^{*}Corresponding author

Email addresses: yjcho@gnu.ac.kr (Yeol Je Cho), baak@hanyang.ac.kr (Choonkill Park), yangyo@jejunu.ac.kr (Young-Oh Yang)

If the answer is affirmative, we would say that the equation of homomorphism $H(x * y) = H(x) \diamond H(y)$ is *stable*.

We recall a fundamental result in fixed point theory.

Let Ω be a set. A function $d: \Omega \times \Omega \to [0, \infty]$ is called a *generalized metric* on Ω if d satisfies the following:

(1) d(x, y) = 0 if and only if x = y for all $x, y \in \Omega$;

(2) d(x,y) = d(y,x) for all $x, y \in \Omega$;

(3) $d(x,z) \le d(x,y) + d(y,z)$ for all $x, y, z \in \Omega$.

Theorem 1.1. [3] Let (Ω, d) be a complete generalized metric space and let $J : \Omega \to \Omega$ be a contractive mapping with Lipschitz constant L < 1. Then for each given element $x \in \Omega$, either $d(J^n x, J^{n+1}x) = \infty$ for all nonnegative integers n or there exists a positive integer n_0 such that

- (1) $d(J^n x, J^{n+1} x) < \infty$ for all $n \ge n_0$;
- (2) the sequence $\{J^n x\}$ converges to a fixed point y^* of J;
- (3) y^* is the unique fixed point of J in the set $\Gamma = \{y \in \Omega : d(J^{n_0}x, y) < \infty\};$
- (4) $d(y, y^*) \leq \frac{1}{1-L}d(y, Jy)$ for all $y \in \Gamma$.

In this paper, using the fixed point method, we prove the Hyers-Ulam stability of homomorphisms and derivations in fuzzy Lie C^* -algebras for the following additive functional equation (see [10])

$$\sum_{i=1}^{m} f\left(mx_{i} + \sum_{j=1, \, j \neq i}^{m} x_{j}\right) + f\left(\sum_{i=1}^{m} x_{i}\right) = 2f\left(\sum_{i=1}^{m} mx_{i}\right)$$
(1.1)

for all $m \in \mathbb{N}$ with $m \geq 2$.

We use the definition of fuzzy normed spaces given in [1, 4, 6, 7, 8] to investigate a fuzzy version of the Hyers-Ulam stability for the Cauchy-Jensen functional equation in the fuzzy normed algebra setting.

Definition 1.2. [6] Let X be a vector space. A function $N: X \times \mathbb{R} \to [0,1]$ is called a *fuzzy norm* on X if

- (N1) N(x,t) = 0 for all $x \in X$ and $t \in \mathbb{R}$ with $t \leq 0$;
- (N2) x = 0 if and only if N(x, t) = 1 for all $x \in X$ and t > 0;
- (N3) $N(cx,t) = N(x,\frac{t}{|c|})$ for all $x \in X$ and $c \neq 0$;
- (N4) $N(x+y,s+t) \ge \min\{N(x,s), N(y,t)\}$ for all $x, y \in X$ and $s, t \in \mathbb{R}$;
- (N5) $N(x, \cdot)$ is a non-decreasing function of \mathbb{R} and $\lim_{t\to\infty} N(x, t) = 1$ for all $x \in X$ $t \in \mathbb{R}$;
- (N6) for all $x \in X$ with $x \neq 0$, $N(x, \cdot)$ is continuous on \mathbb{R} .

The pair (X, N) is called a *fuzzy normed vector space*.

Definition 1.3. [6] (1) Let (X, N) be a fuzzy normed vector space. A sequence $\{x_n\}$ in X is said to be convergent to a point $x \in X$ or converges if there exists $x \in X$ such that

$$\lim_{n \to \infty} N(x_n - x, t) = 1$$

for all t > 0. In this case, x is called the *limit* of the sequence $\{x_n\}$ and we denote it by $N-\lim_{n\to\infty} x_n = x$.

(2) Let (X, N) be a fuzzy normed vector space. A sequence $\{x_n\}$ in X is called Cauchy if, for each $\varepsilon > 0$ and t > 0, there exists an $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$ and all p > 0, we have $N(x_{n+p} - x_n, t) > 1 - \varepsilon$.

It is well-known that every convergent sequence in a fuzzy normed vector space is a Cauchy sequence. If each Cauchy sequence is convergent, then the fuzzy normed vector space is said to be *complete* and the complete fuzzy normed vector space is called a *fuzzy Banach space*.

We say that a mapping $f : X \to Y$ between fuzzy normed vector spaces X and Y is *continuous* at a point $x_0 \in X$ if, for each sequence $\{x_n\}$ converging to x_0 in X, the sequence $\{f(x_n)\}$ converges to $f(x_0)$. If $f : X \to Y$ is continuous at each $x \in X$, then $f : X \to Y$ is said to be *continuous* on X (see [6]). **Definition 1.4.** [5] A fuzzy normed algebra (X, N) is a fuzzy normed space (X, N) with the algebraic structure such that

(N7) $N(xy,ts) \ge N(x,t)N(y,s)$ for all $x, y \in X$ and t, s > 0.

Every normed algebra $(X, \|\cdot\|)$ defines a fuzzy normed algebra (X, N), where N is defined by

$$N(x,t) = \frac{t}{t + \|x\|}$$

for all t > 0. This space is called the *induced fuzzy normed algebra*.

Definition 1.5. Let (X, N) and (Y, N) be fuzzy normed algebras. (1) An \mathbb{C} -linear mapping $f : X \to Y$ is called a *homomorphism* if

$$f(xy) = f(x)f(y)$$

for all $x, y \in X$.

(2) An \mathbb{C} -linear mapping $f: X \to X$ is called a *derivation* if

$$f(xy) = f(x)y + xf(y)$$

for all $x, y \in X$.

Definition 1.6. Let (\mathcal{U}, N) be a fuzzy Banach algebra. Then an *involution* on \mathcal{U} is a mapping $u \to u^*$ from \mathcal{U} into \mathcal{U} which satisfies the following:

- (a) $u^{**} = u$ for any $u \in \mathcal{U}$;
- (b) $(\alpha u + \beta v)^* = \overline{\alpha} u^* + \overline{\beta} v^*;$
- (c) $(uv)^* = v^*u^*$ for any $u, v \in \mathcal{U}$.

If, in addition, $N(u^*u, ts) = N(u, t)N(u, s)$ and $N(u^*, t) = N(u, t)$ for all $u \in \mathcal{U}$ and t, s > 0, then \mathcal{U} is a fuzzy C^* -algebra.

2. Stability of derivations on fuzzy C^* -algebras

Throughout this section, assume that A is a fuzzy C^* -algebra with the norm N_A .

For any mapping $f: A \to A$, we define

$$D_{\mu}f(x_1,\cdots,x_m) := \sum_{i=1}^{m} \mu f\left(mx_i + \sum_{j=1, j \neq i}^{m} x_j\right) + f\left(\mu \sum_{i=1}^{m} x_i\right) - 2f\left(\mu \sum_{i=1}^{m} mx_i\right)$$

for all $\mu \in \mathbb{T}^1 := \{\nu \in \mathbb{C} : |\nu| = 1\}$ and $x_1, \cdots, x_m \in A$.

Note that a \mathbb{C} -linear mapping

$$\delta: A \to A$$

is called a fuzzy C^{*}-algebra derivation on fuzzy C^{*}-algebras if δ satisfies the following:

$$\delta(xy) = y\delta(x) + x\delta(y)$$

and

$$\delta(x^*) = \delta(x)^*$$

for all $x, y \in A$.

Now, we prove the Hyers-Ulam stability of fuzzy C^* -algebra derivations on fuzzy C^* -algebras for the functional equation

$$D_{\mu}f(x_1,\cdots,x_m)=0.$$

Theorem 2.1. Let $f : A \to A$ be a mapping for which there are functions $\varphi : A^m \times (0, \infty) \to [0, 1]$, $\psi : A^2 \times (0, \infty) \to [0, 1]$ and $\eta : A \times (0, \infty) \to [0, 1]$ such that

$$N_A(D_\mu f(x_1, \cdots, x_m), t) \ge \varphi(x_1, \cdots, x_m, t),$$
(2.1)

$$\lim_{j \to \infty} \varphi(m^j x_1, \cdots, m^j x_m, m^j t) = 1,$$
(2.2)

$$N_A(f(xy) - xf(y) - xf(y), t) \ge \psi(x, y, t),$$
(2.3)

$$\lim_{j \to \infty} \psi(m^j x, m^j y, m^{2j} t) = 1, \tag{2.4}$$

$$N_A(f(x^*) - f(x)^*, t) \ge \eta(x, t), \tag{2.5}$$

$$\lim_{j \to \infty} \eta(m^j x, m^j t) = 1 \tag{2.6}$$

for all $\mu \in \mathbb{T}^1$, $x_1, \dots, x_m, x, y \in A$ and t > 0. If there exists an L < 1 such that

$$\varphi(mx, 0, \cdots, 0, mLt) \ge \varphi(x, 0, \cdots, 0, t) \tag{2.7}$$

for all $x \in A$ and t > 0, then there exists a unique fuzzy C^* -algebra derivation $\delta : A \to A$ such that

$$N_A(f(x) - \delta(x), t) \ge \varphi(x, 0, \cdots, 0, (m - mL)t)$$

$$(2.8)$$

for all $x \in A$ and t > 0.

Proof. Consider the set $X := \{g : A \to A\}$ and introduce the generalized metric on X:

 $d(g,h) = \inf\{C \in \mathbb{R}_+ : N_A(g(x) - h(x), Ct) \ge \varphi(x, 0, \cdots, 0, t), \ \forall x \in A, \ t > 0\}.$

It is easy to show that (X, d) is complete. Now, we consider the linear mapping $J : X \to X$ such that $Jg(x) := \frac{1}{m}g(mx)$ for all $x \in A$. By [2, Theorem 3.1], we have

$$d(Jg, Jh) \le Ld(g, h)$$

for all $g, h \in X$. Letting $\mu = 1, x = x_1$ and $x_2 = \cdots = x_m = 0$ in (2.1), we get

$$N_A(f(mx) - mf(x), t) \ge \varphi(x, 0, \cdots, 0, t)$$

$$(2.9)$$

for all $x \in A$ and t > 0. So

$$N_A(f(x) - \frac{1}{m}f(mx), t) \ge \varphi(x, 0, \cdots, 0, mt)$$

for all $x \in A$ and t > 0. Hence $d(f, Jf) \leq \frac{1}{m}$. By Theorem 1.1, there exists a mapping $\delta : A \to A$ such that (1) δ is a fixed point of J, i.e.,

$$\delta(mx) = m\delta(x) \tag{2.10}$$

for all $x \in A$. The mapping δ is a unique fixed point of J in the set

$$Y = \{g \in X : d(f,g) < \infty\}$$

This implies that δ is a unique mapping satisfying (2.10) such that there exists $C \in (0, \infty)$ satisfying

$$N_A(\delta(x) - f(x), Ct) \ge \varphi(x, 0, \cdots, 0, t)$$

for all $x \in A$ and t > 0.

(2) $d(J^n f, \delta) \to 0$ as $n \to \infty$. This implies the equality

$$\lim_{n \to \infty} \frac{f(m^n x)}{m^n} = \delta(x) \tag{2.11}$$

for all $x \in A$.

(3) $d(f,\delta) \leq \frac{1}{1-L}d(f,Jf)$, which implies the inequality $d(f,\delta) \leq \frac{1}{m-mL}$. This implies that the inequality (2.8) holds.

It follows from (2.1), (2.2) and (2.11) that

$$N_A \Big(\sum_{i=1}^m \delta \Big(mx_i + \sum_{j=1, j \neq i}^m x_j \Big) + \delta \Big(\sum_{i=1}^m x_i \Big) - 2\delta \Big(\sum_{i=1}^m mx_i \Big), t \Big)$$

=
$$\lim_{n \to \infty} N_A \Big(\sum_{i=1}^m f \Big(m^{n+1}x_i + \sum_{j=1, j \neq i}^m m^n x_j \Big) + f \Big(\sum_{i=1}^m m^n x_i \Big) - 2f \Big(\sum_{i=1}^m m^{n+1} x_i \Big), m^n t \Big)$$

$$\leq \lim_{n \to \infty} \varphi(m^n x_1, \cdots, m^n x_m, m^n t)$$

= 1

for all $x_1, \dots, x_m \in A$ and t > 0 and so

$$\sum_{i=1}^{m} \delta\left(mx_i + \sum_{j=1, j \neq i}^{m} x_j\right) + \delta\left(\sum_{i=1}^{m} x_i\right) = 2\delta\left(\sum_{i=1}^{m} mx_i\right)$$

for all $x_1, \cdots, x_m \in A$.

By the similar method to above, we get $\mu\delta(mx) = \delta(m\mu x)$ for all $\mu \in \mathbb{T}^1$ and all $x \in A$. Thus one can show that the mapping $\delta : A \to A$ is \mathbb{C} -linear.

It follows from (2.3), (2.4) and (2.11) that

$$N_A(\delta(xy) - y\delta(x) - x\delta(y), t)$$

$$= \lim_{n \to \infty} N_A(f(m^n xy) - m^n y f(m^n x) - m^n x f(m^n y), m^n t)$$

$$\leq \lim_{n \to \infty} \psi(m^n x, m^n y, m^{2n} t)$$

$$= 1$$

for all $x, y \in A$. So $\delta(xy) = y\delta(x) + x\delta(y)$ for all $x, y \in A$. Thus $\delta : A \to A$ is a derivation satisfying (2.7). Also, by (2.5), (2.6), (2.11) and a similar method, we have $\delta(x^*) = \delta(x)^*$.

3. Stability of derivations on fuzzy Lie C^* -algebras

A fuzzy C^* -algebra \mathcal{C} , endowed with the Lie product

$$[x,y] := \frac{xy - yx}{2}$$

on \mathcal{C} , is called a *fuzzy Lie* C^* -algebra.

Definition 3.1. Let A be a fuzzy Lie C^* -algebra. A \mathbb{C} -linear mapping $\delta : A \to A$ is called a *fuzzy Lie* C^* -algebra derivation if

$$\delta([x,y]) = [\delta(x), y] + [x, \delta(y)]$$

for all $x, y \in \mathcal{A}$.

Throughout this section, assume that A is a fuzzy Lie C^* -algebra with norm N_A . We prove the Hyers-Ulam stability of fuzzy Lie C^* -algebra derivations on fuzzy Lie C^* -algebras for the functional equation

$$D_{\mu}f(x_1,\cdots,x_m)=0.$$

Theorem 3.2. Let $f : A \to A$ be a mapping for which there are two functions $\varphi : A^m \times (0, \infty) \to [0, 1]$ and $\psi : A^2 \times (0, \infty) \to [0, 1]$ such that

$$\lim_{j \to \infty} \varphi(m^j x_1, \cdots, m^j x_m, m^j t) = 1, \tag{3.1}$$

$$N_A(D_\mu f(x_1, \cdots, x_m), t) \geq \varphi(x_1, \cdots, x_m, t), \tag{3.2}$$

$$N_A(f([x,y]) - [f(x),y] - [x,f(y)],t) \ge \psi(x,y,t),$$
(3.3)

$$\lim_{j \to \infty} \psi(m^j x, m^j y, m^{2j} t) = 1 \tag{3.4}$$

for all $\mu \in \mathbb{T}^1$, $x_1, \dots, x_m, x, y \in A$ and t > 0. If there exists an L < 1 such that

$$\varphi(mx, 0, \cdots, 0, mx) \ge \varphi(x, 0, \cdots, 0, t)$$

for all $x \in A$ and t > 0, then there exists a unique fuzzy Lie C^{*}-algebra derivation $\delta : A \to A$ such that

$$N_A(f(x) - \delta(x), t) \ge \varphi(x, 0, \cdots, 0, (m - mL)t)$$

$$(3.5)$$

for all $x \in A$ and t > 0.

Proof. By the same reasoning as in the proof of Theorem 2.1, we can find the mapping $\delta : A \to A$ given by

$$\delta(x) = \lim_{n \to \infty} \frac{f(m^n x)}{m^n}$$

for all $x \in A$. It follows from (3.3) that

$$N_A(\delta([x,y]) - [\delta(x),y] - [x,\delta(y)],t) = \lim_{n \to \infty} N_A(f(m^{2n}[x,y]) - [f(m^n x), \cdot m^n y] - [m^n x, f(m^n y)], m^{2n}t) \ge \lim_{n \to \infty} \psi(m^n x, m^n y, m^{2n}t) = 1$$

for all $x, y \in A$ and t > 0. So

$$\delta([x, y]) = [\delta(x), y] + [x, \delta(y)]$$

for all $x, y \in A$. Thus $\delta : A \to B$ is a fuzzy Lie C^{*}-algebra derivation satisfying (3.5). This completes the proof.

Corollary 3.3. Let A be a normed fuzzy Lie C*-algebra with norm $\|\cdot\|$. Let 0 < r < 1 and θ be nonnegative real numbers, and let $f : A \to A$ be a mapping such that

$$N_A(D_\mu f(x_1, \cdots, x_m), t) \ge \frac{t}{t + \theta(\|x_1\|_A^r + \|x_2\|_A^r + \cdots + \|x_m\|_A^r)}$$

and

$$N_A(f([x,y]) - [f(x),y] - [x,f(y)],t) \ge \frac{t}{t + \theta \cdot \|x\|_A^r \cdot \|y\|_A^r}$$

for all $\mu \in \mathbb{T}^1$, all $x_1, \dots, x_m, x, y \in A$ and t > 0. Then there exists a unique fuzzy Lie C^{*}-algebra derivation $\delta : A \to A$ such that

$$N_A(f(x) - \delta(x), t) \le \frac{t}{t + \frac{\theta}{m - m^r} ||x||_A^r}$$

for all $x \in A$ and t > 0.

Proof. The proof follows from Theorem 3.2 by taking

$$\varphi(x_1, \cdots, x_m, t) = \frac{t}{t + \theta(\|x_1\|_A^r + \|x_2\|_A^r + \cdots + \|x_m\|_A^r)}$$

and

$$\psi(x, y, t) := \frac{t}{t + \theta \cdot \|x\|_A^r \cdot \|y\|_A^r}$$

for all $x_1, \dots, x_m, x, y \in A$ and t > 0. Putting $L = m^{r-1}$, we get the desired result.

Acknowledgments

The third author was supported by the 2014 scientific promotion program funded by Jeju National University.

References

- R. P. Agarwal, Y. J. Cho, R. Saadati, S. Wang, Nonlinear *L-fuzzy stability of cubic functional equations*, J. Inequal. Appl., **2012** (2012), 19 pp. 1
- [2] L. Cădariu, V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math., 4, no. 1, Art. 4 (2003). 2
- [3] J. Diaz, B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74 (1968), 305–309. 1.1
- [4] C. Park, S. Y. Jang, R. Saadati, Fuzzy approximate of homomorphisms, J. Comput. Anal. Appl., 14 (2012), 833–841. 1
- [5] C. Park, M. Eshaghi Gordji, R. Saadati, Random homomorphisms and random derivations in random normed algebras via fixed point method, J. Inequal. Appl., 2012 (2012), 13 pp. 1.4
- [6] R. Saadati, S. M. Vaezpour, Some results on fuzzy Banach spaces, J. Appl. Math. Comput., 17 (2005), 475–484. 1, 1.2, 1.3, 1
- [7] R. Saadati, C. Park, Non-Archimedian *L*-fuzzy normed spaces and stability of functional equations, Comput. Math. Appl., 60 (2010), 2488–2496.
- [8] R. Saadati, On the "On some results in fuzzy metric spaces", J. Comput. Anal. Appl., 14 (2012), 996–999. 1
- [9] S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ., New York, 1960. 1
- [10] G. Zamani-Eskandani, On the Hyers-Ulam-Rassias stability of an additive functional equation in quasi-Banach spaces. J. Math. Anal. Appl., 345 (2008), 405–409. 1