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Abstract

The notion of parametric metric spaces being a natural generalization of metric spaces was recently in-
troduced and studied by Hussain et al. [A new approach to fixed point results in triangular intuitionistic
fuzzy metric spaces, Abstract and Applied Analysis, Vol. 2014, Article ID 690139, 16 pp|. In this paper
we introduce the concept of parametric b-metric space and investigate the existence of fixed points under
various contractive conditions in such spaces. As applications, we derive some new fixed point results in
triangular partially ordered fuzzy b-metric spaces. Moreover, some examples are provided here to illustrate
the usability of the obtained results. (©2015 All rights reserved.
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1. Introduction and preliminaries

Fixed point theory has attracted many researchers since 1922 with the admired Banach fixed point
theorem. This theorem supplies a method for solving a variety of applied problems in mathematical sciences
and engineering. A huge literature on this subject exist and this is a very active area of research at present.

The concept of metric spaces has been generalized in many directions. The notion of a b-metric space
was studied by Czerwik in [7, 8] and a lot of fixed point results for single and multivalued mappings by many
authors have been obtained in (ordered) b-metric spaces (see, e.g., [2]-[L7]). Khmasi and Hussain [2I] and
Hussain and Shah [19] discussed KKM mappings and related results in b-metric and cone b-metric spaces.
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In this paper, we introduce a new type of generalized metric space, which we call parametric b-metric
space, as a generalization of both metric and b-metric spaces. Then, we prove some fixed point theorems
under various contractive conditions in parametric b-metric spaces. These contractions include Geraghty-
type conditions, conditions using comparison functions and almost generalized weakly contractive conditions.
As applications, we derive some new fixed point results in triangular fuzzy b-metric spaces. We illustrate
these results by appropriate examples. The notion of a b-metric space was studied by Czerwik in [7] [§].

Definition 1.1 ([7]). Let X be a (nonempty) set and s > 1 be a given real number. A function d: X xX — R™
is a b-metric on X if, for all x,y,z € X, the following conditions hold:

(by) d(x,y) =0 if and only if z =y,
(b2) d(z,y) = d(y,z),
(b3) d(z,z) < s[d(x,y) + d(y, 2)].
In this case, the pair (X, d) is called a b-metric space.

Note that a b-metric is not always a continuous function of its variables (see, e.g., [I7, Example 2]),
whereas an ordinary metric is.
Hussain et al. [16] defined and studied the concept of parametric metric space.

Definition 1.2. Let X be a nonempty set and P : X x X x (0,00) — [0,00) be a function. We say P is a
parametric metric on X if,

(i) P(z,y,t) =0 for all t > 0 if and only if z = y;
(ii) P(z,y,t) = P(y,x,t) for all t > 0;
(iii) P(x,y,t) < P(x,z,t) + P(z,y,t) for all z,y,z € X and all ¢ > 0.
and we say the pair (X, P) is a parametric metric space.
Now, we introduce parametric b-metric space, as a generalization of parametric metric space.

Definition 1.3. Let X be a non-empty set, s > 1 be a real number and let P : X2 x (0,00) — (0,00) be a
map satisfying the following conditions:

(Ppl) P(x,y,t) =0 for all t > 0 if and only if z =y,
(Py2) P(z,y,t) =P(y,z,t) for all t >0,
(Pp3) P(z,z,t) < s[P(x,y,t) + P(y, z,t)] for all t > 0 where s > 1.

Then P is called a parametric b-metric on X and (X, P) is called a parametric b-metric space with param-
eter s.

Obviously, for s = 1, parametric b-metric reduces to parametric metric.

Definition 1.4. Let {x,} be a sequence in a parametric b-metric space (X,P).

1. {x,} is said to be convergent to x € X, written as li_>m Tn, =, if for all ¢ > 0, li_}m P(xn,z,t) =0.

n o0 n oo

2. {x,} is said to be a Cauchy sequence in X if for all ¢ > 0, h_)m P(xp, Tm,t) = 0.
n (o]

3. (X, P) is said to be complete if every Cauchy sequence is a convergent sequence.
The following are some easy examples of parametric b-metric spaces.

Example 1.5. Let X = [0, +00) and P(x,y,t) = t(z —y)P. Then P is a parametric b-metric with constant
s =2P.
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Definition 1.6. Let (X, P,b) be a parametric b-metric space and T': X — X be a mapping. We say T is a
continuous mapping at x in X, if for any sequence {x,} in X such that, z,, — = as n — oo then, T'z,, — Tz
as n — oo.

In general, a parametric b-metric function for s > 1 is not jointly continuous in all its variables. Now,
we present an example of a discontinuous parametric b-metric.

Example 1.7. Let X = NU {oo} and let P : X2 x (0,00) — R be defined by,

0, if m =n,
1f|i—l if m,n are even or mn = oo
P(m,n,t) = m_onl ’ S
T 5t, if m and n are odd and m # n,
2t, otherwise.

Then it is easy to see that for all m,n,p € X, we have

P(m,p,t) < g(P(m,n,t) +P(n,p,t)).

Thus, (X, P) is a parametric b-metric space with s = g

Now, we show that P is not a continuous function. Take x,, = 2n and ¥, = 1, then we have, x,, — oo,
yn — 1. Also,

t
P(2n,00,t) = on — 0,

and
P(Yn,1,t) =0 — 0.

On the other hand,
P(xnv Yn,s t) = P($n7 17 t) = Qt?

and
P(oo,1,t) = 1.

Hence, lim P(zy,yn,t) # P(z,y,t).
n—oo

So, from the above discussion we need the following simple lemma about the convergent sequences in
the proof of our main result.

Lemma 1.8. Let (X, P,s) be a parametric b-metric space and suppose that {x,} and {y,} are convergent
to x and y, respectively. Then we have

1 . .
?P(xwi) < liminf P (2, Yn, t) < limsup P(zn, yn,t) < s*P(z,y,1),

n—00 n—o00

for all t € (0,00). In particular, if y, =y is constant, then

1
=P(x,y,t) < liminf P(x,,y,t) < limsup P(xn,y,t) < sP(x,y,t),
S n—oo

n—oo
for all t € (0,00).
Proof. Using (P33) of Definition in the given parametric b-metric space, it is easy to see that

Plx,y,t) < sP(x,zp,t) + sP(xp,y,t)
< sP(z,xn,t) + sgp(xn,yn,t) + SQP(yn,y,t)
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and

P(a:n,yn,t) P<xn7x7t) +s77(:c,yn,t)

<s
< P (@, 2, t) + s*P(2,y, 1) + Py, yn, 1),
for all ¢ > 0. Taking the lower limit as n — oo in the first inequality and the upper limit as n — oo in the
second inequality we obtain the desired result.
If y, = y, then
Plx,y,t) < sP(x,zpn,t) + sP(xpn,y,1)

and
P(zn,y,t) < sP(xp,x,t) + sP(x,y,t),

for all ¢ > 0. O

2. Main results

2.1. Results under Geraghty-type conditions

Fixed point theorems for monotone operators in ordered metric spaces are widely investigated and have
found various applications in differential and integral equations (see [I], 15, 20} 24] and references therein).
In 1973, M. Geraghty [12] proved a fixed point result, generalizing Banach contraction principle. Several
authors proved later various results using Geraghty-type conditions. Fixed point results of this kind in
b-metric spaces were obtained by Dukié et al. in [10].

Following [10], for a real number s > 1, let F; denote the class of all functions 8 : [0,00) — [0, %)
satisfying the following condition:

1
B(t,) — — as n — oo implies ¢, — 0 as n — oo.
s

Theorem 2.1. Let (X, <) be a partially ordered set and suppose that there exists a parametric b-metric P
on X such that (X, P) is a complete parametric b-metric space. Let f : X — X be an increasing mapping
with respect to = such that there exists an element xg € X with xo = fxg. Suppose that

sP(fx, fy,t) < B(P(z,y,t))M(z,y,1) (1)
for all t > 0 and for all comparable elements x,y € X, where

(z, fx,)P(y, fy,t) Pz, fr,t)P(y, fy,t)}
1+ P(fx, fy,t) = 1+P(x,y,t) '

M(x,y,t) = max {P(:E,y,t), P

If f is continuous, then f has a fized point.

Proof. Starting with the given xg, put x, = f"xg. Since x¢o = fxo and f is an increasing function we obtain
by induction that
x0 = fxo X fPwg = 2 flag X T ag <

Step I: We will show that lim P(z,,xn+1,t) = 0. Since x,, < x,41 for each n € N, then by we have
n—oo

Sp(xru Tn41, t) = S’P(f.’En,h fl‘na t) < ﬂ(P(IEnfla Tn, t))M(-Tnfla Tn, t)

1
< gp(xn—laxnvt) < P(l’n—l,xn,t), (2)
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because

M([En_l L t)

— max {P($n17 T, t), ,P(-rnfl, fxnfly t)P(l‘n, fxna t) ,P(l'nfla fxnfla t)P(xna fxna t) }

14+ P(frn-1, frn,t) ’ 14+ P(zp-1,Zn,t)
P(xn-1,Tn, t)P(Tn, Tnt1,t) P(xn—1,Zn, t)P(Tpn, Tni1,t)

1+ P(xn, Tpy1,t) ’ 1+ P(xp—1,Tn,t) }
< max{P(zn-1,%n,t), P(Tn, Tnt1,t)}.

= max {P(:cn_l,xn,t),

If max{P(zp_1,Tn,t), P(xn, Tn+1,t)} = P(Tpn, Tni1,t), then from we have,

P(xm Tn+1, t) < 5(73(3%71, Tn, t))P(QS‘n, Tn+1, t)
< %P(fl}'n,ﬂfn+1,t) (3)
S P(xna Tn+1, t)a

which is a contradiction.
Hence, max{P(zn_1,Tn,t), P(xn, Tn+1,t)} = P(Xpn_1,Tn,t), so from ,

P(I’n, Tn+41, t) S B(P(xnflv Tn, t))P(x'rLfla Tn, t) S P(l‘n*h Tn,s t) (4)

Therefore, the sequence {P(zy, Tnt1,t)} is decreasing, so there exists r > 0 such that li_>m P(xp, Tni1,t) =1.
n o.)

Suppose that » > 0. Now, letting n — oo, from we have

1
—r <r < lim B(P(zn_1,2n,t))r <7
S

n—oo

So, we have le B(P(xpn—1,Tn,t)) > % and since § € Fs; we deduce that le P(xp—1,%n,t) = 0 which is a

contradiction. Hence, r = 0, that is,
lim P(xy, Tny1,t) = 0. (5)

n—oo

Step II: Now, we prove that the sequence {z,} is a Cauchy sequence. Using the triangle inequality and

by we have

P(xrh Ty t) P(.’I)n, Tn+41, t) + SQP(anrl’ Tm+1, t) + SQP(xm+17 LTy t)

<s
S Sp(xnyxn+l7t) + S2P($m,$m+la t) + S/B(P(xn7xm7t))M(xna $’fny-l‘:)

Letting m,n — oo in the above inequality and applying we have

lim P(xn, om,t) <s lim B(P(xn,zm,t)) Um M(x,, zm,t). (6)

m,n— 00 m,n—00 m,n—00

Here,

P(x’l’lv xma t) S M([BTM ':Umv t)

— max {P(l’m Lo, t), P(."L‘n, fon, t)P(l‘m, JTm, t) ,P(:L‘ny fon, t)P(l‘m, JTm, t) }

1+73(fl’n,fl‘m,t) ’ 1+7)(xna$m7t)
_ P(xnyxn—I—l)t)P(xmaxm—i-l’t) P(xn’xn+lat)7)($m7xm+l7t)
= max {P(mn, T, t), T Ea—" , T r— .

Letting m,n — oo in the above inequality we get

lim M(xp, Tm,t) = lm P(xy, Tm,t). (7)

m,n—00 m,n—00
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From @ and , we obtain

lim P(xp, xm,t) <s lim B(P(xn,Tm,t)) lm P(x,, Tm,t). (8)

m,n—00 m,n—00 m,n— 00

Now we claim that, limy, p—e0 P(Zn, Tm,t) = 0. On the contrary, if limy, p—o0 P(Zn, Tm,t) # 0, then we get

1
- < 1
s m,l71LIl>loo ﬁ(P(l‘n, Tm t))
Since 8 € Fs we deduce that
liIl)l P(xpn, Tm,t) = 0. (9)

which is a contradiction. Consequently, {z,} is a b-parametric Cauchy sequence in X. Since (X,P) is
complete, the sequence {x,} converges to some z € X, that is, li_)m P(xn, z,t) = 0.
n oo

Step III: Now, we show that z is a fixed point of f.
Using the triangle inequality, we get

P(fz,2,t) < sP(fz, fan,t) + sP(frn, z,t).
Letting n — oo and using the continuity of f, we have fz = z. Thus, z is a fixed point of f. O

Example 2.2. Let X = [0,00) be endowed with the parametric b-metric

tlx+y)?, ifzty
Plx,y,t) =
0 ife=y
for all ,y € X and all £ > 0. Define T': X — X by
12?2, ifze(0,1)
Tz =< iz, ifzell,2)

1 if x € [2,00)

Also, define, /3 : [0,00) — [0, %) by B(t) = %. Clearly, (X,P,2) is a complete parametric b-metric space,
T is a continuous mapping and § € F2. Now we consider the following cases:

e Let z,y € [0,1) with <y, then,

2P(Tx,Ty,t) = 2t(%x2 4 %y2)2 — 3%75(332 + y2)2

IN

i@ +y)? = 1P(z,y.1)

IN

%M(xﬂﬁt) = B(P(:Ca y,t))M($,y,t)

o Let z,y € [1,2) with z < y, then,

2P(Tx, Ty, t) =2t(iz+ 1y)? = Ht(z +y)*

IN

it +y)? =Py,

< %M('%y’t) = /B(P(xay7t))M(x7yat)
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Let x,y € [2,00) with z <y, then,

2P(Txz,Ty,t) =2t(x+ 1) =35t <t=1t(1+1)>

=

< itz +y)? = 1Pz, y,t)

< %M(xﬂﬁt) = B(’P(:Ca y,t))M($,y,t)

Let x € [0,1) and y € [1,2) (clearly with x < y), then,
2P(Tx, Ty,t) = 2t(30° + gy)* < 2t(gz + gy)° = gt(a® +¢°)°
< it +9)* = 3P (z,y,1)

< %M<x7y7t) = B(P(l’,y,t))M(.%’,y,t)}

Let x € [0,1) and y € [2,00) (clearly with x < y), then,

2P(Tx, Ty.t) = 2t(ka + 1) < 2t(ka + L)* = t(e +)°
< Y(a +y)? = 1P(ry.1)

< iM(l’,yﬂf) = ﬁ(P(ZE,y,t))M(SU, y7t)}

Let x € [1,2) and y € [2,00) (clearly with x < y), then,

2P(Tz, Ty, t) =2t(3z+ 12 <2t(ka + Ly)? = Ht(z +y)?
< gtz +y)* = 3P(z,y,1)
< %M(xﬂﬁt) = B(P(w,y,t))M(x,y,t)}

Therefore,
2P(T'z, Ty, t) < B(P(z,y,t))M(z,y,t)

for all z,y € X with x <y and all ¢ > 0. Hence, all conditions of Theorem holds and T has a unique
fixed point.

Note that the continuity of f in Theorem is not necessary and can be dropped.

Theorem 2.3. Under the hypotheses of Theorem[2.1], without the continuity assumption on f, assume that
whenever {z,} is a nondecreasing sequence in X such that x, — u, one has x, < u for alln € N. Then f
has a fixed point.

Proof. Repeating the proof of Theorem [2.1] we construct an increasing sequence {x,} in X such that
xn, — 2z € X. Using the assumption on X we have x, < z. Now, we show that z = fz. By and Lemma

L8

s |:i’])(z7fz7t):| < slimsupp(ﬂ?n-f—l,fzvt)

n—0o0

< limsup B(P(zn, z,t)) limsup M (zy, 2, t),

n—o0 n—oo
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where,

lim M (zy,, 2,t)

n—o0

= 1171111 max {P(:En, 2, 1), P(n, frn, t)P(2, f2,t) P(n, fra, t)P(2, f2,1) }

1+P(f$n7fzat) ’ 1—|—’P(xn7z7t)
P(xn’ Pt t)P(Z’ fZ, t) ’P(l‘na Tn+1, t)P(Za f2'7 t) —
1+ P(xnsr, f2,1) 1+ P(an, 2, 1) =0 (see )

Therefore, we deduce that P(z, fz,t) < 0. As t is arbitrary, hence, we have z = fz. O

= lim max {P(xn, z,t),

If in the above theorems we take 5(t) = r, where 0 < r < %, then we have the following corollary.

Corollary 2.4. Let (X, =) be a partially ordered set and suppose that there exists a parametric b-metric P
on X such that (X,P) is a complete parametric b-metric space. Let f : X — X be an increasing mapping
with respect to = such that there exists an element xo € X with xo X fxg. Suppose that for some r, with
0<r< %,
sP(fx, fy,t) <rM(z,y,t)

holds for each t > 0 and all comparable elements x,y € X, where
Pz, fx, )Py, fy,t) Pz, fz,t)P(y, [y, 1)

L+ P(fx, fy,t) = 1+ P(x,y,t) '

If f is continuous, or, for any nondecreasing sequence {xy} in X such that x, — u € X one has x,, < u for
all n € N, then f has a fized point.

M(z,y,t) = max {P@c,y,t),

Corollary 2.5. Let (X, =X) be a partially ordered set and suppose that there exists a parametric b-metric P
on X such that (X, P) is a complete parametric b-metric space. Let f : X — X be an increasing mapping
with respect to = such that there exists an element ro € X with xo = fxg. Suppose that

Pz, fo. 0P, fy,t) P, fz. 0Py, fy.1)
1+ P(fz, fy,t) 1+ P(z,y,t)
for each t > 0 and all comparable elements x,y € X, where o, 3,7 >0 and o+ f+ v < %

If f is continuous, or, for any nondecreasing sequence {x,} in X such that x,, — u € X one has x, 2 u
for alln € N, then f has a fized point.

P(fz, fy,t) < aP(z,y,t) +

2.2. Results using comparison functions

Let ¥ denote the family of all nondecreasing functions ¢ : [0, 00) — [0, 00) such that lim,, " (¢) = 0 for
all ¢ > 0, where 9™ denotes the n-th iterate of . It is easy to show that, for each v € ¥, the following is
satisfied:

(a) ¥(t) <t for all t > 0;

(b) ¥(0) = 0.
Theorem 2.6. Let (X, <) be a partially ordered set and suppose that there exists a parametric b-metric P
on X such that (X,P) is a complete parametric b-metric space. Let f : X — X be an increasing mapping
with respect to = such that there exists an element xg € X with xo X fxg. Suppose that

sP(fx, fy,t) <$(N(z,y,1)) (10)
where
Pz, fr,t)d(z, fy.t) + Py, fy, )P(
1+ s[P(z, fz,t) + Py, fy, 1)
Pz, fx, )P (z, fy,t) + Py, fy, )Py, fx, 1) }
L+ Pz, fy,t) + Py, fz,1) ’
for some ¢ € VU and for all comparable elements x,y € X and all t > 0. If f is continuous, then f has a
fixed point.

)

N(z,y,t) = max {'P(a},y,t)’ f]y,fa:,t)
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Proof. Since xg = fxg and f is an increasing function, we obtain by induction that
20 = frg 2 fPwg = 2 flag 2 [T <

Putting x, = f™"xg, we have
o 21 22 2 DTy DTy Do
If there exists ng € N such that z,, = xn,+1, then z,, = fz,, and so we have nothing for prove. Hence, we

assume that x, # x,41 for all n € N.
Step I. We will prove that lim P(zp,2p41,t) = 0. Using condition (39), we obtain

n—o0
P(:Ena l’n+1, t) S SP(I‘n, anrlv t) = SIP(f;L‘nfl’ f‘rn’ t) g w(N(xnflv Tn, t))
Here,

P(xn-1, fXn—1,)P(xn-1, frn,t) + P(xn, frn, t)P(Tn, fxn-1,1t)
1+ s[P(xn—1, frn-1,t) + P(zp, f2n,t)] ’

P(xp-1, fTn-1,t)P(xpn_1, frn,t) + P(xn, fxn,t)P@n,fmn,l,t)}
1+ P(xp-1, frn,t) + Plzn, frn_1,t)

N(.’En_l, Ty t) = maX{P(l‘n_l, T,y t)u

P(ajn—:hxnu )P(l‘n 1, Tn+1, )+P(xn7$n+l7 )P(xn)xn’ )
= n—1,ZTn,t), )
o Pln-1, ) L+ 5P (@t 20, t) + P@ns s, ]
P(xn—lyxnut)P(xn 1, Tn+1, ) + ,P(-Tnal'n—i-lv )P(‘r’n)xn’ )}
1+P($n 1y Tn+1, )+P(xnaxn7 )

=P(zp-1,Tn,t).
Hence,
P(:Cn) xn-i—la t) S SP(.’En, :L'n—i-lv t) S w(P(xn—la Ty t))

By induction, we get that
P(@n, Tni1,t) < Y(P(@no1,¥n, 1)) < V> (P(Tn_g, tn-1,t)) < -+ < V" (P(20, 71, 1)).

As ¢ € U, we conclude that
lim P(zy,Tnt1,t) =0. (11)

n—oo

Step II. We will prove that {x,} is a parametric Cauchy sequence. Suppose the contrary. Then there
exist ¢ > 0 and € > 0 for them we can find two subsequences {z,,} and {z,,} of {z,} such that n; is the
smallest index for which

n; >m; > 1 and P(xpy,, Tn,;,t) > €. (12)

This means that
P(xm,;, Tn;—1,t) < €. (13)

From and using the triangle inequality, we get
9 S ,P(-Tml 9 :Eni ) t) S Sp(xmi) xmz‘-i-la t) + SP(Imi-‘rlu Jf'ni ) t)

Taking the upper limit as i — oo, we get

™

— < limsup P(@m,;+1, ZTn,, t)- (14)

S 1—00
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From the definition of M (x,y,t) we have

M (zpm,; Tn;—1,1)
P(@m;s [Tm; )P (Tmys fTn—1,t) + P(@Xn;—1, fTn;—1, ) P(Tn;—1, fTm,, t)
L+ s[P(wm;, fom;,t) + P(on,—1, fTn,1,1)] ’
P(xm;, fTm; s V)P (Tmys fTn;—1,t) + P(@n,—1, fTn,—1,0)P(Tn;—1, fTm,, t)
T4 P S0, 1 8) + Plan1. [0 )
P(xmw'rmrl-l? t)P(xmi’ xmvt) + P($ni—1> Lny, t)P(xm—h Lmi+1, t)
1+ S[P(:Umi’ Lmi+1, t) + ,P(wmfl? Lnys t)]
P(xmi’ Tm;+1, t)P(xmﬂxmvt) + P(xnz‘—la Ini’t)P(mni_l’ LTm;+1, t)
1+ P(Imﬂ xnivt) + P(‘rni_17 Tm;+1, t)

= max{P(Tm,, Tn;—1,1),

= maX{P(mmi y Tn;—1, t)a >

}
and if ¢ — oo, by and we have

limsup M (zpm,;, Tn;—1,t) < €.
1—+00
Now, from we have
Sp(xmﬁ-lv .%'m.,t) = Sp(fxmw fxm—h t) < w(M(xmw'rm—b t))
Again, if i — oo by we obtain

E=S

®w | ™

< slim Supp(:nmi—i-l,xnia a) < w(f) <g,
1—00
which is a contradiction. Consequently, {z,} is a Cauchy sequence in X. Therefore, the sequence {z,}
converges to some z € X, that is, lim,, P(zy, z,t) = 0 for all ¢ > 0.
Step I1I. Now we show that z is a fixed point of f.
Using the triangle inequality, we get

Pz, fz,t) < sP(z, fan,t) + sP(fxn, fz,1).
Letting n — oo and using the continuity of f, we get
P(z, fz,t) <0.
Hence, we have fz = z. Thus, z is a fixed point of f. O

Theorem 2.7. Under the hypotheses of Theorem[2.6, without the continuity assumption on f, assume that
whenever {x,} is a nondecreasing sequence in X such that x,, — u € X, one has x, = u for all n € N.
Then f has a fized point.

Proof. Following the proof of Theorem [2.6, we construct an increasing sequence {z,} in X such that
Tn, — z € X. Using the given assumption on X we have z, < z. Now, we show that z = fz. By

we have
SP(fz,xn,t) = sP(fz, fep—1,t) < Y(M(z,25-1,1)), (15)
where
P(xn-1, frn-1,)P(xn_1, f2,t) + Pz, f2,6)P(z, frpn_1,1)
1+ s[P(zp_1, frn_1,t) + P(z, f2,1)] ’
P(xn-1, frn-1,)P(xn_1, f2,1) +73(z,fz,t)77(z,fxn,1,t)}
1+ P(xp-1,fz,t) + P(z, frn—1,t)
P(xn—1,Tn, t)P(xn-1, f2,t) + P(z, f2z,t)P(z, 2, 1)
1+ s[P(zp_1,Tn,t) + P(z, fz,1)] ’
P(xp—1,Tn, t)P(xpn_1, f2,t) + P(z, fz,t)P(2, Tn, t)
1+ P(xpn-1, fz,t) + P(z,2p,t) 15

M(z,xp-1,t) = max{P(zn-1, 2, 1),

= max{P(zn_1, 2, 1),
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Letting n — oo in the above relation, we get

limsup M (z,xp—1,a) = 0. (16)

n—oo

Again, taking the upper limit as n — oo in and using Lemma and we get

s Ep(%fz,t)] < slimsup P(zy, fz,t)

n—oo

< limsup (M (2, 2-1,1)) = 0.

n—oo
So we get P(z, fz,t) =0, i.e., fz = z. O]

Corollary 2.8. Let (X, =) be a partially ordered set and suppose that there exists a parametric b-metric P
on X such that (X, P) is a complete parametric b-metric space. Let f : X — X be an increasing mapping
with respect to = such that there exists an element xg € X with xo = fxg. Suppose that

where 0 <r <1 and

Pz, fx, t)d(x, fy,t) + Py, fy, t)P(
L+ s[P(x, fo,t) + Py, fy,t)
1+ P(z, fy,t) + Ply, fx,t) ’

9

N(z,y,t) = max {P(x,y, t), ]yafﬂ%t)

for all comparable elements x,y € X and allt > 0. If f is continuous, or, whenever {x,} is a nondecreasing
sequence in X such that x, — uw € X, one has x,, < u for all n € N, then f has a fixed point.

2.8. Results for almost generalized weakly contractive mappings

Berinde in [5] studied the concept of almost contractions and obtained certain fixed point theorems.
Results with similar conditions were obtained, e.g., in [4] and [25]. In this section, we define the notion
of almost generalized (¢, ¢)s+-contractive mapping and prove our new results. In particular, we extend
Theorems 2.1, 2.2 and 2.3 of Ciri¢ et al. in [6] to the setting of b-parametric metric spaces.

Recall that Khan et al. introduced in [22] the concept of an altering distance function as follows.

Definition 2.9. A function ¢ : [0,+00) — [0,400) is called an altering distance function, if the following
properties hold:

1. ¢ is continuous and non-decreasing.
2. ¢(t) =0 if and only if ¢t = 0.

Let (X,P) be a parametric b-metric space and let f : X — X be a mapping. For z,y € X and for all

t > 0, set

M) = max { P(o. ) PG ) Pl .00, 70T

and
Ni(z,y) = min{P(z, fz,t), P(z, fy,t), P(y, fz,t), Py, fy,t)}.

Definition 2.10. Let (X,P) be a parametric b-metric space. We say that a mapping f : X — X is an
almost generalized (1, ¢)s -contractive mapping if there exist L > 0 and two altering distance functions v
and ¢ such that

V(sP(fx, fy, 1) < P(Mi(z,y)) — o(Mi(2,y)) + Lp(Ni(z, y)) (17)
for all x,y € X and for all £ > 0.
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Now, let us prove our result.

Theorem 2.11. Let (X, <) be a partially ordered set and suppose that there exists a parametric b-metric P
on X such that (X, P) is a complete parametric metric space. Let f : X — X be a continuous non-decreasing
mapping with respect to <. Suppose that f satisfies condition , for all comparable elements x,y € X. If
there exists xo € X such that xg < fxo, then f has a fized point.

Proof. Starting with the given z¢, define a sequence {z,} in X such that x,11 = fx,, for all n > 0. Since
zg = fro = x1 and f is non-decreasing, we have x1 = fxrg = x9 = fx1, and by induction

o Zx1 2 Xy Ty X

If z,, = ©p41, for some n € N, then z, = fx,, and hence z, is a fixed point of f. So, we may assume that
Ty # Tpy1, for all n € N. By , we have

w(P(UCm Tn+1, t)) < 1/1(377(%7 Tn+1, t))
= (sP(fon—1, fTn, 1))
S Y(My(2n-1,2n)) = @(My(2n-1,2n)) + LY (Ni(2n-1, 7n)), (18)

where

Mt(«'En—ly fUn) = max {P($n—1a Tn, t), P(xn—la fxn—la t), P(xm fxm t),
) ,P(xnfb Tn+1, t) }

,P(xn—la fwm t) + P(xnv fxn—la t) }
2s

= max {P(aznl, Ty t), P(Xn, Ty, t), 55
< max {P(mn_l, T, t), P(Tp, Tpt1,t), P@n1,2n,t) ;P($n7xn+l’t) } (19)
and
N¢(xp—1,T,) = min {P(mn1,f:cn1,t),73(:vn1,fxn,t),77(xn,fxn1,t),73(93n, fxn,t)}
= min {P(xn_l,mn,t),P(a:n_l,xn+1,t),0,77(xn,xn+1,t)} =0. (20)
From f and the properties of ¥ and ¢, we get
V(P (xp, Tni1,t)) < 1/J<max {P(xn_l,:cn,t),P(xn,:L‘nH, t)})
- w(max {P(%—la Tnyt), P(Tn, Tna1, 1), P(xn_lé:n% : }) ' (@)

If
max {P(xn—lv Tn, t)7 P(.’En, Tn+1, t)} = P(xn7 Tn+1, t)?

then by we have

P(xn—1,Tnt1,t
1/)(,P(J?n,l'n+1,t)) < ¢(P($n,xn+la t)) - 90<max {P(xn1,xn,t),73(xn,xn+1,t), (x 125: + ) }>7

which gives that x, = x,41, a contradiction.
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Thus, {P(xn,zn+1,t) : n € NU{0}} is a non-increasing sequence of positive numbers. Hence, there
exists r > 0 such that

lim Pz, Tpi1,t) =1
n—oo

Letting n — oo in , we get

0(r) < 0(r) = o (max { ot DL IO < ),

2s
Therefore,
_ t
w(max{r,r, lim P@n-1,Znt1, )}> =0,
n—o00 2s

and hence r = 0. Thus, we have

lim P(zy,Tni1,t) =0, (22)

n—oo

for each t > 0.

Next, we show that {z,} is a Cauchy sequence in X.

Suppose the contrary, that is, {x, } is not a Cauchy sequence. Then there exist ¢ > 0 and ¢ > 0 for them
we can find two subsequences {x,,} and {z,,} of {z,} such that n; is the smallest index for which

n; >m; > i,and P(Tm,, Tn,,t) > €. (23)

This means that
P(xm,, Tn,—1,t) < €. (24)

Using and taking the upper limit as i — oo, we get

lim Suplp(xmm$mflat) <e. (25)

n—oo

On the other hand, we have
P(J;mi? Lngs t) < Sp(xmw Lm;+1, t) + S,P(xmﬁ-lv Ly t)'

Using , and taking the upper limit as i — co, we get

®w | M

< limsup P(Tm;+1, Tn,,t).

i—00
Again, using the triangular inequality, we have
P(Tmit1, Tny—1,t) < SP(Timyt1, Tmys t) + SP(Timys Tny—1, 1),
and
P(xm,;, Tn;yt) < SP(Tmys Tny—1,t) + SP(2n,—1, Tn,, ).
Taking the upper limit as ¢ — oo in the first inequality above, and using and we get

lim sup P(Tm,+1, Tn;—1,t) < €5. (26)
i10—00

Similarly, taking the upper limit as ¢ — oo in the second inequality above, and using and , we get

lim sup P(m,, Tn,,t) < €s. (27)

1—00
From , we have

¢(3P($mi+1a xnwt)) = ¢(S'P<f$ml, fxni—17 t))
w(Mt(xmﬂ mni—1)> - W(Mt(xmivxm—l)) + LQb(Nt(.%‘mi, xm‘—l))7 (28)

IN
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where
Mt (xmz ) .’Eni,1)

= max {P(xmu Tn;—1, t)7 P<xm17 fl'mi,t), P(:Uni_l, fx’ni—h t):

P(«Tmi) fxni—ly t) + ,P(fmmiaxni—lv t) }
2s

P(mmi7xni7t) +P(xmi+17xni—17t) } (29)

= max {,P(:L‘mm Tn;—1, t)a P($ml7 Tm;+1, t)7 ,P(xniflv Tny s t)7 2

and
Ni(zpm,;, Tn;—1) = min {P(:cmi, fom; t), P(Tm,, fxm_l,t),P(xni_l,fxmi,t),P(xni_l,fxni_l,t)}
= min {P(fvmi, Timt1,t), P(Tomys Ty s t), P(Tny—1, Tmy+1, ), P(XTn,—1, xni,t)}. (30)
Taking the upper limit as i — oo in and and using , , and , we get

lim sup My (2, -1, Tn;—1) = max { limsup P(zm,, Tn;,—1,1), 0,0,
1—00 1—00

lim sup;_, o P(Zm,;, Tn,, t) + limsup, o0 P(Tm;+1, Tn;—1,1) }

2s
Es+e€s
< =e. 31
_max{e, 5 } € (31)
So, we have
lim sup Mt(xmi—bxni—l) < €, (32)
1—00
and
lim sup N (%, Tn,—1) = 0. (33)
1—00

Now, taking the upper limit as ¢ — oo in and using , and we have

w(s : Z) < ¢(5 lim Supp(xmi-‘rlvxniat))

1—00

< o (lim sup My(2pm,, Tn,—1,t)) — liminf o(My(zm,, Tn,—1))

i—00 1—00

< 1[}(6) - <P(1im Inf Mt(l‘mwmmfl))a
1—00

which further implies that
gp(liminfMt(mmi,xni_l)) =0,
11— 00

so liminf M (zy,,;, xn,—1) = 0, a contradiction to . Thus, {x,+1 = fz,} is a Cauchy sequence in X.

1—00
As X is a complete space, there exists © € X such that x, — u as n — oo, that is,

lim z,41 = lim fx, =u.
n—oo n—o0
Now, suppose that f is continuous. Using the triangular inequality, we get
P(u, fu,t) < sP(u, fan,t) + sP(fn, fu,t).
Letting n — oo, we get
P(u, fu,t) <s lim P(u, fxn,t)+s lim P(fz,, fu,t).
n—oo n—oo

So, we have fu = u. Thus, u is a fixed point of f. O
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Note that the continuity of f in Theorem [2.11]is not necessary and can be dropped.

Theorem 2.12. Under the hypotheses of Theorem [2.11], without the continuity assumption on f, assume
that whenever {x,} is a non-decreasing sequence in X such that z,, — x € X, one has x,, < z, for alln € N.
Then f has a fized point in X.

Proof. Following similar arguments to those given in the proof of Theorem [2.11] we construct an increasing
sequence {z,} in X such that 2, — u, for some u € X. Using the assumption on X, we have that x,, < u,
for all n € N. Now, we show that fu = u. By , we have

(P (@nt1, fu,t) = (sP(fen, fu,t))

< Y(My(zn, u) — o(M(@n, u) + LY (Ne(@n, u)), (34)
where
My(zy,,u) = max {P(azn, Uy t), P(Tn, fon,t), Plu, fu,t), Pn, fu.?) ;—SP(farn, t t)}
= max {P(aﬁn, Uy t), P(Tn, Tnt1,t), Plu, fu,t), P(an, fu,t) ;—SP(xn+1, W) } (35)
and
Nt(x’n,a U) = min {P(xnv fxna t)a P(xna fu7 t)? P(ua fxTM t): P(ua fu7 t)}
= min {P(mn,xn+1,t),77(xn, fu,t), P(u, xpi1,t), P(u, fu,t)}. (36)
Letting n — oo in and and using Lemma we get
1
= t
Mliminf My(zp,u) < limsup My(zp, u) < max {P(u, fu,t), M} = P(u, fu,t), (37)
2s n—00 N300 2s
and

Ni(xp,u) — 0.
Again, taking the upper limit as ¢ — oo in and using Lemma and we get

(P (u, fu,t)

W(s - %p(u,fu, t)) < ¢(slimsup P(znt1, fu,t))

n—oo

(limsup My(zp, u)) — liniinf o(My(zp,u))

n—oo

<
< (P (u, fu,t)) — o(liminf My (2, u)).

Therefore, ¢ (liminf M;(zy,u)) < 0, equivalently, lim inf M (x,,u) = 0. Thus, from 1' we get u = fu and
n—oo n—oo
hence u is a fixed point of f. O

Corollary 2.13. Let (X, =) be a partially ordered set and suppose that there exists a b-parametric metric
P on X such that (X, P) is a complete parametric b-metric space. Let f : X — X be a non-decreasing
continuous mapping with respect to <. Suppose that there exist k € [0,1) and L > 0 such that

Pz, fy,t) +73(y7fw,t)}
2s

PUfo. funt) < - max {P(a,0.0) PCo. 2,0, Pl ),

—+ émm{?(ﬂv, fxat)up(ya fl‘,t)},

for all comparable elements x,y € X and all t > 0. If there exists xg € X such that xg =X fxq, then f has a
fixed point.
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Proof. Follows from Theorem by taking ¢ (t) =t and ¢(t) = (1 — k)t, for all t € [0, 400). O

Corollary 2.14. Under the hypotheses of Corollary [2.15, without the continuity assumption of f, let for
any non-decreasing sequence {x,} in X such that r, — x € X we have x,, < x, for alln € N. Then, f has
a fixed point in X.

3. Fuzzy b-metric spaces

In 1988, Grabiec [14] defined contractive mappings on a fuzzy metric space and extended fixed point
theorems of Banach and Edelstein in such spaces. Successively, George and Veeramani [11] slightly modified
the notion of a fuzzy metric space introduced by Kramosil and Michalek and then defined a Hausdorff and
first countable topology on it. Since then, the notion of a complete fuzzy metric space presented by George
and Veeramani has emerged as another characterization of completeness, and many fixed point theorems
have also been proved (see for more details [9, [3] (13 [16], 23, 18] and the references therein). In this section
we develop an important relation between parametric b-metric and fuzzy b-metric and deduce certain new
fixed point results in triangular partially ordered fuzzy b-metric space.

Definition 3.1. (Schweizer and Sklar [26]) A binary operation * : [0,1] x [0, 1] — [0, 1] is called a continuous
t-norm if it satisfies the following assertions:

(T1) « is commutative and associative;

(T2) x is continuous;

(T3) ax1=ua forall a €0,1];

(T4) axb < cxd when a < ¢ and b < d, with a,b,c,d € [0,1].

Definition 3.2. A 3-tuple (X, M, «) is said to be a fuzzy metric space if X is an arbitrary set, % is a
continuous t-norm and M is fuzzy set on X2 x (0,00) satisfying the following conditions, for all x,y,z € X
and t,s > 0,

(i)
(i)
(iif)
)
)

(x? y7t > 0’

)
x,y,t) =1 for all ¢ > 0 if and only if x = y;
) = M(y,z,t);

)

M(

M(x,y,t
(iv) M(x,y,t)« M(y,z,s) < M(z,z,t+ s);
M(

(v

The function M (z,y,t) denotes the degree of nearness between x and y with respect to ¢.

x,y,.): (0,00) — [0, 1] is continuous;

Definition 3.3. A fuzzy b-metric space is an ordered triple (X, B, ) such that X is a nonempty set, * is
a continuous t-norm and B is a fuzzy set on X x X x (0,400) satisfying the following conditions, for all
z,y,z € X and t,s > O:

F1) B(z,y,t

F2

z,y,t) = By, z,1);

(F1) B(z,y,t) >
(F2) B(z,y,t) = 1if and only if = = y;
(F3) B(z,y,t) =
(F4) B(z,y,t)

z,y,t) x B(y,z,s) < B(z, z,b(t + s)) where b > 1;
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(F5) B(z,y,-): (0,400) — (0, 1] is left continuous.
Definition 3.4. Let (X, B,*) be a fuzzy b-metric space. Then
(i) a sequence {xy} converges to z € X, if and only if lim,_, o B(zp,z,t) =1 for all £ > 0;

(ii) a sequence {z,} in X is a Cauchy sequence if and only if for all € € (0,1) and ¢ > 0, there exists ng
such that B(xy, Ty, t) > 1 — € for all m,n > ng;

(iii) the fuzzy b-metric space is called complete if every Cauchy sequence converges to some = € X.

Definition 3.5. Let (X, B,*,b) be a fuzzy b-metric space. The fuzzy b-metric B is called triangular
whenever,

1 1 1
1< 11
Beyo ' Bean T Been )
for all z,y,2z € X and all £ > 0.
Example 3.6. Let (X, d, s) be a b-metric space. Define B : X x X x (0,00) — [0,00) by B(z,y,t) = m.

Also suppose a x b = min{a, b}. Then (X, B, %) is a fuzzy b-metric spaces with constant b = s. Further B is
a triangular fuzzy B-metric.

Remark 3.7. Notice that P(x,y,t) = m — 1 is a parametric b-metric whenever B is a triangular fuzzy
b-metric. .

As an applications of Remark and the results established in section 2, we can deduce the following
results in ordered fuzzy b-metric spaces.

Theorem 3.8. Let (X, X) be a partially ordered set and suppose that there exists a triangular fuzzy b-metric
B on X such that (X, B,*,b) is a complete fuzzy b-metric space. Let f: X — X be an increasing mapping
with respect to = such that there exists an element xg € X with xo X fxg. Suppose that

1 1

bf——— — 1| < B(=—— — DHhM(z,y,t 38
BUafr) =By - M0 (%)
for allt > 0 and for all comparable elements x,y € X, where
1 -1 1 -1 1 -1 1 -1
M(x7y7t) — max{ 1 _ 1’ [B(a:,f:c,t) ]1[B(y7fy7t) ]’ [B(z,fx,t) ]I[B(yafyvt) ] }
B(z,y,1) B(fz. 9.0 Bz.5,0)

If f is continuous, then f has a fized point.

Theorem 3.9. Under the hypotheses of Theorem|3.8, without the continuity assumption on f, assume that
whenever {z,} is a nondecreasing sequence in X such that x, — u, one has x, < u for alln € N. Then f
has a fixed point.

Theorem 3.10. Let (X, =X) be a partially ordered set and suppose that there exists a triangular fuzzy b-
metric B on X such that (X, B, *,b) is a complete fuzzy b-metric space. Let f : X — X be a continuous
non-decreasing mapping with respect to <. Also suppose that there exist L > 0 and two altering distance
functions 1 and ¢ such that

YO0l — 1) < PM(r,)) — (Mol ) + I (N )

(fz, fy,1))

for all comparable elements x,y € X where,

Wy - 1 , 1 . 1 1 1 1 5
f(ﬁ”’y)‘m“{m,y,t)‘ Bl fed VBl fud U0 B frn B fnh ]}
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and
1 1 1

1
-1, -1, -1, —
Bz, fz,t) B(y, fy.1) By, fz,t) B(x, fy,t)
If there exists xg € X such that xo X fzq, then f has a fized point.

Ni(2,y) = min{

~ 1)

Theorem 3.11. Under the hypotheses of Theorem [3.10, without the continuity assumption on f, assume
that whenever {x,} is a nondecreasing sequence in X such that x, — u € X, one has x, < u for alln € N.
Then f has a fized point.

Theorem 3.12. Let (X, =X) be a partially ordered set and suppose that there exists a triangular fuzzy b-
metric B on X such that (X, B,*,b) is a complete fuzzy b-metric space. Let f : X — X be an increasing
mapping with respect to = such that there exists an element xo € X with xo = fxg. Suppose that

1

bl—i——— < YPWN(z,y, 39
Bz iy S YW @) )
where
1 1 1 1
N(z,y,t) = max{—— 1 s ~ Usemy — U+ lsgms ~ Usgmy — 1
T B(z,y,t)) 1+b[B(:cfmt)+B(yfy7) 2] ’

50— Usem, 0- 1+ (ylfy,t) ~Ulggmg — U
—1

Bafid) T B

for some ¢ € W and for all comparable elements x,y € X and all t > 0. If f is continuous, then f has a
fixed point.

4. Application to existence of solutions of integral equations

Let X = C(]0,T],R) be the set of real continuous functions defined on [0,7] and P : X x X x (0,00) —
[0, +00) be defined by P(z,y, a) = supep e~ (t) — y(t)|? for all z,y € X and all ¢t > 0. Then (X, P, 2)
is a complete parametric b—metric space. Let < be the partial order on X defined by =z < y if and only if
x(t) < y(t) for all t € [0,T]. Then (X,d, =) is a complete partially ordered metric space. Consider the
following integral equation

+ /T S(t,s)f(s,z(s))ds (40)
where 0
(A) f:[0,T] x R — R is continuous,
(B) p:[0,7] — R is continuous,

(C) §:10,T] x[0,T] — [0,40c0) is continuous and

sup e~ /Stsds 1,

t€[0,T]

(D) there exist k € [0,1) and L > 0 such that

ke—as

0<f(s,y(s)) = f(s,2(5)) < ( 5 maX{fc(S) —y(s)l:[x(s) = Hz(s)], [y(s) — Hy(s)],

() = Hy(s)| + ly(s) — Ha(s)| }
4

Lefas

(NI

min{|z(s), Ha(s) ly(s) = Ha(s)]})
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for all z,y € X with x <y, s € [0,T] and o > 0 where
Hx(t) =p(t) + /OT S(t,s)f(s,z(s))ds, te€][0,T], forall ze X.
(E) there exist xp € X such that
xo(t) < p(t) + /OT S(t,s)f(s,xzo(s))ds.

We have the following result of existence of solutions for integral equations.

Theorem 4.1. Under assumptions (A) — (E), the integral equation has a unique solution in
X = ([0, T), R).

Proof. Let H : X — X be defined by
T
Hzx(t) = p(t) +/ S(t,s)f(s,z(s))ds, te][0,T], forall zeX.
0

First, we will prove that H is a non-decreasing mapping with respect to <. Let = < y then by (D) we
have 0 < f(s,y(s)) — f(s,z(s)) for all s € [0,T]. On the other hand by definition of H we have

T
Hy—Hx:/O S(t,s)[f(s,y(s)) — f(s,z(s))]ds >0 forall tel0,T].

Then Hx =< Hy, that is, H is a non-decreasing mapping with respect to <. Now suppose that z,y € X
with 2 <y. Then by (C), (D) and the definition of H we get

P(Hz,Hy,a) = tesgé%}qffat\HaU(t)—Hy(t)|2
’ T
= s e [ S(08)(f(s,2(5)) ~ Fls.p(o)Nasf
t€[0,7] 0
ot ' — f(s,y(s))|ds ’
< s ([ S0 0) ~ o))
ot T Le—as
< ([ 50,0 (%5 max{je(o) - (o),
2(s) — Ha(s)], [y(s) — Hy(s)|. [z(s) — Hy(s)| I ly(s) — Hw(S)l}
EC T minfla(s). Ha(s)|. ly(s) — Ha(s)]y) " ds)”
T
< sup eat(/o S(t, s)(];max{ sup e “lz(s) —y(s)|, sup e **|z(s) — Hz(s)|,

te[0,7) s€[0,7 s€[0,T
Supy e *z(s) — Hy(s)| + supy e “ly(s) — Hx(s
s =) - e, 22z = HO e ke~ Helo

s€[0,T7] 4

1 2
+£min{ sup e *%|z(s), Hx(s)|, sup e **|y(s) — Hx(s)]}) 2ds)
2 s€[0,7] s€[0,7]

r k
= sup ([ tt.0) (f max { Py, ). Plo. Ho ) Pl Hya),
t€[0,T] 0 2
P(z, Hy,a) + Py, Hz, a)}
4
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IN

L 7.\
+— min{P(z, Hz,«), P(y, Hz, 04)}> ds)

2

( sup eat(/OT S(t, s)ds)2) <§ max {P(w, y, ), Plx, Hz, a),

te[0,7

Py, Hy, @), Ple. My, o) ZP(% e } + gmin{P(x, Hz,o), Py, Hz, a)})
H H
gmax {P(,I’ Y, Oé),P(IL’, H{E, a)773(y, Hy, OZ), P(l’, Y, 04) 1‘73(3/» x,Oé) }

+§ min{P(z, Hz,a), P(y, Hzx, )}

Now, by (E) there exists g € X such that zyp < Hzg. Then, the conditions of Corollary are satisfied

and hence the integral equation has a unique solution in X = C([0,T],R). O
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