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Abstract

In this paper, we formulate and study a multi-group SIS epidemic model with time-delays, nonlinear inci-
dence rates and patch structure. Two types of delays are incorporated to concern the time-delay of infection
and that for population exchange among different groups. Taking into account both of the effects of cross-
region infection and the population exchange, we define the basic reproduction number R0 by the spectral
radius of the next generation matrix and prove that it is a threshold value, which determines the global
stability of each equilibrium of the model. That is, it is shown that if R0 ≤ 1, the disease-free equilibrium
is globally asymptotically stable, while if R0 > 1, the system is permanent, an endemic equilibrium exists
and it is globally asymptotically stable. These global stability results are achieved by constructing Lya-
punov functionals and applying LaSalle’s invariance principle to a reduced system. Numerical simulation is
performed to support our theoretical results. c©2015 All rights reserved.

Keywords: SIS epidemic model, time-delay, nonlinear incidence rate, patch structure.
2010 MSC: 34D23, 34K20, 92D30.

1. Introduction

Based on the framework of Kermack and McKendrick [15], many epidemic models (systems of differential
equations) and approximate schemes have been developed in order to understand the underlying phenomena
and offer helpful guidance to prevent disease transmission. In particular, time-delayed models (see e.g.,
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[3, 22, 28]), multi-group epidemic models (see e.g., [11, 17, 22, 24, 28, 29, 32, 33, 35, 38, 39]), patchy models
(see e.g, [5, 12, 26, 36]) and models with general nonlinear incidence rates (see e.g., [8, 28, 29, 38]) play
important roles in studying the transmission of disease. In this field, determining threshold conditions for
the persistence, extinction of a disease, and global stability of equilibria remains one of the most challenging
problems in the analysis of models due to the dimension of the model is higher. Yet such results are necessary
for explanation of parameter thresholds for eradication of disease transmission.

The dispersal of species in spatially heterogeneous environment is very interesting topic which have
attracted much attention of many scholars (see e.g., [6, 20, 30, 34]). When modeling the spread of infectious
diseases in spatially heterogeneous host populations, dispersal among distinct patchy can be interpreted
as the exchange that people travel or migrate among cities and regions or countries. By using monotone
dynamical systems theory, many authors obtained some dynamical results, which mainly focus on the
permanence and extinction of the populations. It should be pointed here that multi-group epidemic models
have been formulated to describe the contracts or mixing between heterogeneous groups (different activity
levels, sex, age, location etc.), and patchy models focus on the movement or dispersal (immigrate) of the
individuals between the discrete spatial patches. In [36], Wang and Zhao proposed an epidemic model in
order to simulate the dynamics of disease transmission under the influence of a population dispersal among
patches. They established a threshold above which the disease is uniformly persistent and below which
disease-free equilibrium is locally attractive, and globally attractive when both susceptible and infective
individuals in each patch have the same dispersal rate. In [1], Arino and van den Driessche proposed n-city
epidemic models to investigate the effects of inter-city travel on the spatial spread of infectious diseases
among cities. In [14], Jin and Wang showed that the n-patch SIS model can be reduced to a monotone
system, and the uniqueness and global stability of the endemic equilibrium can be achieved by assuming the
dispersal rates of susceptible and infectious individuals are the same. In [21], Li and Shuai investigated an
SIR compartmental epidemic model in a patchy environment where individuals in each compartment can
travel among n patches. The global stability of equilibria is determined by threshold parameter R0.

Communicable diseases such as influenza and sexual diseases can be easily transmitted from one country
(or one region ) to other countries (or other regions). Thus, it is important to consider the effect of population
dispersal on spread of a disease [36]. This applies particularly to models involving nonlinearity and delays.
Whereas there has been little discussion about how the combinations of time delays, nonlinear incidence
rates and population dispersal affects the disease transmission dynamics in higher dimensional system of
differential equations. It is, however, not well understood some problems on the mathematical properties
(e.g., existence, uniqueness and stability of equilibria) of such models. From this point of view, we are
interested in the work of Nakata and Röst [26]. For biological reason and mathematical viewpoint, to clarify
such properties is always thought to be an important work. This motivates us to derive a more realistic
delayed multi-group model that not only contains dispersal of humans but also incorporates nonlinear
incidence rates.

The aim of this paper is threefold. First, we will investigate that under threshold condition, the model we
will study is permanence. In the proof, we use a technique based on Muroya et al. [25]. Second, we will prove
the existence of endemic equilibrium, which is proved by means of a monotone iterative technique proposed
by Ortega and Rheinboldt [27] and Muroya [23]. Third, by constructing suitable Lyapunov functionals
and applying LaSalle’s invariance principle, we will prove that the threshold parameter (basic reproduction
number) determines the global stability of equilibria in a sense that if R0 ≤ 1 the disease-free equilibrium
E0 of system (1.1) is globally asymptotically stable, while if R0 > 1 an endemic equilibrium E∗ exists and
it is globally asymptotically stable.

In this paper, we construct a time-delayed multi-group model which can be regarded as a generalization of
the model studied in Lajmanovich and Yorke [18]. Based on above considerations, we propose the following
time-delayed multi-group SIS epidemic model with nonlinear incidence rates and patch structure (that is,
individuals in each patch can move to another patch):
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

d

dt
Sk(t) = bk − µkSk(t)−

n∑
j=1

βkj

∫ +∞

0
Kkj(s)fkj(Sk(t), Ij(t− s))ds

+γkIk(t) +
n∑
j=1

(
αkj

∫ +∞

0
Lkj(s)Sj(t− s)ds− αjkSk(t)

)
,

d

dt
Ik(t) =

n∑
j=1

βkj

∫ +∞

0
Kkj(s)fkj(Sk(t), Ij(t− s))ds− (µk + γk)Ik(t)

+

n∑
j=1

(
αkj

∫ +∞

0
Lkj(s)Ij(t− s)ds− αjkIk(t)

)
, k = 1, 2, . . . , n.

(1.1)

In system (1.1), Sk(t) and Ik(t) denote the population densities of susceptible and infective individuals
at time t ∈ R in group k ∈ {1, 2, . . . , n}, respectively. For instance, to model a sexually transmitted disease,
we can set k = 1 to be the subscript for female and k = 2 to be that for male. We list the parameters and
their biological explanation as follows:

• bk > 0, µk > 0 and γk > 0 denote the birth rate, mortality rate and recovery rate for individuals in
group k, respectively.

• βkj ≥ 0 is the coefficient of disease transmission from an infective individual in group j to a susceptible
individual in group k.

• αkj ≥ 0 is the rate of transfer of an individual from group j to group k.

It is advocated in [3] that we should incorporate time delays to investigate the spread of an infectious
disease transmitted by a vector (e.g. mosquitoes, rats, etc.). In [3], under the assumptions that time-delay
is determined by distribution kernels f(s) and the vector population is proportional to that of infective
humans at time t − s, the force of infection was given by βI(t − s) and it was generalized to a distributed
form

β

∫ +∞

0
f(s)I(t− s)ds. (1.2)

In system (1.1), we introduce an integral kernel Kkj(s) to denote the probability a susceptible individual in
group k infected by individuals in group j at time t− s and becomes infective at time t. Then the force of
infection to a susceptible individual in group k at time t is given by

n∑
j=1

βkj

∫ +∞

0
Kkj(s)G(Ij(t− s))ds. (1.3)

The time delay used here represent the time during which the infectious agents develop in the vector.
We assume that transfer of an individual from group j to group k can be affected by the time-delay and
determined by distribution kernels Lkj(s) ≥ 0 of past time s ∈ R+. The above force of infection (1.3) can
be regarded as a further generalization of (1.2) by introducing nonlinear function of infective individuals.

Before going into details, we present some assumptions on these coefficients.

Assumption 1.1. (i) The nonnegative matrices

[αkj ]1≤k,j≤n =

 α11 · · · α1n
...

. . .
...

αn1 · · · αnn

 and [βkj ]1≤k,j≤n =

 β11 · · · β1n
...

. . .
...

βn1 · · · βnn


are irreducible (for the definition of irreducibility, see Berman and Plemmons [4] or Fiedler [10]);
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(ii) For each k, j ∈ {1, 2, . . . , n}, ∫ +∞

0
Kkj(s) ds =

∫ +∞

0
Lkj(s) ds = 1. (1.4)

Moreover, for simplicity (for more general settings, see Faria [9, Section 2]), we assume that

(iii) There exists a positive constant M0 such that∫ +∞

0
sKkj(s) ds ≤M0, for any k, j ∈ {1, 2, . . . , n}. (1.5)

(i) of Assumption 1.1 implies that there exists a transportation (or infection) path from one group to
every other groups. (ii) implies that these functions Kkj and Lkj are distributions in R+. (iii) is used to
prove the uniform stability of the disease-free equilibrium and endemic equilibrium, respectively. In addition
to these settings, and consider more various types of disease transmission, we assume that the transmission
function in system (1.1) is given by a general nonlinear function fkj(·, ·) ≥ 0. That is, we assume that the
force of infection to a susceptible individual Sk(t) in group k at time t is given by

n∑
j=1

βkj

∫ +∞

0
Kkj(s)fkj(Sk(t), Ij(t− s))ds.

For a special case of this type of force of infection, see Beretta and Takeuchi [3], Enatsu et al. [8] and Xu
and Ma [37].

Since system (1.1) contains an infinite delay, its associated initial condition needs to be restricted in an
appropriate fading memory space. For any λk ∈ (0, µk + γk +

∑n
j=1 αjk), j = 1, 2, . . . , n, define the following

Banach space of fading memory type (see e.g., [2] and references therein)

Ck = {φk ∈ C((−∞, 0],R+) : φk(s)e
λks is uniformly continuous on (−∞, 0], sup

s≤0
|φk(s)|eλks <∞}

and
Y∆ = {φk ∈ Ck : φk(s) ≥ 0 for all s ≤ 0}

with norm ‖φ‖k = sups≤0 |φ(s)|eλks. Let φt ∈ Ck and t > 0 be such that φt(s) = φ(t+ s), s ∈ (−∞, 0]. Let
ϕk, ψk ∈ Ck such that ϕk(s), ψk(s) ≥ 0 for all s ∈ (−∞, 0]. Throughout the paper, we consider solutions of
system (1.1), (S1(t), I1(t), S2(t), I2(t), . . . , Sn(t), In(t)), with initial conditions

(S1(t), I1(t), . . . , Sn(t), In(t)) = (ϕ1(t), ψ1(t), . . . , ϕn(t), ψn(t)), t ≤ 0. (1.6)

From the standard theory of functional differential equations (see e.g., [13]), we see that

(S1(t), I1(t), . . . , Sn(t), In(t)) ∈ Ck

for all t > 0. We study system (1.1) in the following phase space

Xð =

n∏
k=1

(Ck × Ck).

For fkj , we make the following assumption.

Assumption 1.2. For each k, j ∈ {1, 2, . . . , n}, fkj belongs to C1
(
R2

+;R+

)
and satisfies the following

conditions.

(i) fkj(0, y) = fkj(x, 0) = 0 for any (x, y) ∈ R2
+;
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(ii) For any fixed y > 0, fkj(x, y) is strictly monotone increasing with respect to x ∈ R+;

(iii) For any fixed x > 0, fkj(x, y) is monotone nondecreasing with respect to y ∈ R+;

(iv) For any fixed x ≥ 0,
fkj(x,y)

y is monotone decreasing with respect to y ∈ R+ \ {0};

(v) For any fixed x ≥ 0, there exists a limit Ckj(x) := lim
y→+0

fkj(x, y)

y
;

(vi) For any fixed x > 0, lim
y→+∞

fkj(x− y, y)

y
= −∞.

For instance, bilinear incidence rate fkj(x, y) := xy and saturated incidence rate fkj(x, y) := xy/(1+akjy
p),

where akj > 0, k, j = 1, 2, . . . , n and 0 < p < 1, are well-known examples which satisfy Assumption 1.2 (see
e.g., Enatsu et al. [8, (H1) and (H2)] for similar assumptions).

It is easy to see that the trivial equilibrium E0 = (S0
1 , 0, S

0
2 , 0, . . . , S

0
n, 0) of system (1.1) always exists,

which is called disease-free equilibrium. Here S0
k > 0, k = 1, 2, . . . , n is given by the solution of

bk = (µk + α̃kk)S
0
k −

n∑
j=1

(1− δkj)αkjS0
j , k = 1, 2, . . . , n, (1.7)

where α̃kk =
∑n

j=1(1−δjk)αjk and δkj denotes the Dirac delta which equals one if k = j and zero otherwise.

Under Assumption 1.1, the existence and uniqueness of S0
k , k = 1, 2, . . . , n are easily verified (see e.g., [16]).

Using this S0
k , we define the following matrix,

M0 :=

[
βkjCkj(S

0
k) + (1− δkj)αkj

µk + γk + α̃kk

]
1≤k,j≤n

. (1.8)

In fact, M0 = V−1F(S0), where S = (S0
1 , S

0
2 , · · · , S0

n)T ,

V =


µ1 + γ1 + α̃11 0 · · · 0

0 µ2 + γ2 + α̃22 · · · 0
...

...
...

0 0 · · · µn + γn + α̃nn


and

F(S) =


C11(S1)β11 C12(S1)β12 + α12 · · · C1n(S1)β1n + α1n

C21(S2)β21 + α21 C22(S2)β22 · · · C2n(S2)β2n + α2n
...

...
...

Cn1(Sn)βn1 + αn1 Cn2(Sn)βn2 + αn2 · · · Cnn(Sn)βnn

 .
It is easy to see that this matrix corresponds to the next generation matrix (see e.g., van den Driessche

and Watmough [31]). Hence, we can obtain a threshold value

R0 = ρ
(
M0
)
, (1.9)

which corresponds to the well-known basic reproduction number R0 (see e.g., Diekmann et al. [7]). Here
ρ(·) denotes the spectral radius of a matrix.

The main theorem of this paper is as follows.

Theorem 1.1. Let R0 be defined by (1.9) and Γ be a state space for system (1.1) defined by

Γ =

{
(S1, I1, S2, I2, . . . , Sn, In) ∈ R2n

+ | Sk + Ik ≤ S0
k , k = 1, 2, . . . , n

}
. (1.10)
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(i) If R0 ≤ 1, then the disease-free equilibrium E0 = (S0
1 , 0, S

0
2 , 0, . . . , S

0
n, 0) of system (1.1) is globally

asymptotically stable in Γ.

(ii) If R0 > 1, then an endemic equilibrium E∗ = (S∗1 , I
∗
1 , S

∗
2 , I
∗
2 , . . . , S

∗
n, I
∗
n) of system (1.1) exists in the

interior Γ0 of Γ. It is unique and globally asymptotically stable in Γ0.

Here we emphasize that this theorem is an extension of the previous result obtained by Kuniya and
Muroya [16] to the model with time-delays and nonlinear incidence rates.

This paper is organized as follows. In Section 2, we show the positivity of the solution of system (1.1) and
the convergence of total population. In Section 3, we prove the global asymptotic stability of the disease-free
equilibrium E0 for R0 ≤ 1. In Section 4, we prove the uniform persistence of system (1.1), existence of
endemic equilibrium E∗ and global stability of it for R0 > 1. In Section 5, numerical simulation is performed
to support our theoretical results.

2. Preliminaries

For the positivity of the solution of system (1.1), we have the following proposition.

Proposition 2.1. Consider system(1.1), the solutions remain positive for t ≥ 0. That is,

Sk(t) > 0, Ik(t) > 0, k = 1, 2, . . . , n

for t ≥ 0.

Proof. By (1.1), we have that limSk→+0
d
dtSk ≥ bk > 0 and Sk(0) ≥ 0 for any k = 1, 2, . . . , n, which imply

that there exist positive constants tk0, k = 1, 2, . . . , n such that Sk(t) > 0 for any 0 < t < tk0, k = 1, 2, . . . , n.
First, we prove that Sk(t) > 0 for any 0 < t < +∞ and k = 1, 2, . . . , n. On the contrary, suppose that
there exist a positive t1 and a positive integer k1 ∈ {1, 2, . . . , n} such that Sk1(t1) = 0 and Sk1(t) > 0 for
any 0 < t < t1. But by (1.1), we have that d

dtSk1(t1) ≥ bk1 > 0 which is a contradiction to the fact that
Sk1(t) > 0 = Sk1(t1) for any 0 < t < t1. Hence, we obtain that Sk(t) > 0 for any 0 < t < +∞ and
k = 1, 2, . . . , n.

Moreover, by (1.1), we have that

Ik(t) = e−(µk+γk+α̃kk+αkk)tIk(0) + e−(µk+γk+α̃kk+αkk)t

∫ t

0
e(µk+γk+α̃kk+αkk)u

×
{ n∑
j=1

βkj

∫ +∞

0
Kkj(s)fkj(Sk(u), Ij(u− s))ds

+
n∑
j=1

αkj

∫ +∞

0
Lkj(s)Ij(u− s)ds

}
du, for k = 1, 2, . . . , n and t > 0,

from which it follows that Ik(t) > 0 for any k = 1, 2, . . . , n and t > 0.

Put Nk(t) = Sk(t)+Ik(t) and N∗k = S0
k , k = 1, 2, . . . , n. Adding the two equations in (1.1), we have that

d

dt
{Sk(t) + Ik(t)} = bk − (µk + α̃kk + αkk){Sk(t) + Ik(t)}

+

n∑
j=1

αkj

∫ +∞

0
Lkj(s){Sj(t− s) + Ij(t− s)}ds,

which implies

dNk(t)

dt
= bk − (µk + α̃kk + αkk)Nk(t) +

n∑
j=1

αkj

∫ +∞

0
Lkj(s)Nj(t− s)ds. (2.1)
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In what follows, we show that this Nk(t) converges to the steady state N∗k . For the proof, we use the
following Lyapunov function.

UN (t) =
n∑
k=1

{
N∗kg (nk(t)) +

n∑
j=1

αkjN
∗
j

∫ +∞

0
Lkj(s)

∫ t

t−s
g(nj(u))duds

}
, (2.2)

where g(x) = x− 1− lnx ≥ g(1) = 0 for x > 0 and nk(t) = Nk(t)/N
∗
k , k = 1, 2, . . . , n.

Lemma 2.2. For the derivative of the Lyapunov function (2.2), the following estimate holds.

dUN (t)

dt
≤ −

n∑
k=1

{
µkN

∗
kg(nk(t)) + bkg

(
1

nk(t)

)}
≤ 0, (2.3)

and thus, the solution of (2.1) satisfies

lim
t→+∞

Nk(t) = N∗k , k = 1, 2, . . . , n. (2.4)

Proof. Differentiating UN (t) along the solutions of (1.1) yields

dUN (t)

dt
=

n∑
k=1

{(
1−

N∗k
Nk(t)

)
dNk(t)

dt
+

n∑
j=1

αkjN
∗
j

∫ +∞

0
Lkj(s){g(nj(t))− g(nj(t− s))ds

}
.

Using bk = (µk + α̃kk +αkk)N
∗
k −

n∑
j=1

αkjN
∗
j , k = 1, 2, . . . , n, we can arrange the first term in the right-hand

side of the above equation as(
1−

N∗k
Nk(t)

)
dNk(t)

dt
=

(
1−

N∗k
Nk(t)

)bk − (µk + α̃kk + αkk)Nk(t) +
n∑
j=1

αkj

∫ +∞

0
Lkj(s)Nj(t− s)ds


=

(
1−

N∗k
Nk(t)

)
{−(µk + α̃kk + αkk){Nk(t)−N∗k}

+

n∑
j=1

αkj

∫ +∞

0
Lkj(s){Nj(t− s)−N∗j }ds


=

(
1− 1

nk(t)

)
{−(µk + α̃kk + αkk)N

∗
k{nk(t)− 1}

+

n∑
j=1

αkjN
∗
j

∫ +∞

0
Lkj(s){nj(t− s)− 1}ds

 .

It is easy to check that the following relations hold:(
1− 1

nk(t)

)
{nk(t)− 1} = g(nk(t)) + g

(
1

nk(t)

)
,(

1− 1

nk(t)

)
{nj(t− s)− 1} = g(nj(t− s))− g

(
nj(t− s)
nk(t)

)
+ g

(
1

nk(t)

)
.

It follows that(
1−

N∗k
Nk(t)

)
dNk(t)

dt
= −(µk + α̃kk + αkk)N

∗
k

{
g(nk(t)) + g

(
1

nk(t)

)}
+

n∑
j=1

αkjN
∗
j

∫ +∞

0
Lkj(s)

{
g(nj(t− s))− g

(
nj(t− s)
nk(t)

)
+ g

(
1

nk(t)

)}
ds.
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Thus, we have

dUN (t)

dt
=

n∑
k=1

[
−(µk + α̃kk + αkk)N

∗
k

{
g(nk(t)) + g

(
1

nk(t)

)}

+

n∑
j=1

αkjN
∗
j

∫ +∞

0
Lkj(s)

{
g(nj(t− s))− g

(
nj(t− s)
nk(t)

)
+ g

(
1

nk(t)

)}
ds

+

n∑
j=1

αkjN
∗
j

∫ +∞

0
Lkj(s){g(nj(t))− g(nj(t− s))ds}

]

=
n∑
k=1

[
−(µk + α̃kk + αkk)N

∗
k

{
g(nk(t)) + g

(
1

nk(t)

)}

+
n∑
j=1

αkjN
∗
j

{
g(nj(t))−

∫ +∞

0
Lkj(s)g

(
nj(t− s)
nk(t)

)
ds+ g

(
1

nk(t)

)}]
.

It follows from (1.7) that
n∑
j=1

αkjN
∗
j = (µk + α̃kk + αkk)N

∗
k − bk, k = 1, 2, . . . , n. Furthermore, we have

n∑
k=1

n∑
j=1

αkjN
∗
j

{
g(nj(t)) + g

(
1

nk(t)

)}

=

n∑
k=1

( n∑
j=1

αjk

)
N∗kg(nk(t)) +

n∑
k=1

( n∑
j=1

αkjN
∗
j

)
g

(
1

nk(t)

)

=

n∑
k=1

(α̃kk + αkk)N
∗
kg(nk(t)) +

n∑
k=1

( n∑
j=1

αkjN
∗
j

)
g

(
1

nk(t)

)

=
n∑
k=1

(α̃kk + αkk)N
∗
kg(nk(t)) +

n∑
k=1

{(µk + α̃kk + αkk)N
∗
k − bk}g

(
1

nk(t)

)
.

Hence, we obtain (2.3), which implies that (2.4) holds.

Lemma 2.3. If there exist positive constants u, ū and u∗ such that

0 < u ≤ lim inf
t→+∞

u(t) ≤ lim sup
t→+∞

u(t) ≤ ū, and u ≤ u∗ ≤ ū, (2.5)

then for the function g(x) = x− 1− lnx for x > 0,

1

ū2
|u(t)− u∗|2 ≤ g

(
u(t)

u∗

)
≤ 1

u2
|u(t)− u∗|2. (2.6)

This lemma is easily obtained by Taylor’s series expansion, and together with the assumption (1.5), we
use to ensure the uniform stability of the disease-free equilibrium and the endemic equilibrium of (1.1).

3. Global stability of the disease-free equilibrium

In this section, we prove the global asymptotic stability of the disease-free equilibrium E0 of system (1.1)
for R0 ≤ 1. Under Lemma 2.2, without loss of generality, it is natural to assume that Sk(t) + Ik(t) ≡ N∗k ,
for k = 1, 2, . . . , n. Since N∗k = S0

k , we can rewrite system (1.1) by substituting Sk(t) = S0
k − Ik(t) into the

second equation of it.



J. Wang, Y. Muroya, T. Kuniya, J. Nonlinear Sci. Appl. 8 (2015), 578–599 586


d

dt
Ik(t) =

n∑
j=1

βkj

∫ +∞

0
Kkj(s)fkj(S

0
k − Ik(t), Ij(t− s))ds− (µk + γk)Ik(t)

+

n∑
j=1

(
αkj

∫ +∞

0
Lkj(s)Ij(t− s)ds− αjkIk(t)

)
, k = 1, 2, . . . , n.

(3.1)

Using this reduced system, we are in the position to state and prove the main theorem of this section.

Theorem 3.1. If R0 ≤ 1, then the disease-free equilibrium E0 of system (1.1) is globally asymptotically
stable in Γ.

Proof. It is sufficient to show that the trivial equilibrium Ik ≡ 0, k = 1, 2, . . . , n of system (3.1) is globally
asymptotically stable. Now, under Assumptions 1.1-1.2, matrix M0 is nonnegative and irreducible. Hence,
it follows from the Perron-Frobenius theorem (see e.g., Berman and Plemmons [4]) that R0 = ρ(M0) ≤ 1 is a
left eigenvalue of M0 corresponding to a positive left eigenvector ω = (ω1, ω2, . . . , ωn), ωk > 0, k = 1, 2, . . . , n.
That is,

ωM0 = ρ
(
M0
)
ω ≤ ω (3.2)

holds. For this ω = (ω1, ω2, . . . , ωn), we set

vk =
ωk

µk + γk + α̃kk
, k = 1, 2, . . . , n. (3.3)

Using these coefficients vk > 0, k = 1, 2, . . . , n, we construct the following Lyapunov functional.

W (t) =
n∑
k=1

vk

Ik(t) +
n∑
j=1

βkj

∫ +∞

0
Kkj(s)

∫ t

t−s
fkj
(
S0
k − Ik(u+ s), Ij(u)

)
duds

+
n∑
j=1

αkj

∫ +∞

0
Lkj(s)

∫ t

t−s
Ij(u)duds

 . (3.4)

By (3.1), the derivative of the first term in the right-hand side of (3.4) is calculated as

d

dt

(
n∑
k=1

vkIk(t)

)
=

n∑
k=1

vk


n∑
j=1

βkj

∫ +∞

0
Kkj(s)fkj(S

0
k − Ik(t), Ij(t− s))ds

−(µk + γk + α̃kk)Ik(t) +
n∑
j=1

αkj

∫ +∞

0
Lkj(s)Ij(t− s)ds− αkkIk(t)

 . (3.5)

The derivative of the second term in the right-hand side of (3.4) is

d

dt

 n∑
k=1

vk

n∑
j=1

βkj

∫ +∞

0
Kkj(s)

∫ t

t−s
fkj
(
S0
k − Ik(u+ s), Ij(u)

)
duds

)

=

n∑
k=1

vk


n∑
j=1

βkj

∫ +∞

0
Kkj(s)fkj(S

0
k − Ik(t+ s), Ij(t))ds

−
n∑
j=1

βkj

∫ +∞

0
Kkj(s)fkj(S

0
k − Ik(t), Ij(t− s))ds

 . (3.6)
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The derivative of the last term in the right-hand side of (3.4) is

d

dt

 n∑
k=1

vk

n∑
j=1

αkj

∫ +∞

0
Lkj(s)

∫ t

t−s
Ij(u)duds

)

=
n∑
k=1

vk


n∑
j=1

αkj

∫ +∞

0
Lkj(s)Ij(t)ds−

n∑
j=1

αkj

∫ +∞

0
Lkj(s)Ij(t− s)ds


=

n∑
k=1

vk


n∑
j=1

αkjIj(t)−
n∑
j=1

αkj

∫ +∞

0
Lkj(s)Ij(t− s)ds

 .

Thus, combining with (3.5)-(3.7), we obtain the following estimate for the derivative of functional W (t)
along the trajectories of system (3.1).

dW (t)

dt
=

n∑
k=1

vk


n∑
j=1

βkj

∫ +∞

0
Kkj(s)fkj(S

0
k − Ik(t+ s), Ij(t))ds

−(µk + γk + α̃kk)Ik(t) +
∑
j 6=k

αkjIj(t)


≤

n∑
k=1

vk


n∑
j=1

βkj

∫ +∞

0
Kkj(s)fkj(S

0
k , Ij(t))ds

−(µk + γk + α̃kk)Ik(t) +
∑
j 6=k

αkjIj(t)


≤

n∑
k=1

vk


n∑
j=1

βkj
fkj(S

0
k , Ij(t))

Ij(t)
Ij(t)− (µk + γk + α̃kk)Ik(t) +

∑
j 6=k

αkjIj(t)


≤

n∑
k=1

vk


n∑
j=1

{
βkjCkj(S

0
k) + (1− δkj)αkj

}
Ij(t)− (µk + γk + α̃kk)Ik(t)


= ω

{
M0I(t)− I(t)

}
= ω (R0 − 1) I(t) ≤ 0. (3.7)

Here we used Assumption 1.2 and (3.2)-(3.3).

It is obvious from (3.7) that R0 < 1 if and only if Ik(t) ≡ 0, k = 1, 2, . . . , n. If R0 = 1, then it follows
from the first equation of (3.7) that W ′(t) ≡ 0 implies

n∑
k=1

vk(µk + γk + α̃kk)Ik(t) =

n∑
k=1

vk


n∑
j=1

βkj

∫ +∞

0
Kkj(s)fkj(S

0
k − Ik(t+ s), Ij(t))ds+

∑
j 6=k

αkjIj(t)

 .

By (3.3), the left-hand side of this equation is ωI(t) and by the first equation of (3.2) and R0 = ρ(M0) = 1,
(3.7) implies

0 =

n∑
k=1

vk


n∑
j=1

{
βkjCkj(S

0
k) + (1− δkj)αkj

}
Ij(t)


=

n∑
k=1

vk


n∑
j=1

{
βkj

∫ +∞

0
Kkj(s)

fkj(S
0
k − Ik(t+ s), Ij(t))

Ij(t)
ds+ (1− δkj)αkj

}
Ij(t)

 .
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It can be seen from Assumption 1.2 that this equality holds if and only if Ik(t) ≡ 0, k = 1, 2, . . . , n.
Consequently, we conclude that W ′(t) = 0 if and only if Ik(t) ≡ 0, k = 1, 2, . . . , n. Thus, it follows from the
classical LaSalle’s invariance principle (see [19]), E0 is global attractive. Moreover, by Lemmas 2.2 and 2.3
with (3.3) and (1.5) and dW

dt ≤ 0 with (3.4), we can easily prove that there exist positive constants c1 and
c2 such that c1 and c2 do not depend on the initial condition (1.6) and

Ik(t) ≤ c1W (t) ≤ c1W (0) ≤ c1c2 max
1≤j≤n

Ij(0), k = 1, 2, . . . , n,

which implies that E0 of (3.1) is uniformly stable. Hence, the disease-free equilibrium E0 of the original
system (1.1) is so.

4. Global stability of the endemic equilibrium

4.1. Permanence

In this subsection, we prove the permanence (uniform persistence) of system (1.1) for R0 > 1. As in the
previous section, for simplicity, we consider the reduced system (3.1).

Under Assumption 1.1, matrix M0 is nonnegative and irreducible and hence, as in the previous sec-
tion, it follows that R0 = ρ(M0) > 1 is an eigenvalue of M0 and there exists an associated eigenvector
r = (r1, r2, . . . , rn)T , rk > 0, k = 1, 2, . . . , n such that

M0r = ρ
(
M0
)
r > r, (4.1)

From this inequality, we obtain the following inequality (cf. (3.2)).

n∑
j=1

{Ckj(S0
k)βkj + (1− δkj)αkj}rj − (µk + γk + α̃kk)rk > 0, k = 1, 2, . . . , n. (4.2)

We prove the following proposition.

Proposition 4.1. If R0 > 1, then system (3.1) is permanent, that is, there exist positive constants m,M > 0
such that

m ≤ min
1≤k≤n

lim inf
t→+∞

Ik(t) ≤ max
1≤k≤n

lim sup
t→+∞

Ik(t) ≤M. (4.3)

Here m and M are independent from the choice of initial condition.

Proof. Under Lemma 2.2, the existence of the upper bound is obvious and hence, we show the existence of
the lower bound. Let i ∈ {1, 2, . . . , n} be a positive integer such that

lim inf
t→+∞

Ii(t)

ri
= min

1≤k≤n
lim inf
t→+∞

Ik(t)

rk
=: I.

We first show I > 0. To this end, we assume I = 0 and show a contradiction. In this case, there exists an
increasing sequence 0 ≤ t1 < t2 < · · · and tk → +∞ such that

(i) I ′i(tp) ≤ 0, p = 1, 2, . . . and lim
p→+∞

I(tp) = 0.

(ii) For all t ∈ [0, tp], p = 1, 2, . . .,

Ij(t)

rj
≥ Ii(tp)

ri
> 0, j = 1, 2, . . . , n.
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Then, it follows from Assumption 1.2 and (3.1) that

0 ≥ I ′i(tp)

=
n∑
j=1

βijrj

∫ +∞

0
Kij(s)

Ii(tp)

ri

fij(S
0
i − Ii(tp), Ij(tp − s))

rj
ri
Ii(tp)

ds

−(µi + γi)ri
Ii(tp)

ri
+

n∑
j=1

(
αijrj

∫ +∞

0
Lij(s)

Ij(tp − s)
rj

ds− αjiri
Ii(tp)

ri

)
≥

n∑
j=1

βijrj
Ii(tp)

ri

fij(S
0
i − Ii(tp),

rj
ri
Ii(tp))

rj
ri
Ii(tp)

− (µi + γi)ri
Ii(tp)

ri
+

n∑
j=1

(
αijrj

Ii(tp)

ri
− αjiri

Ii(tp)

ri

)
=

( n∑
j=1

βijrj
fij(S

0
i − Ii(tp),

rj
ri
Ii(tp))

rj
ri
Ii(tp)

− (µi + γi)ri +
n∑
j=1

(1− δij)(αijrj − αjiri)
)
Ii(tp)

ri
.

Then, since Ii(tp) > 0, we have

n∑
j=1

βijrj
fij(S

0
i − Ii(tp),

rj
ri
Ii(tp))

rj
ri
Ii(tp)

− (µi + γi)ri +
n∑
j=1

(1− δij)(αijrj − αjiri) ≤ 0.

Then, by virtue of lim
p→+∞

I(tp) = 0 and Assumption 1.2, p→ +∞ leads to

0 ≥
n∑
j=1

{Cij(S0
i )βij + (1− δij)αij}rj − (µi + γi + α̃ii)ri.

However this contradicts with (4.2). Consequently, I > 0.

Next we show that there exists a positive constant Î > 0 such that I > Î. Here, Î is a positive constant
such that H(Î) > 0 holds, where H(·) is a monotone decreasing function on R+ defined by

H(I) :=
n∑
j=1

(
βij

fij(S
0
i − riI, rjI)

rjI
+ (1− δij)αij

)
rj − (µi + γi + α̃ii)ri.

In fact, it follows from (4.2) that H(Î) > 0 holds for sufficiently small Î > 0. Now, the definition of I ensures
that for a sufficiently small ε > 0 and a sufficiently large T0 > 0,

Ij(t)

rj
> I − ε > 0, j = 1, 2, . . . , n

holds for all t ≥ T0. Moreover, by (1.4), there exists a sufficiently large positive constant T1 ≥ T0 such that
∫ T1

0
Kkj(s)ds > 1− ε and 0 ≤

∫ +∞

T1

Kkj(s)ds < ε,∫ T1

0
Lkj(s)ds > 1− ε and 0 ≤

∫ +∞

T1

Lkj(s)ds < ε, k, j = 1, 2, . . . , n.

It follows that, for t ≥ T0 + T1,

Ij(t− s)
rj

> I − ε, j = 1, 2, . . . , n, s ∈ [0, T1], (4.4)

∫ +∞

0
Kij(s)fij(Si(t), Ij(t− s))ds =

∫ T1

0
Kij(s)fij(Si(t), Ij(t− s))ds+

∫ +∞

T1

Kij(s)fij(Si(t), Ij(t− s))ds

> (1− ε)fij(Sk(t), rj(I − ε)), j = 1, 2, . . . , n, (4.5)
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and ∫ +∞

0
Lij(s)(Ij(t− s)/rj)ds =

∫ T1

0
Lij(s)(Ij(t− s)/rj)ds+

∫ +∞

T1

Lij(s)(Ij(t− s)/rj)ds

> (1− ε)(I − ε), j = 1, 2, . . . , n. (4.6)

Combining inequalities (4.4)-(4.6) yields

I ′i(t) =
n∑
j=1

βijrj

∫ +∞

0
Kij(s)(I − ε)

fij(S
0
i − Ii(t), Ij(t− s))
rj(I − ε)

ds− (µi + γi)Ii(t)

+
n∑
j=1

{
αij

∫ +∞

0
Lij(s)Ij(t− s)ds− αjiIi(t)

}
≥

n∑
j=1

βijrj(1− ε)(I − ε)
fij(S

0
i − Ii(t), rj(I − ε))
rj(I − ε)

− (µi + γi)ri(I − ε)

+

n∑
j=1

{αijrj(1− ε)(I − ε)− αjiri(I − ε)}

=

( n∑
j=1

βijrj(1− ε)
fij(S

0
i − Ii(t), rj(I − ε))
rj(I − ε)

− (µi + γi)ri +
n∑
j=1

{αijrj(1− ε)− αjiri}
)

(I − ε).

(4.7)
In the case that Ii(t) is eventually monotone increasing, the existence of the lower bound is obvious. Hence,
it remains to consider the case that Ii(t) is eventually monotone decreasing. In this case, there exists a
monotone increasing sequence 0 ≤ t1 < t2 < · · · and tp → +∞ such that

I ′i(tp) ≤ 0, p = 1, 2, . . . , and lim
p→+∞

Ii(tp)

ri
= I.

Then, it follows from (4.7) that

0 ≥ I ′i(tp) ≥
( n∑
j=1

βijrj(1− ε)
fij(S

0
i − Ii(tp), rj(I − ε))

rj(I − ε)

−(µi + γi)ri +

n∑
j=1

{αijrj(1− ε)− αjiri}
)

(I − ε)

and hence, letting p→ +∞, we have inequality

0 ≥
( n∑
j=1

βijrj(1− ε)
fij(S

0
i − riI, rj(I − ε))
rj(I − ε)

− (µi + γi)ri +
n∑
j=1

{αijrj(1− ε)− αjiri}
)

(I − ε).

Then, letting ε→ +0, we have inequality

0 ≥
n∑
j=1

(
βij

fij(S
0
i − riI, rjI)

rjI
+ (1− δij)αij

)
rj − (µi + γi + α̃ii)ri = H(I).

Since H(I) is monotone decreasing with respect to I, this inequality implies I ≥ Î for Î such that H(Î) > 0.
This completes the proof.

The permanence of system (1.1) for R0 > 1 follows from Lemma 2.2 and Proposition 4.1.
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4.2. Existence of an endemic equilibrium

Next, we prove the existence of an endemic equilibrium of (1.1) for R0 > 1. As in the previous sections,
we consider the reduced system (3.1). The components of the endemic equilibrium E∗ must satisfy the
following equation.

n∑
j=1

βkjfkj(S
0
k − I∗k , I∗j )− (µk + γk + α̃kk)I

∗
k +

n∑
j=1

(1− δkj)αkjI∗j = 0, k = 1, 2, . . . , n. (4.8)

In the proof of the subsequent proposition, we use the following function F on Rn+.
F(x) := (F1(x), F2(x), . . . , Fn(x))T , x = (x1, x2, . . . , xn)T ∈ Rn+,

Fk(x) := −
( n∑
j=1

βkjfkj(S
0
k − xk, xj)− (µk + γk + α̃kk)xk +

n∑
j=1

(1− δkj)αkjxj
)
, k = 1, 2, . . . , n.

(4.9)

Proposition 4.2. If R0 > 1, then system (1.1) has an endemic equilibrium

E∗ = (S∗1 , I
∗
1 , S

∗
2 , I
∗
2 , . . . , S

∗
n, I
∗
n) ∈ Γ0.

Proof. It is enough to show the existence of a nontrivial equilibrium I∗1 , I
∗
2 , . . . , I

∗
n of the reduced system (3.1)

satisfying (4.8). To this end, we seek a root x of system F(x) = 0 such that 0 < xk < S0
k , k = 1, 2, . . . , n.

Let us define the following two matrices.

F0 := [C(S0
k)βkj + (1− δkj)αkj ]1≤k,j≤n and V := diag

1≤k≤n
(µk + γk + α̃kk)

It is easy to see from (1.8) that M0 = V−1F0. Now, since R0 > 1, we see that there exists a positive
eigenvector r = (r1, r2, . . . , rn)T of matrix M0 satisfying (4.1). Then, the following relations hold.

F(r) = −
(

F0r−Vr

)
+

[
βkj

(
Ckj(S

0
k)−

fkj(S
0
k − rk, rj)
rj

)]
1≤k,j≤n

r (4.10)

and

−
(

F0r−Vr

)
< −

(
F0r− ρ(M0)Vr

)
= 0. (4.11)

Here the order of vectors in Rn implies the usual element-wise one in Rn. By (4.10), it holds for any α > 0
that

F(αr) = −
(

F0αr−Vαr

)
+

[
βkj

(
Ckj(S

0
k)−

fkj(S
0
k − αrk, αrj)
αrj

)]
1≤k,j≤n

αr. (4.12)

Noting that under Assumption 1.2 it holds that

lim
α→+0

fkj(S
0
k − αrk, αrj)
αrj

= Ckj(S
0
k), k, j = 1, 2, . . . , n,

we see from (4.11) and (4.12) that there exists a sufficiently small positive constant α > 0 such that

F(αr) ≤ 0. (4.13)

Moreover, noting that under Assumption 1.2 it holds that

lim
y→+∞

fkj(S
0
k − y, y)

y
= −∞, k, j = 1, 2, . . . , n,
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it follows from (4.12) that there exists a sufficiently large positive constant vector k = (k, k, . . . , k)T ∈ Rn
such that

F(k) ≥ 0. (4.14)

Hence the Fréchet derivative F′(x) = [∂Fk(x)
∂xj

]1≤k,j≤n of F(x) is calculated as follows.

∂Fk(x)

∂xj
=


n∑
j=1

{
βkj

∂

∂x
fkj(S

0
k − xk, xj)− βkk

∂

∂y
fkj(N

∗
k − xk, xk)

}
+ (µk + γk + α̃kk), k = j,

−βkj
∂

∂y
fkj(S

0
k − xk, xj)− αkj ≤ 0, k 6= j, k, j = 1, 2, . . . , n.

Note here that fkj(x, y) is a two variable function of x, y ∈ R+ and ∂fkj/∂x denotes the partial derivative
with respect to the first variable and ∂fkj/∂y denotes the partial derivative with respect to the second
variable.

Under these settings, we consider a sufficiently large positive constant l > 0 such that

l > max
1≤k≤n

n∑
j=1

{
βkj

∂

∂x
fkj(S

0
k − xk, xj)− βkk

∂

∂y
fkj(S

0
k − xk, xk)

}
+ (µk + γk + α̃kk). (4.15)

Then, we see that n-diagonal matrix B := diag(l−1, l−1, . . . , l−1) is nonnegative, non-singular and subinverse
of F′(x), that is, BF′(x) ≤ I and F′(x)B ≤ I hold for any x with 0 < xk < S0

k , k = 1, 2, . . . , n, where I
denotes the identity matrix (for subinverse matrices, see e.g., Ortega and Rheinboldt [27] or Muroya [23]).
Now it follows from (4.13) and (4.14) that F(x0) ≤ 0 ≤ F(y0) with x0 := αr and y0 := ᾱr. Thus, from
the property of matrix B, xp+1 := xp − BF(xp), p = 1, 2, . . . , n becomes a monotone increasing sequence
and hence, x0 ≤ x1 ≤ . . . ≤ xp ≤ xp+1 ≤ y0 holds (see for similar approaches, Ortega and Rheinboldt [27,
Theorem 4.1 and Corollary 4.1] or Muroya [23, Theorem 3.1]). Since this sequence is bounded, there exists
a limit limp→+∞ xp = x∗ = (x∗1, x

∗
2, . . . , x

∗
n)T . This is a nontrivial root of F(x) = 0, that is, the desired

nontrivial equilibrium (see Zhao and Jing [40]).

4.3. Global asymptotic stability of the endemic equilibrium

In this subsection, we investigate the global asymptotic stability of the endemic equilibrium E∗ of system
(1.1). Propositions 4.1-4.2 imply that for R0 > 1, the disease-free equilibrium E0 = (S0

1 , 0, S
0
2 , 0, . . . , S

0
n, 0)

of (1.1) becomes unstable and a positive equilibrium E∗ = (S∗1 , I
∗
1 , . . . , S

∗
n, I
∗
n) of (1.1) exists. From (4.8),

the components of such E∗ satisfy the following equations.

(µk + γk + α̃kk + αkk)I
∗
k =

n∑
j=1

βkjfkj(S
0
k − I∗k , I∗j ) +

n∑
j=1

αkjI
∗
j , k = 1, 2, . . . , n. (4.16)

We prove the following helpful lemma, which play an important role in computation and estimation of
derivative of Lyapunov functional. Similar argument can be found in Guo et al. [11, Lemma 2.1 and Proof
of Theorem 3.3].

Lemma 4.3. There exists a positive solution (v1, v2, . . . , vn) such that

n∑
j=1

vj

(
βjk

fjk(S
0
j − I∗j , I∗k)

I∗k
+ αjk

)
= vk(µk + γk + α̃kk + αkk), k = 1, 2, . . . , n, (4.17)

and it is expressed by
(v1, v2, · · · , vn) = (C11, C22, . . . , Cnn), (4.18)
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where Ckk is the cofactor of the k-th diagonal entry of matrix

B̃ =



∑
j 6=1

β̃1j −β̃21 · · · −β̃n1

−β̃12

∑
j 6=2

β̃2j · · · −β̃n2

...
...

...

−β̃1n −β̃2n · · ·
∑
j 6=n

β̃nj


,

β̃kj = βkjfkj(S
0
k − I∗k , I∗j ) + αkjI

∗
j ,

1 ≤ k, j ≤ n.

The proof is omitted since it is similar to that of [16, Lemma 4.1].
Proof of Theorem 1.1 If R0 ≤ 1, then by Theorem 3.1, we can obtain the first part R0 ≤ 1 of

Theorem 1.1.
Now, consider the case R0 > 1. Then, by Proposition 4.1, system (1.1) is permanent in Γ0, and by

Proposition 4.2, there exists at least one endemic equilibrium E∗ = (S∗1 , I
∗
1 , S

∗
2 , I
∗
2 , . . . , S

∗
n, I
∗
n).

As in the previous sections, we focus on the reduced system (3.1). It can be rewritten as follows.
d

dt
Ik(t) =

n∑
j=1

βkj

∫ +∞

0
Kkj(s)fkj(S

0
k − Ik(t), Ij(t− s))ds

−(µk + γk + α̃kk + αkk)Ik(t) +
n∑
j=1

αkj

∫ +∞

0
Lkj(s)Ij(t− s)ds.

(4.19)

Put

yk(t) :=
Ik(t)

I∗k
, zkj(t, s) :=

fkj
(
S0
k − Ik(t), Ij(t− s)

)
fkj

(
S0
k − I∗k , I∗j

) , z̃kj(t) :=
fkj
(
S0
k − I∗k , Ij(t)

)
fkj

(
S0
k − I∗k , I∗j

) (4.20)

and consider the following Lyapunov function.

U(t) :=

n∑
k=1

vk {I∗kg (yk(t)) + U1(t) + U2(t)} , (4.21)

where

U1(t) :=
n∑
j=1

βkjfkj(S
0
k − I∗k , I∗j )

∫ +∞

0
Kkj(s)

∫ t

t−s
g (z̃kj(u)) duds (4.22)

and

U2(t) :=
n∑
j=1

αkjI
∗
j

∫ +∞

0
Lkj(s)

∫ t

t−s
g(yj(u))duds (4.23)

and v1, v2, · · · , vn are chosen as in (4.18).
First we consider the derivative of the first term in (4.21). It follows from (4.16), (4.19) and (4.20) that(
n∑
k=1

vkI
∗
kg (yk(t))

)′
=

n∑
k=1

vk

(
1− 1

yk(t)

)
d

dt
Ik(t)

=
n∑
k=1

vk

(
1− 1

yk(t)

)
n∑
j=1

βkj

∫ +∞

0
Kkj(s)fkj(S

0
k − Ik(t), Ij(t− s))ds

−(µk + γk + α̃kk + αkk)I
∗
kyk(t) +

n∑
j=1

αkj

∫ +∞

0
Lkj(s)Ij(t− s)ds


=

n∑
k=1

vk

(
1− 1

yk(t)

)
n∑
j=1

βkj

∫ +∞

0
Kkj(s)fkj(S

0
k − I∗k , I∗j ) {zkj(t, s)− yk(t)} ds
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+
n∑
j=1

αkj

∫ +∞

0
Lkj(s)I

∗
j {yj(t− s)− yk(t)} ds


=

n∑
k=1

vk


n∑
j=1

βkjfkj(S
0
k − I∗k , I∗j )

∫ +∞

0
Kkj(s)

(
1− 1

yk(t)

)
{zkj(t, s)− yk(t)} ds

+

n∑
j=1

αkjI
∗
j

∫ +∞

0
Lkj(s)

(
1− 1

yk(t)

)
{yj(t− s)− yk(t)} ds

 . (4.24)

Now we prove the following relations.(
1− 1

yk(t)

)
{zkj(t, s)− yk(t)} ≤ g (z̃kj(t− s))− g (yk(t))− g

(
z̃kj(t− s)
yk(t)

)
(4.25)(

1− 1

yk(t)

)
{yj(t− s)− yk(t)} = g (yj(t− s))− g (yk(t))− g

(
yj(t− s)
yk(t)

)
. (4.26)

Since (4.26) is obtained by performing a simple calculation, we omit the proof. We next show (4.25). We
first rewrite (4.25) as(

1− 1

yk(t)

)
{zkj(t, s)− yk(t)} =

(
1− 1

yk(t)

)
{zkj(t, s)− z̃kj(t− s)}

+

(
1− 1

yk(t)

)
{z̃kj(t− s)− yk(t)}

(4.27)

and the first term in the right-hand side of this equation is non-positive.
In fact, if Ik(t) ≥ I∗k , then it follows from (ii) of Assumption 1.2 that(
1− 1

yk(t)

)
≥ 0 and zkj(t, s)− z̃kj(t− s) =

fkj
(
S0
k − Ik(t), Ij(t− s)

)
− fkj

(
S0
k − I∗k , Ij(t− s)

)
fkj

(
S0
k − I∗k , I∗j

) ≤ 0,

and if Ik(t) ≤ I∗k , then it follows also from (ii) of Assumption 1.2 that(
1− 1

yk(t)

)
≤ 0 and zkj(t, s)− z̃kj(t− s) =

fkj
(
S0
k − Ik(t), Ij(t− s)

)
− fkj

(
S0
k − I∗k , Ij(t− s)

)
fkj

(
S0
k − I∗k , I∗j

) ≥ 0.

Thus, from (4.27), we have(
1− 1

yk(t)

)
{zkj(t, s)− yk(t)} ≤

(
1− 1

yk(t)

)
{z̃kj(t− s)− yk(t)}

= g (z̃kj(t− s))− g (yk(t))− g
(
z̃kj(t− s)
yk(t)

)
and (4.25) is proved. Using (4.25) and (4.26), we can evaluate (4.24) as follows.(

n∑
k=1

vkI
∗
kg (yk(t))

)′

≤
n∑
k=1

vk

 n∑
j=1

βkjfkj(S
0
k − I∗k , I∗j )

∫ +∞

0
Kkj(s)

{
g (z̃kj(t− s))− g (yk(t))− g

(
z̃kj(t− s)
yk(t)

)}
ds

+
n∑
j=1

αkjI
∗
j

∫ +∞

0
Lkj(s)

{
g (yj(t− s))− g (yk(t))− g

(
yj(t− s)
yk(t)

)}
ds


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≤
n∑
k=1

vk

 n∑
j=1

βkjfkj(S
0
k − I∗k , I∗j )

∫ +∞

0
Kkj(s) {g (z̃kj(t− s))− g (yk(t))} ds

+

n∑
j=1

αkjI
∗
j

∫ +∞

0
Lkj(s) {g (yj(t− s))− g (yk(t))} ds

 . (4.28)

On the other hand, calculating the derivative of (4.22) yields

U ′1(t) =
n∑
j=1

βkjfkj(S
0
k − I∗k , I∗j )

∫ +∞

0
Kkj(s) {g (z̃kj(t))− g (z̃kj(t− s))} ds (4.29)

and calculating the derivative of (4.23) yields

U ′2(t) =
n∑
j=1

αkjI
∗
j

∫ +∞

0
Lkj(s) {g(yj(t))− g(yj(t− s))} ds. (4.30)

Hence, using (4.28), (4.29) and (4.30), the derivative of Lyapunov functional (4.21) can be evaluated as
follows.

U ′(t) ≤
n∑
k=1

vk

 n∑
j=1

βkjfkj(S
0
k − I∗k , I∗j )

∫ +∞

0
Kkj(s) {g (z̃kj(t))− g (yk(t))} ds

+

n∑
j=1

αkjI
∗
j

∫ +∞

0
Lkj(s) {g (yj(t))− g (yk(t))} ds

 . (4.31)

Now we are in the position to prove the following inequality.

g (z̃kj(t)) ≤ g (yj(t)) . (4.32)

In fact, if z̃kj(t) ≥ 1, then it follows from (4.20) and (iii) of Assumption 1.2 that Ij(t) ≥ I∗j . Then
yj(t) = Ij(t)/I

∗
j ≥ 1 and hence, to prove (4.32), it suffices to show that z̃kj(t) ≤ yj(t) (note that g(x) is

monotone increasing for x ≥ 1). In fact,

z̃kj(t)− yj(t) =
fkj
(
S0
k − I∗k , Ij(t)

)
fkj

(
S0
k − I∗k , I∗j

) − Ij(t)

I∗j

=
fkj
(
S0
k − I∗k , Ij(t)

)
fkj

(
S0
k − I∗k , I∗j

)
1−

fkj

(
S0
k − I∗k , I∗j

)
I∗j

/
fkj
(
S0
k − I∗k , Ij(t)

)
Ij(t)

 ≤ 0

follows from (iv) of Assumption 1.2 and Ij(t) ≥ I∗j . Thus, g (z̃kj(t)) ≤ g (yj(t)) is shown.
If z̃kj(t) ≤ 1, then it follow again from (4.20) and (iii) of Assumption 1.2 that Ij(t) ≤ I∗j . Then,

yj(t) = Ij(t)/I
∗
j ≤ 1 and hence, to prove (4.32), it suffices to show that z̃kj(t) ≥ yj(t) (note that g(x) is

monotone decreasing for x ≤ 1). In fact,

z̃kj(t)− yj(t) =
fkj
(
S0
k − I∗k , Ij(t)

)
fkj

(
S0
k − I∗k , I∗j

) − Ij(t)

I∗j

=
fkj
(
S0
k − I∗k , Ij(t)

)
fkj

(
S0
k − I∗k , I∗j

)
1−

fkj

(
S0
k − I∗k , I∗j

)
I∗j

/
fkj
(
S0
k − I∗k , Ij(t)

)
Ij(t)

 ≥ 0
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follows from (iv) of Assumption 1.2 and Ij(t) ≤ I∗j . Consequently, (4.32) is proved.
Using (4.31), (4.32) and (4.17) in Lemma 4.3, we can evaluate the derivative of Lyapunov functional

(4.21) as follows.

U ′(t) ≤
n∑
k=1

vk

 n∑
j=1

βkjfkj(S
0
k − I∗k , I∗j )

∫ +∞

0
Kkj(s) {g (yj(t))− g (yk(t))} ds

+
n∑
j=1

αkjI
∗
j

∫ +∞

0
Lkj(s) {g (yj(t))− g (yk(t))} ds


=

n∑
k=1

vk

n∑
j=1

{
βkjfkj(S

0
k − I∗k , I∗j ) + αkjI

∗
j

}
{g (yj(t))− g (yk(t))}

=

n∑
k=1

vk

n∑
j=1

{
βkjfkj(S

0
k − I∗k , I∗j )

I∗j
+ αkj

}
I∗j {g (yj(t))− g (yk(t))}

=

n∑
k=1

vk

n∑
j=1

{
βkjfkj(S

0
k − I∗k , I∗j )

I∗j
+ αkj

}
I∗j g (yj(t))

−
n∑
k=1

vk

n∑
j=1

{
βkjfkj(S

0
k − I∗k , I∗j )

I∗j
+ αkj

}
I∗j g (yk(t))

=

n∑
k=1

n∑
j=1

vj

{
βjkfjk(S

0
j − I∗j , I∗k)

I∗k
+ αjk

}
I∗kg (yk(t))

−
n∑
k=1

vk (µk + γk + α̃kk + αkk) I
∗
kg (yk(t))

=
n∑
k=1


n∑
j=1

vj

{
βjkfjk(S

0
j − I∗j , I∗k)

I∗k
+ αjk

}
− vk (µk + γk + α̃kk + αkk)

 I∗kg (yk(t))

= 0. (4.33)

It is easy to see that the equality holds only if the equality holds in (4.25), that is, the first term in the
right-hand side of (4.27) is equal to zero, that is,(

1− 1

yk(t)

)
{zkj(t, s)− z̃kj(t− s)} = 0, k, j = 1, 2, . . . , n.

Then, by (4.33) and the above discussion, we see that dU(t)
dt ≤ 0 and from (ii) of Assumption 1.2, this

equality holds if and only if

Sk(t) = S∗k and Ik(t) = I∗k , k = 1, 2, . . . , n,

Therefore, it follows from the LaSalle’s invariance principle that for R0 > 1, the endemic equilibrium E∗ is
globally attractive. Moreover, by Lemmas 2.2 and 2.3 with (4.18) and (1.5) and dU

dt ≤ 0 with (4.21), we can
easily prove that there exist positive constants c3 and c4 such that c3 and c4 do not depend on the initial
condition (1.6) and

|Ik(t)− I∗k | ≤ c3W (t) ≤ c3W (0) ≤ c3c4 max
1≤j≤n

∣∣Ij(0)− I∗j
∣∣ , k = 1, 2, . . . , n,

which implies that E∗ is uniformly stable. Hence, E∗ is globally asymptotically stable in Γ0. This completes
the proof.
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5. Numerical simulation

In this section, we perform simple numerical simulation in order to verify the validity of Theorem 1.1.
For simplicity, we let n = 2 and consider the case of constant time delay in which the kernel functions Kkj(s)
and Lkj(s) are given by the Dirac delta functions. Moreover, we consider the case of saturated incidence in
which fkj is given by fkj(x, y) = xy/(1 + akjy), where akj > 0, k, j = 1, 2. In this case, system (1.1) can be
rewritten in the following simplified form.

d

dt
Sk(t) = bk − µkSk(t)−

2∑
j=1

βkjSk(t)
Ij(t− s)

1 + akjIj(t− s)
+ γkIk(t) +

2∑
j=1

(
αkjSj(t− s)− αjkSk(t)

)
,

d

dt
Ik(t) =

2∑
j=1

βkjSk(t)
Ij(t− s)

1 + akjIj(t− s)
− (µk + γk)Ik(t) +

2∑
j=1

(
αkjIj(t− s)− αjkIk(t)

)
, k = 1, 2,

(5.1)
where s > 0 denotes the constant time delay. For simplicity, we fix the following parameters (they are
chosen only for experimental reason).

a11 = 1, a12 = 2, a21 = 3, a22 = 4, b1 = 1, b2 = 2, µ1 = 1, µ2 = 2,

α11 = 1, α12 = 2, α21 = 3, α22 = 4, γ1 = 0.1, γ2 = 0.2, s = 1,

ϕ1(θ) = ϕ2(θ) ≡ 0.9, ψ1(θ) = ψ2(θ) ≡ 0.1,

where ϕk and ψk, k = 1, 2 are initial conditions defined by (1.6).
First we set

β11 = 0.25, β12 = 0.5, β21 = 0.75, β22 = 1.

Then, we can calculate R0 ' 0.8927 < 1 and the infective population density converges to zero (see Figure
1 (a)). This corresponds to the situation of Theorem 1.1 (i).
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(a) For R0 ' 0.8927 < 1
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(b) For R0 ' 1.2020 > 1

Figure 1: I1(t) and I2(t) of system (5.1) versus time t

Next we set
β11 = 0.5, β12 = 1, β21 = 1.5, β22 = 2.

Then, we can calculate R0 ' 1.2020 > 1 and the infective population density converges to the positive
equilibrium (see Figure 1 (b)). This corresponds to the situation of Theorem 1.1 (ii).
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[26] Y. Nakata, G. Röst, Global analysis for spread of infectious diseases via transportation networks, J. Math. Biol.,

70 (2015), 1411–1456. 1



J. Wang, Y. Muroya, T. Kuniya, J. Nonlinear Sci. Appl. 8 (2015), 578–599 599

[27] J. Ortega, W. Rheinboldt, Monotone iterations for nonlinear equations with application to Gauss-Seidel methods,
SIAM J. Numer. Anal., 4 (1967), 171–190.1, 4.2

[28] H. Shu, D. Fan, J. Wei, Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear
transmission, Nonlinear Anal. Rral World Appl., 13 (2012), 1581–1592.1

[29] R. Sun, Global stability of the endemic equilibrium of multigroup SIR models with nonlinear incidence, Comput.
Math. Appl., 60 (2010), 2286–2291.1

[30] Y. Takeuchi, Cooperative system theory and global stability of diffusion models, Acta. Appl. Math., 14 (1989),
49–57.1

[31] P. V. D. Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental
models of disease transmission, Math. Biosci., 180 (2002), 29–48.1

[32] J. Wang, Y. Takeuchi, S. Liu, A multi-group SVEIR epidemic model with distributed delay and vaccination, Int.
J. Biomath., 2012 (2012), 18 pages.1

[33] J. Wang, J. Zu, X. Liu, G. Huang, J. Zhang, Global dynamics of a multi-group epidemic model with general
relapse distribution and nonlinear incidence rate, J. Biol. Syst., 20 (2012), 235–258.1

[34] W. Wang, L. Chen, Z. Lu, Global stability of a population dispersal in a two-patch environment, Dynam. Systems
Appl., 6 (1997), 207–216.1

[35] J. Wang, X. Liu, J. Pang, D. Hou, Global dynamics of a multi-group epidemic model with general exposed
distribution and relapse, Osaka J. Math., 52 (2015), 117–138.1

[36] W. Wang, X. Q. Zhao, An epidemic model in a patchy environment, Math. Biosci., 190 (2004), 97–112.1
[37] R. Xu, Z. Ma, Global stability of a SIR epidemic model with nonlinear incidence rate and time delay, Nonlinear

Anal. Real World Appl., 10 (2009), 3175–3189.1
[38] Z. Yuan, L. Wang, Global stability of epidemiological models with group mixing and nonlinear incidence rates,

Nonlinear Anal. Real World Appl., 11 (2010), 995–1004.1
[39] Z. Yuan, X. Zou, Global threshold property in an epidemic model for disease with latency spreading in a hetero-

geneous host population, Nonlinear Anal. Real World Appl., 11 (2010), 3479–3490.1
[40] X. Q. Zhao, Z. J. Jing, Global asymptotic behavior in some cooperative systems of functional differential equations,

Canad. Appl. Math. Quart., 4 (1996), 421–444.4.2


	1 Introduction
	2 Preliminaries
	3 Global stability of the disease-free equilibrium
	4 Global stability of the endemic equilibrium
	4.1 Permanence
	4.2 Existence of an endemic equilibrium
	4.3 Global asymptotic stability of the endemic equilibrium

	5 Numerical simulation

