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Abstract

Let L denote the operator generated in L2(R+, E) by the differential expression

l(y) = −y′′ +Q(x)y, x ∈ R+,

and the boundary condition (A0 + A1λ)Y ′ (0, λ) − (B0 + B1λ)Y (0, λ) = 0 , where Q is a matrix-valued
function and A0, A1, B0, B1 are non-singular matrices, with A0B1 − A1B0 6= 0. In this paper, using the
uniqueness theorems of analytic functions, we investigate the eigenvalues and the spectral singularities of
L. In particular, we obtain the conditions on q under which the operator L has a finite number of the
eigenvalues and the spectral singularities. c©2016 All rights reserved.
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1. Introduction

Consider the boundary value problem (BVP)

−y′′ + q(x)y = λ2y , 0 ≤ x <∞ (1.1)

y (0) = 0 (1.2)
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in L2 (R+) , where q is a complex-valued function and λ ∈ C is a spectral parameter. The spectral theory of
the above BVP was investigated by Naimark [22]. He showed the existence of the spectral singularities in the
continuous spectrum of the (1.1)-(1.2). Also, the spectral singularities belong to the continuous spectrum
and are the poles of the resolvent’s kernel, but are not the eigenvalues of the BVP (1.1)-(1.2). Also he
showed that if,

∞∫
0

eεx |q(x)| dx <∞, ε > 0,

then the eigenvalues and spectral singularities are of a finite number and each of them is of a finite mul-
tiplicity. Pavlov [25] established the dependence of the structure of the spectral singularities of L0 on the
behavior of the potential function at infinity. He also proved that if

sup
x∈R+

[
eεx

1/2 |q(x)|
]
<∞, ε > 0,

then the eigenvalues and spectral singularities are of a finite number and each of them is of a finite multi-
plicity.

In [19] the effect of the spectral singularities in the spectral expansion in terms of the principal vectors
was considered. Some problems of spectral theory of differential and some other types of operators with
spectral singularities were also studied in [1, 3, 4, 5, 6, 7, 16, 17]. The all above mentioned papers related
with the differential and difference equations are of scalar coefficients. Spectral analysis of the selfadjoint
differential and difference equations with matrix coefficients are studied in [10, 11, 14]. The spectral analysis
of the non-selfadjoint operator, generated in L2 (R+) by (1.1) and the boundary condition

y′ (0)

y (0)
=
β1λ+ β0
α1λ+ α0

,

where αi, βi ∈ C, i = 0, 1 with α0β1 − α1β0 6= 0 was investigated in detail by Bairamov et al. [8].
Let E be an n-dimensional (n <∞) Euclidean space with the norm ‖.‖ and let the Hilbert space of

vector-valued functions with the values in E be denoted by L2 (R+, E). In the L2 (R+, E) space consider
the BVP

−y′′ +Q (x) y = λ2y , x ∈ R+ (1.3)

y (0) = 0, (1.4)

where Q is a non-selfadjoint matrix-valued function (i. e. Q 6= Q∗). It is clear that, the BVP (1.3), (1.4)
is non-selfadjoint. In [24, 12] discrete spectrum of the non-selfadjoint matrix Sturm-Liouville operator was
investigated.

Let us consider the BVP

− y′′ +Q(x)y = λ2y, x ∈ R+, (1.5)

(A0 +A1λ)Y ′ (0, λ)− (B0 +B1λ)Y (0, λ) = 0, (1.6)

where Q is a non-singular matrix-valued function and A0, A1, B0, B1 are non-singular matrices such A0B1−
A1B0 6= 0 in L2(R+, E). We will denote the operator generated in L2(R+) by (1.5)-(1.6). In this paper we
discuss the discrete spectrum of L and prove that the operator L has a finite number of eigenvalues and
spectral singularities and each of them is of finite multiplicity if

Q ∈ AC(R+) , lim
x→∞

Q(x) = 0 ,

∞∫
0

eεx
δ ∥∥Q′(x)

∥∥ dx <∞ (1.7)
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for some ε > 0 and 1/2 ≤ δ < 1 holds. In particular, we show that the analogue of the Naimark condition
for L is in the form

Q ∈ AC(R+) , lim
x→∞

Q(x) = 0 ,

∞∫
0

eεx
∥∥Q′(x)

∥∥ dx <∞, ε > 0. (1.8)

2. Jost Solution of (1.5)

We will denote the solution of (1.5) satisfying the condition

lim
x→∞

Y (x, λ)e−iλx = I, λ ∈ C+ := {λ : λ ∈ C, funcImλ ≥ 0} (2.1)

by E(x, λ). The solution E(x, λ) is called the Jost solution of (1.5).
Under the condition

∞∫
0

x ‖Q(x)‖ dx <∞ (2.2)

the Jost solution has a representation

E(x, λ) = eiλxI +

∞∫
x

K(x, t)eiλtdt (2.3)

for λ ∈ C̄+, where the kernel matrix function K(x, t) satisfies

K(x, t) =
1

2

∞∫
x+t
2

Q(s)ds+
1

2

x+t
2∫
x

t+s−x∫
t+x−s

Q(s)K(s, v)dvds+
1

2

∞∫
x+t
2

t+s−x∫
s

Q(s)K(s, v)dvds. (2.4)

Moreover, K(x, t) is continuously differentiable with respect to its arguments and

‖K(x, t)‖ ≤ cσ
(
x+ t

2

)
(2.5)

‖Kx(x, t)‖ ≤ 1

4

∥∥∥∥Q(x+ t

2

)∥∥∥∥+ cσ

(
x+ t

2

)
(2.6)

‖Kt(x, t)‖ ≤
1

4

∥∥∥∥Q(x+ t

2

)∥∥∥∥+ cσ

(
x+ t

2

)
, (2.7)

where σ(x) =
∞∫
x
‖Q(s)‖ ds and c > 0 is a constant.

Therefore, E (x, λ) is analytic with respect to λ in C+ := {λ : λ ∈ C+, Imλ > 0} and continuous on the
real axis([2]. Chap.1; see also [18]. Chap.4; [20]. Chap.3).

We will denote the class of complex valued absolutely continuous functions in R+ by AC(R+).

Lemma 2.1. If

Q ∈ AC(R+) , lim
x→∞

Q(x) = 0 ,

∞∫
0

x2
∥∥Q′(x)

∥∥ dx <∞ (2.8)

then Kxt(x, t) exists.
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Kxt(x, t) = −1

8
Q′
(
x+ t

2

)
− 1

2

∞∫
x+t
2

Q(s)Kt(s, t+ s− x)ds− 1

4
Q

(
x+ t

2

)
K

(
x+ t

2
,
x+ t

2

)

− 1

2

x+t
2∫
x

Q(s) [Kt(s, x+ t− s) +Kt (t− x+ s)] ds. (2.9)

The proof of the lemma is the direct consequence of (2.4). From (2.5)-(2.7) and (2.9) we obtain that

‖Kxt(0, t)‖ ≤ c
{∥∥∥∥Q′( t2

)∥∥∥∥+

∥∥∥∥Q( t2
)∥∥∥∥+ σ

(
t

2

)}
, (2.10)

where c > 0 is a constant.

3. The Green function and the continuous spectrum

Let ϕ(x, λ) denote the solution of (1.5) subject to the initial conditions ϕ(0, λ) = A0 + A1λ, ϕ
′(0, λ) =

B0 +B1λ. Therefore ϕ(x, λ) is entire function of λ.
Let us define the following functions:

D±(λ) = ϕ(0, λ)Ex (0,±λ)− ϕ′(0, λ)E(0,±λ) λ ∈ C̄±, (3.1)

where C̄± = {λ : λ ∈ C, ± Imλ ≥ 0} . It is obvious that the functions D+(λ) and D−(λ) are analytic in
C+ and C−, respectively and continuous on the real axis.

The resolvent of L defined by the following

Rλ(L)f =

∞∫
0

G(x, t;λ)g(t)dt, g ∈ L2(R+, E), (3.2)

where

G(x, t;λ) =

{
G+(x, t;λ), λ ∈ C+

G−(x, t;λ), λ ∈ C−
(3.3)

and

G±(x, t;λ) =

{
−E(x,±λ)D−1± (λ)ϕT (t, λ), 0 ≤ t ≤ x
−ϕ(x, λ)

[
DT

+(±λ)
]−1

ET (t,±λ), x ≤ t <∞.
(3.4)

D+(λ) has the form of

D+(λ) = iA1λ
2 +Aλ+B +

∞∫
0

F (t)eiλtdt, (3.5)

where

A = iA0 −A1K(0, 0)−B1,

B = − (A0 + iB1)K(0, 0)−B0 + iA1Kx(0, 0), (3.6)

F (t) = −B0K(0, t)− iB1Kt(0, t) +A0Kx(0, t) + iA1Kxt(0, t).

Also using (2.5)-(2.7) and (2.10) we obtain that F ∈ L1(R+).

Theorem 3.1. D+(λ) has the asymptotic behavior:

D+(λ) = iA1λ
2 +Aλ+B + o(1) , |λ| → ∞ (3.7)

for λ ∈ C̄+.

Proof. From K, Kx, Kt, Kxt ∈ L1(R+) and Riemann-Lebesque lemma we obtain (3.7).

We will denote the continuous spectrum of L by σc. From [23, Theorem 2] we have

σc = R. (3.8)
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4. The discrete spectrum of the operator L

Assume that the eigenvalues and the spectral singularities of the operator L by σd and σss respectively.
Let us suppose that

H±(λ) = detD±(λ). (4.1)

From (2.3) and (3.1)-(3.8)

σd = {λ : λ ∈ C+, H+(λ) = 0} ∪ {λ : λ ∈ C−, H−(λ) = 0}
σss = {λ : λ ∈ R∗, H+(λ) = 0} ∪ {λ : λ ∈ R∗, H−(λ) = 0} , (4.2)

where R∗ = R\ {0} .

Definition 4.1. The multiplicity of a zero of D+ (or D−) in C̄+ (or C̄−) is defined as the multiplicity of
the corresponding eigenvalue and spectral singularity of L.

In order to investigate the quantitative properties of the eigenvalues and the spectral singularities of L,
we observe the quantitative properties of the zeros of D+ and D− in C̄+ and C̄−, respectively. We will
consider only the zeros of D+ in C̄+. A similar procedure may also be employed for zeros of D− in C̄−.

Let us define

M±1 = {λ : λ ∈ C±, H±(λ) = 0} ,M±2 = {λ : λ ∈ R, H±(λ) = 0} . (4.3)

So from (4.2) we get
σd = M+

1 ∪M
−
1 , σss = M+

2 ∪M
−
2 − {0} . (4.4)

Theorem 4.2. Under the conditions in (2.8)
(i) The discrete spectrum σd is a bounded, at most countable set and its limit points lie on the bounded

subinterval of the real axis;
(ii) The set σss is a bounded and its linear Lebesque measure is zero.

Proof. From Theorem 3.1 and uniqueness theorem of analytic functions [13] we have (i) and (ii).

Theorem 4.3. If

Q ∈ AC(R+) , lim
x→∞

Q(x) = 0 ,

∞∫
0

x3
∥∥Q′(x)

∥∥ dx <∞, (4.5)

then ∑
v

|lv| ln |lv| <∞, (4.6)

where |lv| is the lengths of the boundary complementary intervals of σss.

Proof. Let
r±(λ) = (λ+ i)−1H±(λ) (4.7)

where H±(λ) = detD±(λ). r± has the same properties, since the function H± is analytic on C± and
continuous on C̄±. From (3.7) we find that∣∣∣∣ ddλr±(λ)

∣∣∣∣ =

∣∣∣∣ −1

(λ+ i)2
H±(λ) +

1

(λ+ i)

d

dλ
H±(λ)

∣∣∣∣ ≤ 1

|λ+ i|2
|H±(λ)|+ 1

|λ+ i|

∣∣∣∣ ddλH±(λ)

∣∣∣∣
≤ 1

|λ+ i|2
M |λ|2 +

1

|λ+ i|
S |λ| ≤M + S, (4.8)

where M,S > 0 are constants. So r± satisfies Lipschitz condition and is not identically equal to zero, by
Beurling’s theorem we obtain (4.6) [9].
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Theorem 4.4. If

Q ∈ AC(R+) , lim
x→∞

Q(x) = 0 ,

∞∫
0

eεx
∥∥Q′(x)

∥∥ dx <∞, ε > 0, (4.9)

the operator L has a finite number of eigenvalues and spectral singularities and each of them is of finite
multiplicity.

Proof. (2.5), (2.8), (2.10), (3.5) and (4.9) imply that the function D+ has analytic continuation to the half-
plane Imλ > −ε/2. Therefore, H+ is analytic for Imλ > −ε/2 The limit points of its zeros on C̄+ cannot
lie in R. So using Theorem 4.2, we have the finiteness of zeros of H+ in C̄+. A similar consequence holds
for the function H− in C̄−. Then the proof of the theorem is the direct consequence of (4.4).

It is seen that the condition (4.9) guarantees the analytic continuation of H+ and H− from the real axis
to the lower and the upper half-planes respectively. So the finiteness of the eigenvalues and the spectral
singularities of L are obtained as a result of these analytic continuations. Consequently eigenvalues and
spectral singularities have a finite number of elements with a finite multiplicity.

Let us denote the sets of limit points of M+
1 and M+

2 by M+
3 and M+

4 respectively and the set of all
zeros of D+ with infinite multiplicity in C̄+ by M+

5 . Analogously define the sets M−3 , M−4 and M−5 .
It is explicit from the boundary uniqueness theorem of analytic functions that [13]

M±1 ∩M
±
5 = ∅, M±3 ⊂M

±
2 , M±4 ⊂M

±
2 , (4.10)

M±5 ⊂M
±
2 , M±3 ⊂M

±
5 , M±4 ⊂M

±
5

and µ(M±3 ) = µ(M±4 ) = µ(M±5 ) = 0, where µ denote the Lebesgue measure on the real axis.

Theorem 4.5. If

Q ∈ AC(R+) , lim
x→∞

Q(x) = 0 ,

∞∫
0

eεx
δ ∥∥Q′(x)

∥∥ dx <∞ (4.11)

for some ε > 0 and 1/2 ≤ δ < 1 holds, then M+
5 = M−5 = ∅.

Proof. We will prove that M+
5 = ∅. The case M−5 = ∅ is similar. For sufficiently large N > 0 such that∣∣∣∣∣∣
−N∫
−∞

In |H+(λ)|
1 + λ2

dλ

∣∣∣∣∣∣ <∞,
∣∣∣∣∣∣
∞∫
N

In |H+(λ)|
1 + λ2

dλ

∣∣∣∣∣∣ <∞. (4.12)

H+ is analytic in C+ and all of its derivatives are continuous on the real axis and∣∣∣∣ dndλnH+(λ)

∣∣∣∣ ≤ Rn, n = 0, 1, 2, · · · , λ ∈ C̄+, |λ| < 2N, (4.13)

where

R0 = 4 ‖A1‖N2 + 2 ‖A‖N + ‖B‖+

∞∫
0

‖F (t)‖ dt,

R1 = 4 ‖A1‖N + ‖A‖+

∞∫
0

t ‖F (t)‖ dt
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R2 = 2 ‖A1‖+

∞∫
0

t2 ‖F (t)‖ dt, (4.14)

Rn =

∞∫
0

tn ‖F (t)‖ dt, n ≥ 3.

Using (4.12), (4.13) and Pavlov’s theorem [26], we get that M+
5 satisfies

h∫
0

InT (s)dµ(M+
5,s) > −∞ (4.15)

where h > 0, T (s) = inf
n

Rns
n

n!
, µ(M+

5,s) is the linear Lebesque measure of s−neighborhood of M+
5 . We

obtain that
Rn ≤ Rdnn!nn(1/δ−1), (4.16)

where R and d are constants depending on ε and δ. Substituting (4.16) in the definition of T (s), we arrive
at

T (s) = inf
n

Rns
n

n!
≤ R exp

(
−
(

1

δ
− 1

)
e−1d−δ/(1−δ)s−δ/(1−δ)

)
. (4.17)

Now by (4.15) and (4.17), we get
h∫

0

s−δ/(1−δ)dµ(M+
5,s) <∞. (4.18)

Since δ/(1− δ) ≥ 1, consequently (4.18) holds for arbitrary s if and only if µ(M+
5,s) = 0 or M+

5 = ∅.

Theorem 4.6. Under the condition (4.11) the operator L has a finite number of the eigenvalues and the
spectral singularities and each of them is of a finite multiplicity.

Proof. To be able to prove the theorem we have to show that the functions D+ and D− have finite number
of zeros with finite multiplicities in C̄+ and C̄−, respectively. We will prove it only for D+. The case of D−
is similar.

It follows from (4.10) that M+
3 = M+

4 = ∅. So the bounded sets M+
1 and M+

2 have no limit points, that
is, the D+ has only a finite number of zeros in C̄+. Since M+

5 = ∅ these zeros are of a finite multiplicity.

Theorem 4.7. If the condition (2.8) is satisfied then the set σss is of the first category.

Proof. From the continuity of H+ it is clear that the set M+
2 is closed and is a set of Lebesgue measure zero

which is of type Fσ. According to Martin’s theorem [21] there is a measurable set whose metric density
exists and is different from 0 and 1 at every point M+

2 .
So, M+

2 is of the category from the theorem due to Goffman [15]. We also have obviously same things
for M−2 . Consequently σss is of the first category.
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[8] E. Bairamov, S. Seyyidoğlu, Non-selfadjoint singular Sturm-Liouville problems with boundary conditions dependent on the
eigenparameter, Abstr. Appl. Anal., 2010 (2010), 10 pages.1

[9] L. Carleson, Sets of uniqueness for functions regular in the unit circle, Acta Math., 87 (1952), 325–345.4
[10] R. Carlson, An inverse problem for the matrix Schrödinger equation, J. Math. Anal. Appl., 267 (2002), 564–575.1
[11] S. Clark, F. Gesztesy , W. Renger, Trace formulas and Borg-type theorems for matrix-valued Jacobi and Dirac finite

difference operators, J. Differential Equations, 219 (2005), 144–182.1
[12] C. Coskun, M. Olgun, Principal functions of non-selfadjoint matrix Sturm-Liouville equations, J. Comput. Appl. Math.,

235 (2011), 4834–4838.1
[13] E. P. Dolzhenko, Boundary value uniqueness theorems for analytic functions, Math. Notes, 25 (1979), 437–442.4, 4
[14] F. Gesztesy, A. Kiselev, K. A. Makarov, Uniqueness results for matrix-valued Schrödinger, Jacobi and Dirac-type operators,

Math. Nachr., 239 (2002), 103–145.1
[15] C. Goffman, On Lebesgue’s density theorem, Proc. Amer. Math. Soc., 1 (1950), 384–388.4.7
[16] A. M. Krall, E.Bairamov, O. Cakar, Spectrum and spectral singularities of a quadratic pencil of a Schrödinger operator

with a general boundary condition, J. Differentional Equations, 151 (1999), 252–267.1
[17] A. M. Krall, E. Bairamov, O. Cakar, Spectral analysis of a non-selfadjoint discrete Schrödinger operators with spectral

singularities, Math. Nachr., 231 (2001), 89–104.1
[18] B. M. Levitan, Inverse Sturm-Liouville problems, VSP, Zeist, (1987).2
[19] V. E. Lyance, A differential operator with spectral singularities I, II, Amer. Math. Soc. Transl., Amer. Math. Soc, Providence

60 (1967), 185–225, 227–283.1
[20] V. A. Marchenko, Sturm-Liouville operators and applications, Birkhauser Verlag, Basel, (1986).2
[21] N. F. G. Martin, A note on metric density of sets of real numbers, Proc. Amer. Math. Soc., 11 (1960), 344–347.4.7
[22] M. A. Naimark, Investigation of the spectrum and the expansion in eigenfunctions of a non-selfadjoint operators of second

order on a semi-axis,Tr. Mosk. Mat. Obs., 3 (1954), 181–270.1
[23] M. A. Naimark, Linear differential operators II, Ungar, NewYork, NY, USA, (1968).3
[24] M. Olgun, C. Coskun, Non-selfadjoint matrix Sturm-Liouville operators with spectral singularities, Appl. Math. Comput.,

216 (2010), 2271–2275.1
[25] B. S. Pavlov, On a non-selfadjoint Schrödinger operator II, Prob. Math. Phys., 2 (1967), 133–157.1
[26] B. S. Pavlov, On separation conditions for spectral components of a dissipative operator, Math. USSR-Izvestiya, 39 (1975),

123–148.4


	1 Introduction
	2 Jost Solution of (1.5)
	3 The Green function and the continuous spectrum
	4 The discrete spectrum of the operator L

