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Abstract

Zhang constructed a Lagrangian for the (2 + 1)-dimensional KP equation with variable coefficients and
cross terms [L. H. Zhang, Appl. Math. Comput., 219 (2013), 4865–4879]. This paper suggests a simple
method to construct a needed Lagrangian using the semi-inverse by introducing a simple auxiliary function,
the presented method is simpler than Zhang’s method to construct a Lagrangian. c©2016 All rights reserved.
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1. Introduction

Zhang studied the following (2 + 1)-dimensional KP equation with variable coefficients and cross terms
[17]

(ut + uux + uxxx)x + uyy + b(t)uxy + (c0(t) + c1(t)y)uxx = 0 (1.1)

and obtained a Lagrangian in the form [17]

L = v((ut + uux + uxxx)x + uyy + b(t)uxy + (c0(t) + c1(t)y)uxx), (1.2)

where v is an auxiliary function. The Euler-Lagrange equation of eq. (1.1) with respect to u is
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or
vtx − 2(vux)x + vuxx + (vu)xx + vxxxx + vyy + b(t)vxy + (c0(t) + c1(t)y)vxx = 0. (1.4)

Simplification of Eq. (1.4) results in

vtx + vxxu+ vxxxx + vyy + b(t)vxy + (c0(t) + c1(t)y)vxx = 0. (1.5)

The auxiliary function, v, in Eq. (1.2) must satisfy Eq. (1.5).

Remark 1.1. Equation (1.2) is similar to those by the Galerkin technology [16] which is widely used in the
finite element method.

For a general linear equation Au = 0, where A is an operator e.g., A = d
dx the Galerkin method is

J(u, v) =

∫
Ldtdxdy, (1.6)

where v is auxiliary function, L is a Lagrange function defined as

L = vAu, (1.7)

the Euler-Lagrange equations of Eq. (1.6) are

Au = 0 (1.8)

and
Av = 0. (1.9)

So Eq. (1.2) is similar to Galerkin technology.

Remark 1.2. There is an exact Lagrangian for the following equation

(ut + uxxx)x + uyy + b(t)uxy + (c0(t) + c1(t)y)uxx = 0. (1.10)

By the semi-inverse method [1], [3]–[6], [8], we can obtain the Lagrangian for Eq. (1.10), which reads
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Remark 1.3. An approximate Lagrangian can be obtained for Eq. (1.1), which is
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where w is an auxiliary function defined by
w = uux. (1.13)

Remark 1.4. An generalized Lagrangian can obtained by the semi-inverse method [3]–[6], [8], which reads

L(u,w) = −1

2
utux +

1

2
(uxx)2 − 1

2
(uy)2 − b(t)

2
uxuy −

1

2
(c0(t) + c1(t)y)(ux)2 − wux + λ(w − uux)2, (1.14)

where λ� 1 is a nonzero constant.

Proof. The Euler-Lagrange equations of Eq. (1.14) with respect to u and w are

(ut + uxxx)x + uyy + b(t)uxy + (c0(t) + c1(t)y)uxx + wx − 2λ(wx − uux)ux + 2λ((wx − uux)u)x = 0, (1.15)

− ux + 2λ(w − uux) = 0. (1.16)

Considering λ� 1, saying λ = 1010, Eq. (1.16) is approximated as

w − uux = 0. (1.17)

Submitting Eq. (1.17) into Eq. (1.15) results in Eq. (1.1).

Similar results can be obtained for the Burgers equation [17] by the semi-inverse method [3]–[6], [8].
Some illustrating examples for construction of Lagrangian of a nonlinear equation are available in Refs
[2, 7, 9, 10, 11, 12, 13, 14, 15, 18].
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