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Abstract

In this paper, we investigate the Hyers-Ulam stability of the following function inequalities
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Jof o)+ vato) + K0 < 10 (1 4 ).

in generalized quasi-Banach spaces, where a, b, ¢, K are nonzero real numbers. (©2016 All rights reserved.
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1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [14] in 1940, concerning
the stability of group homomorphisms. Let (Gi,.) be a group and let (Ga,*) be a metric group with the
metric d(.,.). Given € > 0, does there exists a § > 0, such that if a mapping h : G; — G2 satisfies the
inequality d(h(z.y), h(z) * h(y)) < ¢ for all z,y € G, then there exists a homomorphism H : G; — G2 with
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d(h(z), H(x)) < e for all z € G17? In the other words, Under what condition does there exist a homomorphism
near an approximate homomorphism? The concept of stability for functional equation arises when we replace
the functional equation by an inequality which acts as a perturbation of the equation. In 1941, Hyers [5]
gave the first affirmative answer to the question of Ulam for Banach spaces. Let f : E — E’ be a mapping
between Banach spaces such that

1f(z+y) = fla) = fWI <0
for all z,y € E, and for some § > 0. Then there exists a unique additive mapping T : £ — E’ such that

1f(2) = T(@)] <6

for all x € E. Moreover, if f(tx) is continuous in ¢ € R for each fixed z € E, then T is R-linear. In 1978,
Th. M. Rassias [9] proved the following theorem.

Theorem 1.1. Let f : E — E' be a mapping from a normed vector space E into a Banach space E’ subject
to the inequality

1f(x+y) = F(z) = F)l < ellzl” + [[y]*) (1.1)

for all x,y € E, where € and p are constants with € > 0 and p < 1. Then there exists a unique additive

mapping T : E — E’ such that
2e
-T <
I7(@) - T@) < o

for all x € E. If p < 0 then inequality (1.1) holds for all z,y # 0, and (1.2)) for x # 0. Also, if the function
t — f(tz) from R into E' is continuous in t € R for each fivred x € E, then T is R-linear.

o] (1.2)

In 1991, Gajda [4] answered the question for the case p > 1, which was raised by Th. M. Rassias. On the
other hand, J. M. Rassias [I1] generalized the Hyers-Ulam stability result by presenting a weaker condition
controlled by a product of different powers of norms.

Theorem 1.2 ([10, 12]). If it is assumed that there exists constants © > 0 and p1,p2 € R such that
p=p1+p2#1,and f: E — E' is a mapping from a norm space E into a Banach space E' such that the
inequality

1f(z+y) = flz) = W < Ol [ly[”
for all x,y € E, then there exists a unique additive mapping T : E — E' such that

1f () = T ()] <

for all x € E. If, in addition, f(tx) is continuous in t € R for each fized x € E, then T is R-linear.

In [8], Park et al. investigated the following inequalities

2
1f () + F(y) + )N <[z +y +2)];

IU@%hﬂw+2ﬂ@H§2f<x+y+z>

1£(@) + f() + F(2)] < w(m+y+z),

2

in Banach spaces. Recently, Cho et al. [3] investigated the following functional inequality

1)+ 1)+ 1) < s (THEE)| < <)
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in non-Archimedean Banach spaces. Lu and Park [6] investigated the following functional inequality

N N ]
S )| < K1 (ZI;(I)> H (0< K| <)
i=1

<

in Fréchet spaces.
In [7], we investigated the following functional inequalities

@)+ 500+ 51 < s ()| o< r1 <, (1)
@)+ 1+ KN < |f (T +2) | 0<x 2 (1.4)

and proved the Hyers-Ulam stability of the functional inequalities (|1.3) and (1.4]) in Banach spaces.
We consider the following functional inequalities

Jaf o)+ ba() + en(a)] < | (T (1.5
Jof o)+ bats) + 0 < 10 (1 4 ). (16)

where a, b, ¢, K are nonzero scalars.
Now, we recall some basic facts concerning quasi-Banach spaces and some preliminary results.

Definition 1.3 ([2, [13]). Let X be a linear space. A quasi-norm is a real-valued function on X satisfying
the following:

(1) ||z|| > 0 for all z € X and ||z|| = 0 if and only if x = 0.
(2) [[Az|| = |Al|l=|| for all A € R and all z € X.
(3) There is a constant § > 1 such that ||z + y|| < B(||z| + [ly||) for all z,y € X.

The pair (X, || - ||) is called a quasi-normed space if || - || is a quasi-norm on X.
A quasi-Banach space is a complete quasi-normed space.
Baak [I] generalized the concept of quasi-normed spaces.

Definition 1.4 ([1]). Let X be a linear space. A generalized quasi-norm is a real-valued function on X
satisfying the following:

(1) ||lz|| > 0 for all x € X and ||z|| = 0 if and only if z = 0.
(2) [[Az|| = |A| - ||z|| for all A € R and all z € X.
(3) Thereis a constant 8 > 1 such that || 3322, x;(| < 3272, Bz for all 21, 22, € X with 372, z; € X.

The pair (X, || - ||) is called a generalized quasi-normed space if || - || is a generalized quasi-norm on X.
The smallest possible C'is called the modulus of concavity of || - ||.

A generalized quasi-Banach space is a complete generalized quasi-normed space.

In this paper, we show that the Hyers-Ulam stability of the functional inequalities and in
generalized quasi-Banach spaces.

Throughout this paper, assume that X is a generalized quasi-normed vector space with generalized
quasi-norm || - || and that (Y, - ||) is a generalized quasi-Banach space. Let 8 be the modulus of concavity
of |- .
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2. Hyers-Ulam stability of the functional inequality (|1.5))
Throughout this section, assume that a, b, c and K are the nonzero scalars.

Proposition 2.1. Let f,g,h,p: X =Y be mappings such that g(0) = h(0) = p(0) =0 and

ax + by + cz
o) + () + eh(a)] < | p (TS| 2.)
for all x,y,z € X. Then the mappings f,qg and h are additive, for all x € X.
Proof. Letting x =y = z = 0 in (2.1]), we get
laf0)[| < |Kp(0)[| = 0.
So f(0) = 0.
Letting (z,y,2) = (3:,0, —%:c) in (2.1), we get
a
@)+ en(=2a)| < PO = 0 (2:2)
for all x € X.
Replacing (x,y, z) by (x, —32,0) in (2.1]), we get
a
|af@) +bg (<52)|| < I1£pO)] = 0 (2.3)
for all z € X.
ReplaCing (LE,y,Z) by (xvyv 7@) in " we get
ar + by
o (o) 4 b9(0) + b= ") | < )] =0 (24
for all z,y € X.
By (2.2),(3) and @4), we get
b b
f(m)—f(—ay) —f(ac—i-gy) =0 (2.5)

for all z,y € X.
Letting x = 0 in (2.5)), we have f(y) = —f(—y), and hence

flx+y) = f(z)+ f(y)

for all 7,y € X. Since f is additive, it is clear that g and h are additive. And f(z) = Sh(%z), g(z) = ¢h(2z),
as desired.

Next, we show that the Hyers-Ulam stability of the functional inequality (|1.5)).
Theorem 2.2. Assume that mappings f,g,h,p: X — Y with g(0) = h(0) = p(0) = 0 satisfy the inequality

Jof o) + b0+ eh(a)] < [ () |+ oo, (2:6)

where ¢ : X3 — [0,00) satisfies $(0,0,0) =0 and

o(x,y,z) = <1>j 10) (2j:1:, 2y, 2jz) < 0
0
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for all x,y,z € X. Then there exists a unique additive mapping A : X — Y such that

2

1£) =A@ < 51 {6 (2 -5 2:0) +0 (2.0, Ce) +6 (22, Cx) |
=54 (2)] < 5 (5 () 30t (et}
2
10— 54 Gl = g {8 (0—fne) 8 (=n000) 8 (< =)
forallx € X.

Proof. Letting v =y = 2 = 0 in (Z0), we get af(0)]| < | Kp(0)]| + 6(0,0,0) = [|Kp(0)]. So £(0) =
Letting (z,y, 2) = (z, —32,0) in (2.6]), we get

Haf(m) + by (—%a:) H < ¢ (93, —%x, 0) (2.8)
for all z € X.
Replacing (z,y, z) by (2,0, —%z) in , we get
Haf(:v)—kch <—%x)H < gb(x,O,—%x) (2.9)
for all z € X.

Replacing (z,y, z) by (2z, —¢z, —%x) in (2.6), we get

Haf(2x) + bg(—%x) +ch (—%x) H <o (23:, —%m, —%x) (2.10)

for all x € X.

By (2.8)),(2.9) and (2.10)), it follows that

I2/() = f(2n)l < ( (2, =32.0) +¢ (2.0,~%2) + ¢ (22, -7z, %2} (2.11)
for all z € X. such that
Hf(x) — %f(Qx) < 2\Ba| <¢ (x, —%x,O) + ¢ (:L’,O, —%x) + ¢ (296, —%:Jc, —%w)) (2.12)
for all z € X.
It follows from that
|7 (22) - Gy ma)
m—1

(V7 (P2) — ()7 f (27%'a)

(2.13)

2 m-1 J
<5 (2> |0 (2, —%23:5, 0) +6 (22,0, 227z, ) + ¢ (27+1a, —%2355, —29ig, )]
C C

for all nonnegative integers m and I with m > [ and all € X. It means that the sequence {(£)"f((2)"z)}

¢

is a Cauchy sequence for all z € X. Since Y is complete, the sequence {(3)"f(2"z)} converges. We define
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the mapping A : X — Y by A(z) = lim,00{(3)"f(2"2)} for all € X. Moreover, letting { = 0 and passing
the limit m — oo, we get

I£(z) - Als)| < f‘§j<éf

. 1
{ ( z, —%m 0) ! (2J 0, —923'9:,) ! (23‘“9;, —%2%:, —%J@«,)] (2.14)
C C

= fm‘ {5(95, —%m,()) + gz~5(x,0, —%x) + 5(256, f%x, f%x>}
for all x € X.

Similarly, there exists a mapping B : X — Y such that B(z) = lim, s 3 g(2"z) and

lg(@) — B@)|| < 2|Z| {5(-295,:;;,0) +3 (O,x, b ) + 3 (—bx 22, —ix)} (2.15)

for all x € X.
We also obtain a mapping C' : X — Y such that C(z) := limy, 00 z-h(2"2), and

Ih(z) — C(z)|| < 2‘;' {5 (—gsc 0, :c) e (o, —ga:a;> +é (—ga: —ga:, 23:)}

for all x € X.
Next, we show that A is an additive mapping.

[A(z) + Aly) — Az +y)[| = lim (5 )"Hf(2” )+ f(2"y) = f (2" +y)|
1 n a n
<t Jorcna oo (22|

+ Haf (2"y) + ch (—%2”34) H

+ Haf 2"(x +y)) + by (—92”35) + ch <—%2”y)m

b
o o e Sne) o (o 2)
+¢ (2"$ + 2"y, —%2”337 —%2"3/)]
=0

for all x,y € X. Thus the mapping A : X — Y is additive.
Now, we prove the uniqueness of A. Assume that T : X — Y is another additive mapping satisfying

([2.7). We obtain
[A(z) = T()]| = 2% |A(2") =T (2")|
<8 () 14 @)~ F (")
+ [T (2"z) — f (2"2)]]]
< |ﬂ3| [ (2%, 7%2%,0) n 5(2%,0, %2%) + 5(2%,7%2%, %2’%)} ,

which tends to zero as n — oo for all € X. Then we can conclude that A(z) = T'(z) for all z € X.
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Replacing (x,y, z) by (2"z,—%2"x,0) in (2.6]), we get

1
2n

af(2"x)+ bg <——2” )H < o (2”:6, —%2”93,0) ,

and so

aA(z) + bB (—gﬂz) =0

for all z € X. Similarly aA(z) + ¢C (—2%z) = 0 for all z € X. And aA(z) + bB(y) + cC (—@) = 0.
Hence

aA(z) — aA <_2y> —aA (:c + Zy) 0 (2.16)

for all z,y € X.
Letting x = y = 0 in (2.16)), we have A(0) = 0. Letting x = 0 in (2.16), A(—y) = —A(y), such that
B(z) = %A (22) and C(z) = 2A (£z). Therefore the inequalities (2.7) hold.
O

Corollary 2.3. Let ¢ and 6 be positive real numbers with 0 < g < 1. Let f,g,h,p : X = Y be mappings
with g(0) = h(0) = p(0) = 0 satisfying

b
fag(a) + o) + a2 < | o (S LEEN o+ e+ 219

for all x,y,z € X. Then there exists a unique additive mapping A : X — Y such that

B2 21— a
IIf(z) — A(z)]] Smﬁ 14297 1+|’b||q+||’|q |||

-5 ()| £ 30 (o o

1
< ey (1427 4 o+ ) 1

a
b
» 829 210 7 el
- = (1 24— 1 = I~ q
H s ( ”“’)H— g 21q—1< T2 g T ape ) 1ol

forallx € X.

3. Hyers-Ulam stability of the functional inequality (|1.6)
Throughout this section, assume that K, a,b are nonzero real numbers with |a| > K.

Proposition 3.1. Let f,g,h,p: X — Y be mappings with p(0) = 0 such that

Josa) +vat) + K0 < 10 (1 4 )| (3.)
for all x,y,z € X. Then the mappings f : X — Y is additive.
Proof. Lettingz =y=2=01in , we get
laf (O)[] < [[Kp(0)[| = 0.

So f(0) =
Letting y = —¢2 and z = 0 in (3.1)), we get

las@) +bg (<52)|| < 1ERO) =0 (3.2)
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for all 7 € X. So f(z) = —2g(—4x) for all z € X.
Replacing x by —z and letting y = 0 and z = £z in (3.1]), we get
|af(=2) + Kn (5a) | < 1KpO)] = 0 (3.3)
for all z € X. So f(—x) = —£h(Lz) for all z € X.
Thus we get
_ _ < o _
5@+ f(=2)ll = o Haf )+bg (<o) +xn (o) < SIKlIp0)] = 0
for all x € X. So f(—z) = —f(z) for all z € X. Similarly, we can show that g(—z) = —g(z) and
h(—z) = —h(x).
Letting z = =2=% in (3.1, we get
b —axr —b
af(z)+bg(y) — Kh (am; y) H = Haf(a:) +bg(y) + Kh <axKy> H
< [[Kp(0)[| =0
for all z,y € X. By (3.2)) and (3.3),
b b
af(z) — af(—ay) —af(z+ a?/) =0 (34)

for all z,y € X. Thus
f@)+fy) = fle+y) =0

for all x,y € X, as desired. O

Theorem 3.2. Assume that mappings f,g,h,p: X — Y with g(0) = h(0) = p(0) = 0 satisfy the inequality

+b
Jof o)+ ba(0) + K0 < |19 (1 42|+ ot012), (35)
where ¢ : X3 — [0,00) satisfies $(0,0,0) =0 and
> 1 S
a; Y, 2 22—]¢ 2jx,23y,232) < 00
7j=1

for all x,y,z € X. Then there exists a unique additive mapping A : X — Y such that

2

17(2) =A@ < g {8 (. -52.0) + 6 (2.0~ )+¢(2m bo, -}
o (0)] 5 £ L) 5o A S
R O R O e A U R R S )

forallz e X.

Proof. Letting x =y =2=01in , we get |laf(0)|| < ||Kp(0)|| + ¢(0,0,0) = 0. So f(0) =
Letting x = z,y = —4%%, 2 = 0 in , we obtain

st 10 (-] <0 (20



M. Fang, G. Lu, D. Pei, J. Nonlinear Sci. Appl. 9 (2016), 2481-2491 2489

for all x € X.
Letting y = 0,z = —9% in (3.5)), we obtain

Jost@ + &0 (= w) | < 0 (0. %)
for all x € X.
Letting x = 22,y = =9, 2 = — gz in , we get

oo (-3) 10 ()| < (22

for all x € X. So

=5 o < 5 llos@ -+ (5a)]| + o 0 100 (= )]
+of@2) + b (= 3) + K (— o] (3.7)

< [ (o500 w0 ) o or )

for all x € X. Tt follows from (3.7)) that

m—
1
<P Z %! 2j+1f(2] z)
=l
< B—mz i [ (2% —Zoiy 0) —|—qz5(2j:13 0— 12]‘1') +¢<2j+1x —Zoig —32jx)}
~ 2)a 27 b " K b K

for all nonnegative integers m and [ with m > [ and all x € X. It means that the sequence {2% f (2”x)} is
a Cauchy sequence for all x € X. Since Y is complete, the sequence {2%) f (2"1’)} converges. S0 we may
define the mapping A: X — Y by A(x) = lim,, 00 2%]‘(2”:17) for all z € X.

Moreover, by letting I = 0 and passing the limit m — oo, we get the first formula of .

Similarly, there exists a mapping B : X — Y such that B(x) = lim,,_, 2%9(27%) and

lg(z) - B()| < 2’; {5(-235,95,0) —|—$<O,x,—[b{ ) +¢>( b 20, f{x)} (3.8)

for all z € X.
We also obtain a mapping C : X — Y such that C(z) = lim, 0 3-h(2"z), and

2 ~ ~ ~
|h(z) — C(z)] < M {¢ (—fac,(),x) + ¢ <O, —fl’,l’) +¢ (—Ia{x, —Ib(x,2x>}

for all z € X.
Now, we show that A is additive.

[A() + Aly) ~ Al +y)l| = Jim o 1f (2"0) + F(29) — £ (2" + )]

<£ lim —[Haf 2"z )+bg< %2” )H

- |a‘ n—soo 2N

+ Haf (2"y) + Kh (—E2ny> H
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+ Haf (2"(z +y)) + by (—%2":6) + Kh (—%2“3;) )H

<P gm L [(;5 (2%, —%(2%),0) +¢ (2”y,0, —%(Q”y))

a a
9 4 2y, —Lony _ Lon )}
+¢< v+ 2%y, = 2y, -2y
~0

for all x,y € X. So the mapping A : X — Y is an additive mapping.
Now, we show that the uniqueness of A. Assume that T': X — Y is another additive mapping satisfying
(13.6). Then we get

[A(x) ~T(@)] = Jim | A@") ~ T(2"))

: 1 n n n n

< B lim = [[AQR"z) = f2"2)[| + | T(2"z) = f(2"2)[]

n—o00 2

B2 ~ a ~ a ~ a a
< = _Z _ e

Pl A [¢ (m bx’()) +¢(x’0’ K:”) +d’<25’3’ b K:”)}
=0
for all x € X. Thus we may conclude that A(x) = T'(x) for all x € X. This proves the uniqueness of A. So

the mapping A : X — Y is a unique additive mapping satisfying ((3.6)).
Replacing (z,y, z) by (2"z,—$2"x,0) in , we get

1
on

af (2"z) + by (—72" )H < 2n (2%,—%2%,0),

and so

aA(z) + bB (—gx) =0

for all z € X. Similarly aA(z) + KC (—£z) = 0 for all z € X. And aA(z) + bB(y) + KC (—%) =0.
Hence

0A(z) — aA (—Zy) —ad <:1: + 2y> 0 (3.9)

for all z,y € X.
Letting z = y = 0 in (3.9), we have A(0) = 0. Letting z = 0 in (3.9), A(—y) = —A(y), such that
B(z) = ¢A (g:c) and C(z) = A (%x) O

Corollary 3.3. Let q, 0 and K be positive real numbers with ¢ > 1. Let f,h,g,p : X — Y be mappings
with h(0) = g(0) = p(0) satisfying

azx + by

laf () +by(y) + Kh(=)]| < HKp (5 +2) H 0]l + Iyl + 12119

for all x,y,z € X. Then there exists a unique additive mapping A : X — Y such that

29 2
1)~ A < 702 (1t B 1 e
H =5

L
A 401 1O O g
< )H—\buq—l(* +!|q+\lq>”x”

b

a B%0 2 1 \qu yK\q
) 142071 4 0 a
K ( )H |K|2q—1(+ T T e ) 17

forallz e X.
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