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Abstract

In this short note, by using the method of Vasić and Pečarić [P. M. Vasić, J. E. Pečarić, Mathematica Rev.
D’Anal. Num. Th. L’Approx., 25 (1982), 95–103], we obtain some properties of Aczél-type inequality and
Bellman-type inequality, and then we obtain some new refinements of Aczél-type inequality and Bellman-
type inequality. c©2016 All rights reserved.
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1. Introduction

The famous Aczél’s inequality, which is of wide application in the theory of functional equations in
non-Euclidean geometry, was given by Aczél [1] as follows.

Theorem 1.1. Let n be a positive integer with n ≥ 2, and let ai, bi (i = 1, 2, · · · , n) be real numbers such
that a21 −

∑n
i=2 a

2
i > 0 and b21 −

∑n
i=2 b

2
i > 0. Then

(
a21 −

n∑
i=2

a2i

)(
b21 −

n∑
i=2

b2i

)
≤
(
a1b1 −

n∑
i=2

aibi

)2

. (1.1)

Later in 1959 Popoviciu [6] gave a generalization of the above inequality in the following theorem.
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Theorem 1.2. Let n be a positive integer with n ≥ 2, let p > 1, q > 1, 1
p + 1

q = 1, and let ai, bi
(i = 1, 2, · · · , n) be nonnegative real numbers such that ap1 −

∑n
i=2 a

p
i > 0 and bq1 −

∑n
i=2 b

q
i > 0. Then

(
ap1 −

n∑
i=2

api

) 1
p
(
bq1 −

n∑
i=2

bqi

) 1
q

≤ a1b1 −
n∑
i=2

aibi, (1.2)

which is called as Aczél-Popoviciu inequality.
In 1979, Vasić and Pečarić [11] presented a further extension of inequality (1.1) as follows.

Theorem 1.3. Let n, m be positive integers with n ≥ 2, let λj > 0,
∑m

j=1
1
λj
≥ 1, and let arj

(r = 1, 2, · · · , n; j = 1, 2, · · · ,m) be positive numbers such that a
λj
1j −

∑n
r=2 a

λj
rj > 0 for j = 1, 2, · · · ,m.

Then

m∏
j=1

(
a
λj
1j −

n∑
r=2

a
λj
rj

) 1
λj

≤
m∏
j=1

a1j −
n∑
r=2

m∏
j=1

arj . (1.3)

In 2012, Tian [7] presented the following reversed version of inequality (1.3) as follows.

Theorem 1.4. Let n, m be positive integers with n ≥ 2, let λ1 6= 0, λj < 0 (j = 2, 3, · · · ,m),
∑m

j=1
1
λj
≤ 1,

and let arj (r = 1, 2, · · · , n; j = 1, 2, · · · ,m) be positive numbers such that a
λj
1j −

∑n
r=2 a

λj
rj > 0 for j =

1, 2, · · · ,m. Then

m∏
j=1

(
a
λj
1j −

n∑
r=2

a
λj
rj

) 1
λj

≥
m∏
j=1

a1j −
n∑
r=2

m∏
j=1

arj . (1.4)

In 1990, Bjelica [3] obtained an interesting Aczél-type inequality as follows.

Theorem 1.5. Let n be a positive integer with n ≥ 2, let 0 < p ≤ 2, and let ai, bi (i = 1, 2, · · · , n) be
nonnegative real numbers such that ap1 −

∑n
i=2 a

p
i > 0 and bp1 −

∑n
i=2 b

p
i > 0. Then

(
ap1 −

n∑
i=2

api

) 1
p
(
bp1 −

n∑
i=2

bpi

) 1
p

≤ a1b1 −
n∑
i=2

aibi, (1.5)

which is called as Aczél-Bjelica inequality.
If we set m = 2, λ1 = p = λ2 = q < 0, ar1 = ar, ar2 = br (r = 1, 2, · · · , n) in Theorem 1.4, then from

Theorem 1.4 we obtain the following reversed version of Aczél-Bjelica inequality (1.5).

Theorem 1.6. Let n be a positive integer with n ≥ 2, let p < 0, and let ai, bi (i = 1, 2, · · · , n) be positive
real numbers such that ap1 −

∑n
i=2 a

p
i > 0 and bp1 −

∑n
i=2 b

p
i > 0. Then

(
ap1 −

n∑
i=2

api

) 1
p
(
bp1 −

n∑
i=2

bpi

) 1
p

≥ a1b1 −
n∑
i=2

aibi. (1.6)

The well-known Bellman inequality is stated in the following theorem [2] (see also [5]).

Theorem 1.7. Let n be a positive integer with n ≥ 2, and let ai, bi (i = 1, 2, · · · , n) be positive numbers
such that ap1 −

∑n
i=2 a

p
i > 0 and bp1 −

∑n
i=2 b

p
i > 0. If p ≥ 1 (or p < 0), then[(

ap1 −
n∑
i=2

api

) 1
p

+
(
bp1 −

n∑
i=2

bpi

) 1
p

]p
≤ (a1 + b1)

p −
n∑
i=2

(ai + bi)
p. (1.7)

If 0 < p < 1, then the reverse inequality in (1.7) holds.

Based on the mathematical induction, it is easy to see that the following generalized Bellman inequality
is true.
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Theorem 1.8. Let n, m be positive integers with n ≥ 2, let arj (r = 1, 2, · · · , n; j = 1, 2, · · · ,m) be positive
numbers such that ap1j −

∑n
r=2 a

p
rj > 0. If p ≥ 1 (or p < 0), then[ m∑

j=1

(
ap1j −

n∑
r=2

aprj

) 1
p
]p
≥
( m∑
j=1

a1j

)p
−

n∑
r=2

( m∑
j=1

arj

)p
. (1.8)

If 0 < p < 1, then the reverse inequality in (1.8) holds.

Remark 1.9. The case p ≥ 1 of Theorem 1.8 was given by Yang [13].

As is well-known, an important research subject in analyzing inequality is to convert an univariate
into the monotonicity of functions. For example, Hu in [4] solved the elaboration problems of the Opial-
Hua inequality by using the monotonicity of Hu’s inequality. Tian [9] solved the elaboration problems of
the Opial-Beesack inequality and Singh’s inequality by using a new monotonicity of generalized Hölder’s
inequality. Tian in [8] gave a new monotonicity property of reversed Hu’s inequality, and then obtained
some new refinements of Hölder’s inequalities by using the property. Moreover, Tian in [10] obtained
some new refinements of generalized Hölder’s inequalities by using the monotonicity of generalized Hölder’s
inequalities.

In [12], Vasić and Pečarić gave the following monotonicity property of inequalities (1.2) and (1.7).

Theorem 1.10. Let n be a positive integer with n ≥ 2, let p, q 6= 0, 1
p + 1

q = 1, and let ai, bi (i = 1, 2, · · · , n)

be nonnegative real numbers such that ap1 −
∑n

i=2 a
p
i > 0 and bq1 −

∑n
i=2 b

q
i > 0. Let one denote

P (n) =

(
ap1 −

n∑
k=2

apk

) 1
p
(
bq1 −

n∑
k=2

bqk

) 1
q

−
(
a1b1 −

n∑
k=2

akbk

)
.

If p > 1, then
P (n) ≤ P (n− 1),

and if p < 1 then the reverse inequality is valid.

Theorem 1.11. Let n be a positive integer with n ≥ 2, and let ai, bi (i = 1, 2, · · · , n) be positive numbers
such that ap1 −

∑n
i=2 a

p
i > 0 and bp1 −

∑n
i=2 b

p
i > 0. Let one denote

B(n) =

(
ap1 −

n∑
k=2

apk

) 1
p

+

(
bq1 −

n∑
k=2

bqk

) 1
q

−
(

(a1 + b1)
p −

n∑
k=2

(ak + bk)
p

)
.

If p > 1 (or < 0) we have
B(n) ≤ B(n− 1),

and if 0 < p < 1 then the reverse inequality is valid.

Stimulated by the works of Vasić and Pečarić [12], in this paper, using the method of Vasić and Pečarić
[12], some similar properties of the above Aczél-type inequality and Bellman-type inequality are given, and
then some new refinements of Aczél-type inequality and Bellman-type inequality are obtained.

2. Main results

Theorem 2.1. Let n, m be positive integers with n ≥ 3, let λ1 6= 0, λj < 0 (j = 2, 3, · · · ,m),
∑m

j=1
1
λj
≤ 1,

and let arj (r = 1, 2, · · · , n; j = 1, 2, · · · ,m) be positive numbers such that a
λj
1j −

∑n
r=2 a

λj
rj > 0 for j =

1, 2, · · · ,m. Let one denote

Vn =
m∏
j=1

(
a
λj
1j −

n∑
r=2

a
λj
rj

) 1
λj

−
( m∏
j=1

a1j −
n∑
r=2

m∏
j=1

arj

)
.
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Then

Vn ≥ Vn−1. (2.1)

Proof. Denoting

Aj =

(
a
λj
1j −

n−1∑
r=2

a
λj
rj

) 1
λj

, j = 1, 2, · · · ,m,

then
m∏
j=1

(
a
λj
1j −

n∑
r=2

a
λj
rj

) 1
λj

=

m∏
j=1

(
A
λj
j − a

λj
nj

) 1
λj

. (2.2)

It is given that A
λj
j − a

λj
nj > 0, therefore from Theorem 1.4 for n = 2, on right-hand side of the above

equation, we obtain

m∏
j=1

(
a
λj
1j −

n∑
r=2

a
λj
rj

) 1
λj

≥
m∏
j=1

Aj −
m∏
j=1

anj , (2.3)

that is
m∏
j=1

(
a
λj
1j −

n∑
r=2

a
λj
rj

) 1
λj

≥
m∏
j=1

(
a
λj
1j −

n−1∑
r=2

a
λj
rj

) 1
λj

−
m∏
j=1

anj . (2.4)

Thus, performing some simple computations immediately leads to the desired inequality. The proof of
Theorem 2.1 is completed.

By the same method as in Theorem 2.1, but using Theorem 1.3 in place of Theorem 1.4, we can obtain
the following Theorem.

Theorem 2.2. Let n, m be positive integers with n ≥ 3, let λj > 0, j = 1, 2, · · · ,m,
∑m

j=1
1
λj
≥ 1, and let

arj(r = 1, 2, · · · , n; j = 1, 2, · · · ,m) be positive numbers such that a
λj
1j −

∑n
r=2 a

λj
rj > 0 for j = 1, 2, · · · ,m.

Let one denote

Ṽn =
m∏
j=1

(
a
λj
1j −

n∑
r=2

a
λj
rj

) 1
λj

−
( m∏
j=1

a1j −
n∑
r=2

m∏
j=1

arj

)
.

Then

Ṽn ≤ Ṽn−1. (2.5)

Putting m = 2, λ1 = p 6= 0, λ2 = q < 0, ar1 = ar, ar2 = br (r = 1, 2, · · · , n) in Theorem 2.1, we obtain
the following result.

Corollary 2.3. Let n be a positive integer with n ≥ 3, let p 6= 0, q < 0, 1
p + 1

q ≤ 1, and let ai, bi
(i = 1, 2, · · · , n) be positive numbers such that ap1 −

∑n
i=2 a

p
i > 0 and bq1 −

∑n
i=2 b

q
i > 0. Let one denote

V ∗
n =

(
ap1 −

n∑
r=2

apr

) 1
p
(
bq1 −

n∑
r=2

bqr

) 1
q

−
(
a1b1 −

n∑
r=2

arbr

)
.

Then
V ∗
n ≥ V ∗

n−1. (2.6)

Similarly, putting m = 2, λ1 = p > 0, λ2 = q > 0, ar1 = ar, ar2 = br (r = 1, 2, · · · , n) in Theorem 2.2,
we obtain the following Corollary.
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Corollary 2.4. Let n be a positive integer with n ≥ 3, let p > 0, q > 0, 1
p + 1

q ≥ 1, and let ai, bi
(i = 1, 2, · · · , n) be positive numbers such that ap1 −

∑n
i=2 a

p
i > 0 and bq1 −

∑n
i=2 b

q
i > 0. Let one denote

Ṽ ∗
n =

(
ap1 −

n∑
r=2

apr

) 1
p
(
bq1 −

n∑
r=2

bqr

) 1
q

−
(
a1b1 −

n∑
r=2

arbr

)
.

Then
Ṽ ∗
n ≤ Ṽ ∗

n−1. (2.7)

More particularly, if we set p = q < 0 in Corollary 2.3, then we have the following property of reversed
Aczél-Bjelica inequality (1.6).

Corollary 2.5. Under the assumptions of Corollary 2.3, and let p = q < 0, we have

V ∗
n ≥ V ∗

n−1. (2.8)

Similarly, if we set p = q > 0 in Corollary 2.4, then we have the following property of Aczél-Bjelica
inequality (1.6).

Corollary 2.6. Under the assumptions of Corollary 2.4, and letting p = q > 0, we have

Ṽ ∗
n ≤ Ṽ ∗

n−1. (2.9)

From Theorem 2.1, we obtain a new refinement of generalized Aczél inequality (1.4) as follows.

Corollary 2.7. Under the assumptions of Theorem 2.1, we have

m∏
j=1

(
a
λj
1j −

n∑
r=2

a
λj
rj

) 1
λj

≥
m∏
j=1

a1j −
n∑
r=2

m∏
j=1

arj + V2 (2.10)

≥
m∏
j=1

a1j −
n∑
r=2

m∏
j=1

arj . (2.11)

Proof. From Theorem 2.1, we find
Vn ≥ V2 ≥ 0. (2.12)

Rearranging the terms of (2.12) immediately leads to the desired inequality. This completes the proof.

Making similar technique as in the proof of Corollary 2.7, we get the following refinement of generalized
Aczél inequality (1.3).

Corollary 2.8. Under the assumptions of Theorem 2.2, we have

m∏
j=1

(
a
λj
1j −

n∑
r=2

a
λj
rj

) 1
λj

≤
m∏
j=1

a1j −
n∑
r=2

m∏
j=1

arj + Ṽ2

≤
m∏
j=1

a1j −
n∑
r=2

m∏
j=1

arj . (2.13)

Similarly, we have the following refinements of Aczél-type inequality.
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Corollary 2.9. Let n be a positive integer with n ≥ 3, let p 6= 0, q < 0, 1
p + 1

q ≤ 1, and let ai, bi
(i = 1, 2, · · · , n) be positive numbers such that ap1 −

∑n
i=2 a

p
i > 0 and bq1 −

∑n
i=2 b

q
i > 0. Then(

ap1 −
n∑
r=2

apr

) 1
p
(
bq1 −

n∑
r=2

bqr

) 1
q

≥ a1b1 −
n∑
r=2

arbr + V ∗
2

≥ a1b1 −
n∑
r=2

arbr, (2.14)

where V ∗
2 =

(
ap1 − a

p
2

) 1
p
(
bq1 − b

q
2

) 1
q −

(
a1b1 − a2b2

)
≥ 0.

Corollary 2.10. Let n be a positive integer with n ≥ 3, let p > 0, q > 0, 1
p + 1

q ≥ 1, and let ai, bi
(i = 1, 2, · · · , n) be positive numbers such that ap1 −

∑n
i=2 a

p
i > 0 and bq1 −

∑n
i=2 b

q
i > 0. Then(

ap1 −
n∑
r=2

apr

) 1
p
(
bq1 −

n∑
r=2

bqr

) 1
q

≤ a1b1 −
n∑
r=2

arbr + Ṽ ∗
2

≤ a1b1 −
n∑
r=2

arbr, (2.15)

where Ṽ ∗
2 =

(
ap1 − a

p
2

) 1
p
(
bq1 − b

q
2

) 1
q −

(
a1b1 − a2b2

)
≤ 0.

Corollary 2.11. Let n be a positive integer with n ≥ 3, let p < 0, and let ai, bi (i = 1, 2, · · · , n) be positive
numbers such that ap1 −

∑n
i=2 a

p
i > 0 and bp1 −

∑n
i=2 b

p
i > 0. Then(

ap1 −
n∑
r=2

apr

) 1
p
(
bp1 −

n∑
r=2

bpr

) 1
p

≥ a1b1 −
n∑
r=2

arbr + V ∗
2

≥ a1b1 −
n∑
r=2

arbr, (2.16)

where V ∗
2 =

(
ap1 − a

p
2

) 1
p
(
bp1 − b

p
2

) 1
p −

(
a1b1 − a2b2

)
≥ 0.

Corollary 2.12. Let n be a positive integer with n ≥ 3, let 0 < p ≤ 2, and let ai, bi (i = 1, 2, · · · , n) be
positive numbers such that ap1 −

∑n
i=2 a

p
i > 0 and bp1 −

∑n
i=2 b

p
i > 0. Then(

ap1 −
n∑
r=2

apr

) 1
p
(
bp1 −

n∑
r=2

bpr

) 1
p

≤ a1b1 −
n∑
r=2

arbr + Ṽ ∗
2

≤ a1b1 −
n∑
r=2

arbr, (2.17)

where Ṽ ∗
2 =

(
ap1 − a

p
2

) 1
p
(
bp1 − b

p
2

) 1
p −

(
a1b1 − a2b2

)
≤ 0.

Next, we give a new property of generalized Bellman inequality (1.8) as follows.

Theorem 2.13. Let m and n be positive integers with n ≥ 3, let arj (r = 1, 2, · · · , n; j = 1, 2, · · · ,m) be
positive numbers such that ap1j −

∑n
r=2 a

p
rj > 0 for j = 1, 2, · · · ,m. Let one denote

Bn =

[ m∑
j=1

(
ap1j −

n∑
r=2

aprj

) 1
p
]p
−
[( m∑

j=1

a1j

)p
−

n∑
r=2

( m∑
j=1

arj

)p]
.

If p > 1 (or p < 0) we have
Bn ≤ Bn−1, (2.18)

and if 0 < p < 1 then the reverse inequality is valid.
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Proof. Similar to the proof of Theorem 2.1 but using Theorem 1.8 in place of Theorem 1.4, we immediately
obtain the desired results.

Finally, we give the following refinement of generalized Bellman inequality (1.8).

Corollary 2.14. Under the assumptions of Theorem 2.13. If p > 1 (or p < 0) we have

[ m∏
j=1

(
ap1j −

n∑
r=2

aprj

) 1
p
]p
≤
( m∑
j=1

a1j

)p
−

n∑
r=2

( m∑
j=1

arj

)p
+B2

≤
( m∑
j=1

a1j

)p
−

n∑
r=2

( m∑
j=1

arj

)p
(2.19)

and if 0 < p < 1 then the reverse inequality is valid, where B2 ≤ 0 for p > 1 (or p < 0), B2 ≥ 0 for
0 < p < 1.
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