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Abstract

The fundamental deficiency in the theory of quasilinear spaces, introduced by Aseev [S. M. Aseev, Trudy Mat.
Inst. Steklov., 167 (1985), 25–52], is the lack of a satisfactory definition of linear dependence-independence
and basis notions. Perhaps, this is the most important obstacle in the progress of normed quasilinear
spaces. In this work, after giving the notions of quasilinear dependence-independence and basis presented
by Banazılı[H. K. Banazılı, M.Sc. Thesis, Malatya, Turkey (2014)] and Çakan [S. Çakan, Ph.D. Seminar,
Malatya, Turkey (2012)], we introduce the concepts of regular and singular dimension of a quasilinear space.
Also, we present a new notion namely "proper quasilinear spaces" and show that these two kind dimensions
are equivalent in proper quasilinear spaces. Moreover, we try to explore some properties of finite regular
and singular dimensional normed quasilinear spaces. We also obtain some results about the advantages of
features of proper quasilinear spaces. c©2015 All rights reserved.
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1. Introduction

Aseev [2] launched a new branch of functional analysis by introducing the concept of quasilinear spaces
which is generalization of classical linear spaces. He used the partial order relation to define quasilinear
spaces and gave coherent counterparts of results in linear spaces. Aseev’s approach provides suitable base
and necessary tools to proceed algebra and analysis on normed quasilinear spaces just as in normed spaces.
So, Aseev’s study brings an extended point of view to classical linear algebra and it reflects more aspects by
the advantages of the order relation. Thus his treatment allows us to construct a kind of theory of quasilinear
algebra. Aseev’s avant garde work has motivated us to introduce some new results, [1, 3, 4, 5, 6, 7, 8, 9, 10, 11].
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The fundamental deficiency in the theory of quasilinear spaces is the lack of a satisfactory definition of
linear dependence-independence and basis. Perhaps this is the most important obstacle on the improvement
of quasilinear spaces. Our studies ([4] and [6]) showed that concepts of linear dependence-independence and
basis directly depend on the order relation on quasilinear space.

In next section, we will give some definitions and preliminaries results about quasilinear spaces and
normed quasilinear spaces. Then we introduce the concepts of "regular and singular dimension of any
quasilinear space" and "floor of an element in quasilinear spaces" as new structures. Also, we introduce
proper quasilinear spaces and obtain some results about features of proper quasilinear spaces with remarkable
advantages.

2. Known Results About Quasilinear Spaces

Definition 2.1 ([2]). (X,�) is called a quasilinear space (qls, for short), if a partial order relation "�", an
algebraic sum operation, and an operation of multiplication by real numbers are defined in it in such a way
that the following conditions hold for any elements x, y, z, v ∈ X and any real numbers α, β ∈ R:

x � x, (2.1)

x � z if x � y and y � z, (2.2)

x = y if x � y and y � x, (2.3)

x+ y = y + x, (2.4)

x+ (y + z) = (x+ y) + z, (2.5)

there exists an element θ ∈ X such that x+ θ = x, (2.6)

α · (β · x) = (αβ) · x, (2.7)

α · (x+ y) = α · x+ α · y, (2.8)

1 · x = x, (2.9)

θ · x = θ, (2.10)

(α+ β) · x � α · x+ β · x, (2.11)

x+ z � y + v if x � y and z � v, (2.12)

α · x � α · y if x � y. (2.13)

A linear space is a qls with the partial order relation “=”. The most popular example of qls which is not
a linear space is the set of all closed intervals of real numbers with the inclusion relation “⊆”, the algebraic
sum operation

A+B = {a+ b : a ∈ A, b ∈ B}

and the real-scalar multiplication
λA = {λa : a ∈ A} .

We denote this set by ΩC (R). Another one is Ω (R) which is the set of all compact subsets of real numbers.
In general, Ω (E) and ΩC (E) stand for the space of all nonempty closed bounded and nonempty convex
and closed bounded subsets of any normed linear space E, respectively. Both are qls (nonlinear) with the
inclusion relation and with a slight modification of addition shaped

A+B = {a+ b : a ∈ A, b ∈ B}

and with the real scalar multiplication above.
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Lemma 2.2 ([2]). In a qls X the element θ is minimal, i.e., x = θ if x � θ.

We note that the minimality is not only a property of θ but also is shared by the other regular elements,
[11]. An element x′ ∈ X is called inverse of x ∈ X if x + x′ = θ. Further, if an inverse element exists,
then it is unique. An element x possessing inverse is called regular, otherwise is called singular. Xr and Xs

stand for the sets of all regular and singular elements in X, respectively. It will be assumed in the text that
−x = (−1)x and an element x in a qls is regular if and only if x− x = θ equivalently x′ = −x.

Suppose that any element x in a qls X has inverse element x′ ∈ X . Then the partial order in X is
determined by equality, the distributivity conditions hold and consequently, X is a linear space. In a real
linear space equality is the only way to define a partial order such that the conditions (2.1)-(2.13) hold.

Let X be a qls and Y ⊆ X. Then Y is called a subspace of X whenever Y is a quasilinear space with
the same partial order and the restriction of the operations on X to Y . The following characterization of
subspace in a qls is surprizingly the same as in linear spaces, and its proof is similar to its classical analogue.

Theorem 2.3 ([11]). Y is a subspace of a qls X if and only if αx+βy ∈ Y for every x, y ∈ Y and α, β ∈ R.

Suppose that each element x in Y has inverse element x′ ∈ Y then the partial order on Y is determined
by the equality. In this case the distributivity conditions hold in (2.11) on Y and Y is a linear subspace of
the qls X.

An element x ∈ X is said to be symmetric providing that −x = x, and Xd denotes the set of all
symmetric elements. Xr, Xd and Xs∪{0} are subspaces of X and are called regular, symmetric and singular
subspaces of X, respectively. For example, let X = ΩC(R) and Z = {0} ∪ {[a, b] : a, b ∈ R and a 6= b}. Z is
singular subspace of X. On the other hand, the set of all singletons of real numbers {{a} : a ∈ R} is regular
subspace of X.

Definition 2.4 ([2]). Let (X,�) be a qls. A real function ‖·‖X : X −→ R is called a norm if the following
conditions hold:

‖x‖X > 0 if x 6= 0, (2.14)

‖x+ y‖X ≤ ‖x‖X + ‖y‖X , (2.15)

‖α · x‖X = |α| ‖x‖X , (2.16)

if x � y, then ‖x‖X ≤ ‖y‖X , (2.17)

if for any ε > 0 there exists an element xε ∈ X such that, (2.18)
x � y + xε and ‖xε‖X ≤ ε then x � y.

A qls X with a norm defined on it is called normed quasilinear space (briefly, normed qls). If any x ∈ X
has inverse element x′ ∈ X, then the concept of normed qls coincides with the notion of a real normed linear
space.

Let (X,�) be a normed qls. Hausdorff metric or norm metric on X is defined by the equality

hX(x, y) = inf {r ≥ 0 : x � y + ar1, y � x+ ar2, ‖ari ‖ ≤ r} .

Since x � y+ (x− y) and y � x+ (y−x), the quantity hX(x, y) is well defined. It is not hard to see that
this function hX(x, y) satisfies all of the metric axioms and we should note that hX(x, y) may not equal to
‖x− y‖X if X is a nonlinear qls. Further, for any elements x, y ∈ X, and hX(x, y) ≤ ‖x− y‖X . Therefore,
we use the metric to discuss a topological property in normed quasilinear spaces instead of the norm. For
example, xn → x if and only if hX(xn, x) → 0 in a normed qls. Although, allways ‖xn − x‖X → 0 implies
xn → x in normed quasilinear spaces, xn → x may not imply ‖xn − x‖X → 0.



S. Çakan, Y. Yılmaz, J. Nonlinear Sci. Appl. 8 (2015), 816–836 819

Proposition 2.5 ([2]). The following conditions hold with respect to Hausdorff metric:

hX (α · x, α · y) = |α|hX (x, y) , for any α ∈ R, (2.19)

hX (x+ y, z + v) = hX (x, z) + hX (y, v) , (2.20)

‖x‖ = hX (x, 0) . (2.21)

Lemma 2.6 ([2]). The operations of algebraic sum and multiplication by real numbers are continuous with
respect to the Hausdorff metric. The norm is continuous function with respect to the Hausdorff metric.

Lemma 2.7 ([2]). Suppose that xn → x0 and yn → y0 and that xn � yn for any positive integer n. Then
x0 � y0.

Let X be a real complete normed linear space (a real Banach space). Then X is a complete normed
qls with partial order given by equality. Conversely, if X is a complete normed qls and any x ∈ X has
inverse element x′ ∈ X, then X is a real Banach space, and the partial order on X is equality. In this case
hX(x, y) = ‖x− y‖X .

Let E be a real normed linear space. The norm on Ω(E) is defined by

‖A‖Ω(E) = sup
a∈A
‖a‖E .

Then Ω(E) and ΩC(E) are normed quasilinear spaces. In this case, the Hausdorff metric is defined as usual:

hΩ(A,B) = inf{r ≥ 0 : A ⊆ B + S(θ, r), B ⊆ A+ S(θ, r)},

where S(θ, r) is the closed ball of radius r and centered at θ ∈ X.

Definition 2.8 ([4]). Let X be a qls, {xk}nk=1 ⊂ X and {αk}nk=1 ⊂ R. The element

α1x1 + α2x2 + · · ·+ αnxn =
n∑
k=1

αkxk

of X is said to be a quasilinear combination (qs-combination, for short) of {xk}nk=1 .
Let (X,�) be a qls and A = {x1, x2, ..., xn} ⊂ X. The set

QspA = {x ∈ X :
n∑
k=1

αkxk � x, x1, x2, ..., xn ∈ Aand α1, α2, ..., αn ∈ R}

is said to be (quasi) span of A and is denoted by QspA. One can see easily that QspA is subspace of X.

It is clear that SpanA ⊆ QspA. If X is a linear space, then QspA = SpanA.

Definition 2.9 ([4]). Let (X,�) be a qls, {xk}nk=1 ⊂ X and {αk}nk=1 ⊂ R. If

θX � λ1x1 + λ2x2 + · · ·+ λnxn

implies λ1 = λ2 = · · · = λn = 0 then {xk}nk=1 is said to be quasilinear independent (briefly, qs-independent),
otherwise {xk}nk=1 is said to be quasilinear dependent (qs-dependent, for short).

Theorem 2.10 ([4]). Any set A which has n+ 1 elements has to be qs-dependent in ΩC(Rn).

Definition 2.11 ([4]). Let X be a qls. If A ⊂ X is qs-independent and QspA = X then the set A is called
a basis for X.

Lemma 2.12 ([11]). The linear subspace Xr of a normed qls X is closed.

Lemma 2.13 ([5]). Let X be a qls. For every x, y ∈ X, x+ y ∈ Xr implies x ∈ Xr and y ∈ Xr.
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3. Main results

Combining Lemma 2.12 and Lemma 2.13 we obtain the following result.

Corollary 3.1. Let X be a qls, x ∈ Xr and y ∈ Xs. Then x+ y ∈ Xs.

Theorem 3.2. Let (X,�) be a qls and x0 ∈ Xr. If no there exist y ∈ Xs such that x0 � y, then X is a
(pure) linear space.

Proof. Let x0 ∈ Xr. Suppose that x0 � x for all x ∈ Xs. Let z 6= x0 and z ∈ Xr.
Now let us assume that there exists at least element y ∈ Xs such that z � y. Let S be a basis for Xr.

Then, each x0 ∈ Xr has a representation

x0 = λ1a1 + λ2a2 + · · ·+ λnan

by aid of the elements a1, a2, ..., an in S and real scalars λ1, λ2, ..., λn.
Thus, for z ∈ Xr we write

z = β1b1 + β2b2 + · · ·+ βmbm

by aid of the elements b1, b2, ..., bm in S and real scalars β1, β2, ..., βm.
(Where the elements a1, a2, ..., an and b1, b2, ..., bm may be the same, but it does not a problem to proof.)
By (2.12) from qls axioms, we obtain

x0 + z =
n∑
k=1

λkak +
m∑
k=1

βkbk (3.1)

Since z � y we write −z � −y by (2.13). By using (3.1)

x0 � −y +

n∑
k=1

λkak +

m∑
k=1

βkbk. (3.2)

In (3.2), the elements
∑n

k=1 λkak and
∑m

k=1 βkbk are reguler, −y is a singular element. By Corollary 3.1,
the element −y +

∑n
k=1 λkak +

∑m
k=1 βkbk is singular. This result contradicts with the hypothesis. So our

assumption is wrong.
Thus, for every x ∈ Xr and for all y ∈ Xs, we obtain x � y. On the other hand, since every x ∈ Xr is

minimal, we say y � x for all y ∈ Xs. Hence, X has not any singular element and X = Xr. This complete
the proof.

The following important comment is a result of the above theorem.

Corollary 3.3. If X is a nonlinear qls, then for every x ∈ Xr there exists at least one y ∈ Xs such that
x � y.

3.1. Dimension in Quasilinear Spaces
In this section, we introduce the definitions of regular and singular dimension of any qls as new

concepts. We note that these concepts are redundant in linear spaces. Also, in next section, after introducing
proper quasilinear spaces, we show that the notions of regular and singular dimension are coincide in a proper
qls and we use only the name of "dimension" in proper quasilinear spaces.

Definition 3.4. Singular dimension of a qls X is defined as maximum number of qs-independent elements
in Xs. If this number is finite then X is called finite singular dimensional, otherwise infinite singular
dimensional. Further the dimension of regular subspace of X is called regular dimension of X. Regular and
singular dimension of X are denoted by s− dimX and r − dimX, respectively.

On the other hand, if s− dimX = r − dimX = a then a is said to be dimension of X and it is written
as dimX = a.
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Corollary 3.5. For every linear space s− dimX = 0. If s− dimX > 0, then X is a nonlinear qls.

We note that X may not be a linear space if s−dimX = 0. The following example reflects this situation.

Example 3.6. For the symetric subspace

(ΩC(R))d = {[−a, a] : a ∈ R}

of ΩC(R), we have r − dim ((ΩC(R))d) = s− dim ((ΩC(R))d) = 0.

Example 3.7. Regular and singular dimension of the quasilinear spaces R, ΩC(R) and (ΩC(R))s are as
follows:

r − dim (R) = 1 and s− dim (R) = 0,

r − dim (ΩC(R)) = 1 and s− dim (ΩC(R)) = 1,

r − dim ((ΩC(R))s) = 0 and s− dim ((ΩC(R))s) = 1,

respectively.
Similarly, regular and singular dimension of the quasilinear spaces R2, ΩC(R2) and

(
ΩC(R2)

)
s
are as

follows:

r − dim
(
R2
)

= 2 and s− dim
(
R2
)

= 0,

r − dim
(
ΩC(R2)

)
= 2 and s− dim

(
ΩC(R2)

)
= 2,

r − dim
((

ΩC(R2)
)
s

)
= 0 and s− dim

((
ΩC(R2)

)
s

)
= 2,

respectively.

Example 3.8. Let us consider the subspace

W =
(
ΩC(R2)

)
s
∪ {{(x, 0)} : x ∈ R}

of ΩC(R2) and the elements
w1 = {(0, y) : 1 ≤ y ≤ 2}

and
w2 = {(x, 0) : 1 ≤ x ≤ 2}

of Ws. The set {w1, w2} is qs-independent in Ws since no there exist non-zero scalars λ1 and λ2 satisfying
the inclusion {(0, 0)} ⊆ λ1w1 + λ2w2. Hence singular dimension of W must be greater than or equal to 2.
Remember that W is a subspace of ΩC(R2) and Theorem 2.10. Then s − dimW = 2. Obviously Wr is
equivalent to R and so r − dimW = 1.

Example 3.9. Let us recall that ΩC(c0) is a qls with the partial order relation ” ⊆ ”. If we take

X = (ΩC(c0))s ∪ {θ} , where θ = (0, 0, 0, ...) ∈ c0.

Then r−dimX = 0 and s−dimX =∞. The quantity of qs-independent elements in X is not finite. Indeed,
the family

{{(t, 0, 0, ...) : 1 ≤ t ≤ 2} , {(0, t, 0, 0, ...) : 1 ≤ t ≤ 2} , ...} = {[1, 2] e1, [1, 2] e2, ...}

is qs-independent. Let us show that any finite subset of this family is qs-independent. This also implies that
this family is qs-independent:

Assume that (nk) ⊂ Z+ is a increasing sequence and

θ = {(0, 0, ...)} ⊆ λ1 ([1, 2] en1) + λ2 ([1, 2] en2) + · · ·+ λk ([1, 2] enk
) .
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Then

{(0, 0, ...)} ⊆


λ1t

(
0, 0, ..., 0,

n1.term
1 , 0, 0, ...

)
+ λ2t

(
0, 0, ..., 0,

n2.term
1 , 0, 0, ...

)
+

· · ·+ λkt

(
0, 0, ..., 0,

nk.term
1 , 0, 0, ...

)
: 1 ≤ t ≤ 2


=

{(
0, 0, ..., 0,

n1.term
λ1t , 0, 0, ..., 0,

n2.term
λ2t , 0, 0, ..., 0,

nk.term

λkt , 0, 0, ...

)
: 1 ≤ t ≤ 2

}
⇔ λ1 = λ2 = · · · = λk = 0.

Also, for the qls
X = ΩC(c0)

r − dimX =∞ and s− dimX =∞.
As another example, we can say that r − dimX = 2 and s− dimX =∞, for the qls

X = (ΩC(l∞))s ∪ {(0, 0, ..., 0, k, 0, 0, ..., 0, l, 0, 0, ...) : k, l ∈ R} .

Further, since the regular subspace of the qls ΩC(Rn) is Rn and the maximum numbers of qs-independent
elements in (ΩC(Rn))s is n, we have r − dim ΩC (Rn) = s− dim ΩC (Rn) = n.

3.2. Proper Quasilinear Spaces
The main purpose this section is to introduce the notion of proper quasilinear spaces. Before giving

the definition of proper quasilinear spaces, we must present some new definitions.

Definition 3.10. Let (X,�) be a qls, M ⊆ X and x ∈M . The set

FMx = {z ∈Mr : z � x}

is called floor in M of x . In the case of M = X it is called briefly floor of x and written briefly Fx instead
of FXx .

Floor of an element x in linear spaces is {x}. Therefore, it is nothing to discuss the notion of floor of an
element in a linear space.

Definition 3.11. Let (X,�) be a qls and M ⊆ X. Then the union set⋃
x∈M

FMx

is called floor of M and is denoted by FM . In the case of M = X, FX is called floor of the qls X.
On the other hand, the set

FXM =
⋃
x∈M

FXx

is called floor in X of M and is denoted by FXM .

Let X be a qls, M ⊆ X and x ∈M . Then FMx ⊆ Fx. Indeed, let z be an arbitrary element in FMx . Then
z � x and z ∈Mr. Since Mr ⊆ Xr we say z ∈ Xr. Thus z ∈ Fx.

Also, it is not surprising that FM ⊆ FX .
We note that FX is equal to Xr. Also, floor of an element x in a qls X may not be subspace of X. For

example, for x = [2, 3] ∈ ΩC(R), we have {2}, {3} ∈ Fx, but {2} + {3} = {5} /∈ Fx. Further for some set
M ⊆ X, FM may not be subspace of X.

Lemma 3.12. Let X be a normed qls and x ∈ X. Then Fx is closed and bounded in X.
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Proof. Assume that (zn) is a sequence in Fx such that (zn) → z and z ∈ X. We should prove z ∈ Fx to
show that Fx is closed. Since zn ∈ Fx for all n ∈ N, zn � x and zn ∈ Xr. Now let us consider fixed sequence
(x) in X. Since (zn) → z, (x) → x and zn � x for any positive integer n we get z � x by the Lemma 2.7.
Further since (zn)→ z and zn ∈ Xr for all n ∈ N, we have z ∈ Xr by Lemma 2.12. So we obtain z ∈ Fx.

On the other hand, because of z � x for all z ∈ Fx, we say ‖z‖ ≤ ‖x‖ by the normed qls axioms. Hence
Fx is a bounded set.

Proposition 3.13. Let s− dimX 6= 0 that is X be a nonlinear quasilinear space. Then

r − dimX ≤ s− dimX.

Proof. Assume that s − dimX 6= 0 and s − dimX < r − dimX. Let r − dimX = n and s − dimX = m.
Then m < n. To show that for any v ∈ Xr, no there exists u ∈ Xs such that v � u will be finished the proof.

Now let us consider the set FXXs
. We will show dim

(
FXXs

)
< n. To achieve this, we take arbitrary elements

x1, x2, ..., xn in FXXs
. Let

λ1x1 + λ2x2 + · · ·+ λnxn = 0. (3.3)

There exist y1 ∈ Xs such that x1 � y1 since x1 ∈ FXXs
, y2 ∈ Xs such that x2 � y2 since x2 ∈ FXXs

, ...,
yn ∈ Xs such that xn � yn since xn ∈ FXXs

.
By the qls axioms (2.12) and (2.13), we obtain

λ1x1 � λ1y1, λ2x2 � λ2y2, · · · , λnxn � λnyn

and
λ1x1 + λ2x2 + · · ·+ λnxn � λ1y1 + λ2y2 + · · ·+ λnyn (3.4)

respectively.
From (3.3) and (3.4), we have

0 � λ1y1 + λ2y2 + · · ·+ λnyn. (3.5)

The set {y1, y2, ..., yn} is qs-dependent in Xs since y1, y2, ..., yn ∈ Xs and s− dimX = m < n.
Then, at least one of scalars λ1, λ2, ..., λn in (3.5) is not zero. Hence, the set {x1, x2, ..., xn} is linear

dependence, since at least one of scalars λ1, λ2, ..., λn in the equality (3.3) is not also zero. Consequently we
obtain that dim

(
FXXs

)
< n.

Since FXXs
⊂ Xr, FXXs

is a linear subspace of Xr and dim
(
FXXs

)
< dim (Xr) then there exists an element

v in Xr such that v /∈ FXXs
. Then for the regular element v, no there exists any element u ∈ Xs such that

v � u.
Accordingly, we say that X is a linear space by Theorem 3.2. From Corollary 3.5, we write s−dimX = 0.

This result contradicts with the hypothesis. So our assumption is wrong.
Thus if s− dimX 6= 0 that is X be a nonlinear quasilinear space, then

r − dimX ≤ s− dimX.

Corollary 3.14. If s− dimX 6= 0 and s− dimX < r − dimX, X is not a qls.

Definition 3.15. Let X be a qls, M ⊆ X and x, y ∈ M . M is called proper set if the following two
conditions hold:

(i) FMx 6= ∅ for all x ∈M,
(ii) FMx 6= FMy for each pair of points x, y with x 6= y.
Otherwise M is called improper set.
Especially if X is proper set, then it is called proper quasilinear space (briefly, proper qls).
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Now let us deal with the condition ii).
If x 6= y, there is three different cases:
� Case of x � y : Then it should be that Fx  Fy to hold the condition (ii). (We note that Fy ⊆ Fx

may be.) This means that there exists at least one element z ∈ Xr such that z � x and z � y.
� Case of y � x : Then it should be that Fy  Fx to hold the condition (ii). (We note that Fy ⊆ Fx

may be.) This means that there exists at least one element m ∈ Xr such that m � y and m � x.
� Case of that there is not a comparison between x and y. Then it should be that Fx  Fy and Fy  Fx

to hold the condition (ii). This means that there exist at least two elements z,m ∈ Xr such that z � x,
z � y and m � y, m � x.

It is obvious that every linear space is a proper qls with relation of "=".
Also, trivial space X = {θ} is a proper space.

Example 3.16. Let E be a normed linear space. Then Ω(E) and ΩC(E) are proper quasilineear spaces.
We will show that ΩC(E) is a proper qls.

It is obvious that FA 6= ∅ for every A ∈ ΩC(E).
Let us take arbitrary elements A,B ∈ ΩC(E) such that A 6= B. Then there is three cases.
� If A * B, then there is at least a ∈ A such that a /∈ B. So {a} ⊆ A and {a} * B.
� If B * A, then there is at least b ∈ B such that b /∈ A. Hence {b} ⊆ B and {b} * A.
� If there is not a comparison between A and B, then there exist two elements a and b such that a ∈ A,

a /∈ B and b ∈ B, b /∈ A. Thus {a} ⊆ A, {a} * B and {b} ⊆ B, {b} * A. So ΩC(E) is a proper qls.
It can be similarly shown that Ω(E) is proper qls.

Example 3.17. The singular subspace of ΩC(R)

(ΩC(R))s ∪ {0} = {[a, b] : a < b, a, b ∈ R} ∪ {0}

is improper. Because, in this space, floors of some elements may be empty set and floors of any two different
elements may be same. For example, we have F[a,b] = F[c,d] = ∅ while a, b > 0 (c, d > 0) or a, b < 0 (c, d < 0)
with [a, b] 6= [c, d]. Further we have F[a,b] = F[c,d] = {0} for [a, b] 6= [c, d] such that a < 0 < b and c < 0 < d.

Example 3.18. The symetric subspace of ΩC(R)

(ΩC(R))d = {[−a, a] : a ∈ R}

is improper. Because, floors of every two different elements in this space is {0}. From the same reason, the
subspace of ΩC(R)

A = {[a, b] : a ≤ 0 ≤ b and a, b ∈ R}
is improper.

Corollary 3.19. If regular subspace of a qls X is {θX}, then X is an improper space. Therefore singular
subspace of a qls is improper.

The following example shows that a proper qls may has improper subspaces.

Example 3.20. Let X = ΩC

(
R2
)
and

V = Xs ∪ {{(x, 0)} : x ∈ R} .

It is obvious that V is a subspace of X and

Vs = Xs and Vr = {{(x, 0)} : x ∈ R} .

Also, since Fv1 = Fv2 = ∅ for
v1 = {{(0, y)} : 1 ≤ y ≤ 2}

and
v2 = {{(0, y)} : 3 ≤ y ≤ 4} ,

V is an improper qls.
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On the other hand, an improper qls may has proper subspaces:

Example 3.21. Taking into account the set V in above example, the set

H = {x ∈ V : (x1, 0) ∈ x, a ≤ x1 ≤ b and a, b ∈ R}

is a proper subspace of qls V.

Lemma 3.22. Regular subspace of a nontrivial proper qls is nonempty.

Proof. Let X be a nontrivial proper qls. Then Fx 6= ∅ for each x ∈ X and Fx 6= Fy for every x, y ∈ X such
that x 6= y.

� If x � y, then there exists at least z ∈ Xr such that z � x and z � y.
� If y � x, then there exists at least m ∈ Xr such that m � y and m � x.
� If there is not a comparison between x and y, then there exist z,m ∈ Xr such that z � x, z � y and

m � y, m � x.
Thus regular subspace Xr of proper qls X has at least element z(m).

Remark 3.23. A qls X may has a regular element such that yx such that yx � x for every element x. But
this case does not require that X is a proper qls.

The next example reflects this situation.

Example 3.24. We consider the set

U = {{(x, 0)} : x ∈ R} ⊂ΩC

(
R2
)
.

Let V = Xs ∪ U and
W = {x ∈ V : bir z ∈ U için z ⊆ x}.

Although for every x ∈W , there exists a z ∈Wr such that z ⊆ x, since

Fw1 = Fw2 = {{(x, 0)} : 1 ≤ x ≤ 2}

and w1 6= w2 for
w1 = {{(x, 0)} : 1 ≤ x ≤ 2}

and
w2 = {{(x, y)} : −1 ≤ y ≤ 0, 1 ≤ x ≤ 2},

W is an improper subspace of proper qls ΩC

(
R2
)
.

Theorem 3.25. In a nonlinear proper qls X, s− dimX = r − dimX.

Proof. Let r−dimX = n (= dimXr). Now let us assume that y1, y2, ..., yn, yn+1 are qs-independent vectors
in Xs. Since Xs ⊂ X, we have y1, y2, ..., yn, yn+1 ∈ X. Because of the fact that X is a proper qls, for every
x ∈ X, there exist y ∈ Xr such that y � x. Then there exist a1, a2,..., an, an+1 ∈ Xr such that

a1 � y1, a2 � y2, ..., an � yn, an+1 � yn+1. (3.6)

Since Xr is n−dimensional, the set {a1, a2, ..., an, an+1} is linear dependent. Then we can find scalars γk
(1 ≤ k ≤ n) such that

an+1 =

n∑
k=1

γkak.

From (3.6), by using the axiom (2.12) and (2.13), we get

an+1 =
n∑
k=1

γkak �
n∑
k=1

γkyk.
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Since an+1 ∈ Xr, we have

θ �
n∑
k=1

γkyk − an+1. (3.7)

Taking into account qls axioms, we get

n∑
k=1

γkyk �
n∑
k=1

γkyk and − an+1 � −yn+1.

Then
n∑
k=1

γkyk − an+1 �
n∑
k=1

γkyk − yn+1. Using this relation and the relation (3.7), we obtain

θ �
n∑
k=1

γkyk − yn+1. (3.8)

Since it is supposed that {y1, y2, ..., yn, yn+1} is qs-independent, γk must be zero for all k with 1 ≤ k ≤ n+1.
On the other hand, (3.8) hold for γn+1 = −1. This contradiction shows that {y1, y2, ..., yn, yn+1} is qs-
dependent in Xs. This means that

s− dimX < n+ 1,

that is
s− dimX ≤ r − dimX. (3.9)

On the other hand, by Proposition 3.13, we have prove that

r − dimX ≤ s− dimX. (3.10)

for a nonlinear qls X.
From (3.9) and (3.10), we can say that s− dimX = r − dimX when X is a nonlinear proper qls.

Remark 3.26. The converse of Theorem 3.25 may not be correct. For example, consider

X = (ΩC(l∞))s ∪ {(0, t1, t2, t3, ...) : ∀k ∈ N için tk ∈ R} .

Then r − dimX = s− dimX =∞. But X is improper.
As another example, r − dim ((ΩC(R))d) = s − dim ((ΩC(R))d) = 0 for the subspace

(ΩC(R))d = {[−a, a] : a ∈ R} of ΩC(R), however (ΩC(R))d is improper.

Remark 3.27. Since s − dimX = r − dimX in a nonlinear proper qls X, we write only dimX instead of
r − dimX (s− dimX) and say that dimension of X is dimX.

Theorem 3.28. Let X be a proper normed qls. Then the closed unit ball of X

S(θ, 1) = {x ∈ X : ‖x‖ ≤ 1}

is a proper set.

Proof. Since X is proper, Fx 6= Fy for all x, y ∈ X such that x 6= y. If x 6= y then there is three cases:
� If x � y, then there exists at least one element z1 ∈ Xr such that z1 � x and z1 � y.
� If y � x, then there exists at least one element m1 ∈ Xr such that m1 � y and m1 � x.
� If there is not a comparison between x and y, then there exist at least two elements z1,m1 ∈ Xr such

that z1 � x, z1 � y and m1 � y, m1 � x.
We want to show that S(θ, 1) is a proper set. To do this, let us take elements u and v from S(θ, 1) such

that u 6= v. Because of the fact that X is a proper normed qls, we have Fu 6= Fv. Hence, we have:
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� If u � v, then there exists at least one element z2 ∈ Xr such that z2 � u and z2 � v. So we can say
that ‖z2‖ ≤ ‖u‖ ≤ 1 by using the norm axioms and the fact that u ∈ S(θ, 1). Hence z2 ∈ S(θ, 1).

� If v � u, then there exists at least one element m2 ∈ Xr such that m2 � v and m2 � u. Thus we can
say that ‖m2‖ ≤ ‖v‖ ≤ 1 by using the norm axioms and the fact that v ∈ S(θ, 1). So m2 ∈ S(θ, 1).

� If there is not a comparison between u and v, then there is at least z2,m2 ∈ Xr such that z2 � u,
z2 � v and m2 � v, m2 � u. Therefore we can say that ‖z2‖ ≤ ‖u‖ ≤ 1 and ‖m2‖ ≤ ‖v‖ ≤ 1 by using the
norm axioms and the facts that u ∈ S(θ, 1) and v ∈ S(θ, 1), and so z2 ∈ S(θ, 1), m2 ∈ S(θ, 1), respectively.

On the other hand, since X is proper , S(θ, 1) ⊂ X and F
S(θ,1)
u ⊂ Fu, we have FS(θ,1)

u 6= ∅ for every
u ∈ S(θ, 1).

Consequently we obtain that z2, m2 ∈ (S(θ, 1))r. Hence, S(θ, 1) is a proper subset of X.

Theorem 3.29. Every proper qls has a Hamel basis.

Proof. Let S be the family of all qs-independent subsets of X. Now let us consider this family with the
partial order relation "⊆" and assume that C is a chain in S. Define

HS =
⋃
A∈C

A.

We claim that HS is qs-independent subset of X. To see this, let us suppose that HS is qs-dependent. Then
we can take a qs-dependent subset {v1, v2, ..., vn} of HS . By the definition of HS , for every k = 1, 2, ..., n,
there exist an Ak ∈ C with vk ∈ Ak. Since C is a chain, there exists a k0 ∈ {1, 2, ..., n}, such that Ak ⊂ Ak0
for k = 1, 2, ..., n. Thus v1, v2, ..., vn ∈ Ak0 . Since Ak0 is qs-independent, this contradicts with qs-dependence
of {v1, v2, ..., vn}. This contradiction shows that HS is qs-independent and therefore HS ∈ S. Obviously HS
is an upper bound for C. By Zorn’s lemma, there exists a maximal element BS of S, as required. It remains
to show that QspanBS = X.

Let v0 ∈ X\BS . Then BS∪{v0} is not qs-independent, hence there exists certain elements v1, v2, ..., vn∈BS
and scalars α1, α2, ..., αn with (α0, α1, α2, ..., αn) 6= (0, 0, ..., 0) such that

θ � α0v0 + α1v1 + α2v2 + ...+ αnvn.

Since BS is qs-independent, we have α0 6= 0. This implies implicitly that v0 ∈ QspanBS and hence X is
spanned by BS .

Now let us express how we can represent an element in a proper qls (X,�):
Let us consider the floor of y ∈ X. Since x � y for every x ∈ Fy, Fy is bounded from above with respect

to the partial order relation ” � ” on X.
Now we claim that

y = sup
(�)
{x ∈ Xr : x ∈ Fy},

that is
y = sup

(�)
{x ∈ Xr : x � y}.

Where supremum is considered according to relation ” � ”.

Theorem 3.30. Let (X,�) be a proper qls and y ∈ X. Then

sup
(�)
{x ∈ Xr : x � y} = y. (3.11)

Proof. Suppose that s ∈ X and x � s for each x ∈ Fy.We should prove y � s to complete the proof. Assume
that y � s. Since X is a proper qls, there exists z ∈ Xr such that z � y and z � s. So z ∈ Fy. Therefore we
can write z � s because of the fact that s is an upper bound for Fy. This situation contradicts with z � s.
Then y � s.
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Further we emphasize that this representation is unique.
Now, to illustrate of representation of an element we will give the following example.

Example 3.31. Let us consider the proper qls X = ΩC(R2) and the element

A = {(x1, x2) : x2
1 + x2

2 ≤ p}

in X and recall that any element {x} = {(x1, x2)} ∈ Xr has the unique representation as

{x} = x1{(1, 0)}+ x2{(0, 1)} (3.12)

by the standard basis of Xr. Also we can write x2
1 + x2

2 ≤ p because of the fact that {x} ∈ Xr and
{x} = {(x1, x2)} ⊆ A. Now we take the set

FA = {{x} ∈ Xr : {x} ⊆ A}

This set is bounded from above since A is an upper bound for FA. Also we can write

sup
(⊆)
{{x} ∈ Xr : {x} ⊆ A} = sup

(⊆)

{
{x} = {(x1, x2)} ∈ Xr : x2

1 + x2
2 ≤ p, x ⊆ A

}
= sup

(⊆)
{x1{(1, 0)}+ x2{(0, 1)} : x2

1 + x2
2 ≤ p, x ⊆ A}

= A.

Taking into account uniqueness of supremum and the representation given by (3.12) of each element
x = {(x1, x2)} in Xr, we can say that the representation of A is unique.

Remark 3.32. As is known, in classical linear algebra every element is represented with the basis of the space.
Let us recall that every linear space is a qls with the partial order relation ” = ” and consider the element
u = (u1, u2) in the qls (R2,=). Then the representation of u is obtained as

sup
(=)

{
u ∈ R2 : u = (u1, u2)

}
= sup

(=)
{u1(1, 0) + u2(0, 1)} = (u1, u2)

by using the method is described above.

3.3. Finite Regular and Singular Dimensional Normed Quasilinear Spaces
We firstly give the following preparatory lemma.

Lemma 3.33. Let {x1, x2, ..., xn} be a quasilinear independent set of elements in a normed qls X (of any
dimension). Then there exists a positive constant c such that

‖α1x1 + α2x2 + · · ·+ αnxn‖ ≥ c(|α1|+ |α2|+ · · ·+ |αn|) (3.13)

for all scalars α1, α2, ..., αn.

Proof. Since (3.13) holds for any c if |α1|+|α2|+· · ·+|αn| = 0, we can suppose that |α1|+|α2|+· · ·+|αn| > 0.
Then (3.13) is equivalent to

‖β1x1 + β2x2 + · · ·+ βnxn‖ ≥ c , βj =
αj

|α1|+ |α2|+ · · ·+ |αn|
,

n∑
j=1

|βj | = 1. (3.14)

Hence it suffices to prove the existence of a c > 0 such that (3.14) holds for all n−tuple of scalars β1, β2, ..., βn

with
n∑
j=1
|βj | = 1. Suppose that this is false. Then there exists a sequence (ym) of elements

ym = βm1 x1 + βm2 x2 + · · ·+ βmn xn,
n∑
j=1

∣∣βmj ∣∣ = 1
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such that ‖ym‖ → 0 as m→∞. Since
n∑
j=1

∣∣∣βmj ∣∣∣ = 1, we have
∣∣∣βmj ∣∣∣ ≤ 1. In this manner, for each fixed j, the

sequence
(βmj ) = (β1

j , β
2
j , ...)

is bounded. As a result, (βm1 ) has a convergent subsequence by the Bolzano-Weierstrass theorem. Let β1

denote the limit of that subsequence and let (y1,m) denote the corresponding subsequence of (ym). With the
same idea (y1,m) has a subsequence (y2,m) for which the corresponding subsequence of scalars βm2 converges,
let β2 denote the limit. Continuing in this way, after n steps we obtain a subsequence (yn,m) = (yn,1, yn,2, ...)
of (ym) such that

yn,m =
n∑
j=1

γmj xj ,
n∑
j=1

∣∣γmj ∣∣ = 1

with scalars γmj satisfying γmj → βj as m→∞. Then, as m→∞

yn,m → y =

n∑
j=1

βjxj = β1x1 + β2x2 + ...+ βnxn

where
n∑
j=1
|βj | = 1. So, all βj can not be zero. Since {x1, x2, ..., xn} is a qs-independent set, we say that

0 � β1x1 + β2x2 + · · ·+ βnxn = y (3.15)

On the other hand, because of continuity of norm function yn,m → y implies ‖yn,m‖ → ‖y‖ . Since
‖ym‖ → 0 by assumption and (yn,m) is a subsequence of (ym), we must have

‖yn,m‖ → 0. (3.16)

Hence ‖y‖ = 0 and then y = 0. This contradicts with (3.15).

A subsetM of a normed qls X is called compact if every sequence inM contains a convergent subsequence
whose limit belongs to M.

Since every normed qls is a metric space with the Hausdorff metric, we have following theorem.

Theorem 3.34. Compact sets in normed qls are closed and bounded.

The converse of this theorem may not be correct. The closed unit ball of normed qls ΩC(c0) is closed
and bounded, but it is not compact. This example shows that closed and bounded sets in infinite regular
dimensional normed quasilinear spaces need not be compact.

However, for a finite regular dimensional proper normed qls we say:

Theorem 3.35. Any subset M in a finite dimensional proper normed qls X is compact if and only if M is
closed and bounded.

Proof. Since compactness implies closedness and boundedness by Lemma 3.34 we only prove the converse.
Let M be a closed and bounded and dimX = n. Then r − dimX = dimXr = n. Let {b1, b2, ..., bn} a basis
for regular subspace Xr. We consider any sequence (xm) in M. Each xm has a representation

xm = sup
(�)
{ym ∈ Xr : ym � xm}

by aid of the elements ym ∈ Xr which has unique representation such that

ym = α
(m)
1 b1 + α

(m)
2 b2 + · · ·+ α(m)

n bn,
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where α(m)
j (j = 1, 2, ..., n) are real scalars.

The sequence (xm) is bounded since M is bounded. Then there exists K > 0 such that ‖xm‖ ≤ K for
all m ∈ N. Taking into account the normed qls axioms and Lemma 3.33,

K ≥ ‖xm‖ ≥ ‖ym‖ =

∥∥∥∥∥
n∑
i=1

α
(m)
i bi

∥∥∥∥∥ ≥ c
n∑
i=1

∣∣∣α(m)
i

∣∣∣
where c > 0. So the sequence of numbers (α

(m)
i ) (i fixed such that 1 ≤ i ≤ n) is bounded and has a

accumulation point αi.With similar thought in the proof of Lemma 3.33, we get that (xm) has a subsequence

(zm) which converges to z =
n∑
i=1

αibi. Since M is closed, z ∈M. This shows that the arbitrary sequence (xm)

in M has a subsequence which converges in M. Thus M is compact.

Remark 3.36. Teorem 3.35 can be given for finite regular dimensional proper (finite-dimensional) normed
qls. This situation may not be valid in an improper normed quasilinear spaces although it is finite regular
dimensional.

The following example reflects this situation.

Example 3.37. We consider singular subspace of the normed qls ΩC(c0) with the partial order relation
” ⊆ ”. This subspace is an improper normed qls which has 0 regular and ∞ singular dimension. Now let us
consider the closed ball S

(
z, 1

4

)
such that

z = {(t, 0, 0, ...) : 0 ≤ t ≤ 1} ∈ (ΩC(c0))s ∪ {θ}

We claim that this ball is closed and bounded in the finite regular dimensional improper normed qls
(ΩC(c0))s ∪ {θ}, but it is not compact.

Firstly, we show that the closed ball S
(
z, 1

4

)
is subset of (ΩC(c0))s ∪ {θ}. For this, it is enough to show

that this ball can not contain any regular element. We immediately note that (ΩC(c0))r = {{u} : u ∈ c0}
and consider any singleton {u} ⊂ c0. Now we show that {u} /∈ S

(
z, 1

4

)
for arbitrary element {u}.

hX ({u} , z) = inf {r ≥ 0 : {u} ⊆ z + S(θ, r) , z ⊆ {u}+ S(θ, r)}

= inf

{
r ≥ 0 : {(u1, u2, ...)} ⊆ {(t, 0, 0, ...) : 0 ≤ t ≤ 1}+ S(θ, r),
{(t, 0, 0, ...) : 0 ≤ t ≤ 1} ⊆ {(u1, u2, ...)}+ S(θ, r)

}
,

where S(θ, r) indicates the ball of radius r, centered at θ in (ΩC(c0))s ∪ {θ}.
On the other hand, infimum of numbers r satisfying the includings

{(u1, u2, ...)} ⊆ {(t, 0, 0, ...) : 0 ≤ t ≤ 1}+ S(θ, r) (3.17)

and
{(t, 0, 0, ...) : 0 ≤ t ≤ 1} ⊆ {(u1, u2, ...)}+ S(θ, r) (3.18)

is obtained as 1/2. In other words, the includings (3.17) and (3.18) hold for sets S(θ, r) with r ≥ 1/2. The
reason of this is explained in the following discuss:

Taking into account

{(u1, u2, ...)} ⊆ {(t, 0, 0, ...) : 0 ≤ t ≤ 1}+ S(θ, r)

⇐⇒ (u1, u2, ...) ∈ {(t, 0, 0, ...) : 0 ≤ t ≤ 1}+ S(θ, r)

and

{(t, 0, 0, ...) : 0 ≤ t ≤ 1} ⊆ {(u1, u2, ...)}+ S(θ, r)

⇐⇒ (t, 0, 0, ...) ∈ {(u1, u2, ...)}+ S(θ, r), for all t ∈ [0, 1] ,
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for the includings (3.17) and (3.18) hold. Then S(θ, r) must contain the element w = (u1 − t′, u2, u3, ...) for
a fixed real number t′ ∈ [0, 1] and the elements wt = (t− u1,−u2,−u3, ...) for every t ∈ [0, 1] . Therefore, it
must be h (w, θ) = ‖w‖c0 ≤ r and h (wt, θ) = ‖wt‖c0 ≤ r for every t ∈ [0, 1] . So

r ≥ max

{
‖w‖c0 , sup

t∈[0,1]
‖wt‖c0

}
.

Since
‖w‖c0 = max

{∣∣u1 − t′
∣∣ , sup
n≥2
|un|

}
and

‖wt‖c0 = max

{
|t− u1| , sup

n≥2
|−un|

}
, t ∈ [0, 1]

then we obtain

hX ({u} , z) = inf {r ≥ 0 : {u} ⊆ z + S(θ, r)) , z ⊆ {u}+ S(θ, r)}

= inf

{
r ≥ 0 : r ≥ max

{
‖w‖c0 , sup

t∈[0,1]

{
‖wt‖c0

}}}

= inf

{
r ≥ 0 : r ≥ max

{
max

{∣∣u1 − t′
∣∣ , sup
n≥2
|un|

}
, sup
t∈[0,1]

{
max

{
|t− u1| , sup

n≥2
|−un|

}}}}

≥ inf

{
r ≥ 0 : r ≥ max

{∣∣u1 − t′
∣∣ , sup
t∈[0,1]

|t− u1|

}}
≥ 1

2
.

So we can say {u} /∈ S
(
z, 1

4

)
and S

(
z, 1

4

)
⊂ (ΩC(c0))s ∪ {θ} .

On the other hand, boundedness of closed ball S
(
z, 1

4

)
is obvious.

Since a closed ball is closed set in any metric space, S
(
z, 1

4

)
is closed.

Now we show that S
(
z, 1

4

)
is not compact. Consider the sequence (zn) defined by the formula

zn = z +
1

4
{en} .

The first three terms of this sequence are as follows

z1 = z +
1

4
{e1} =

{(
t+

1

4
, 0, 0, ...

)
: 0 ≤ t ≤ 1

}
,

z2 = z +
1

4
{e2} =

{(
t,

1

4
, 0, 0, ...

)
: 0 ≤ t ≤ 1

}
,

z3 = z +
1

4
{e3} =

{(
t, 0,

1

4
, 0, ...

)
: 0 ≤ t ≤ 1

}
.

On the other hand, by Proposition 2.5 - (2.20) we have

hX

(
z +

1

4
{en} , z

)
≤ hX (z, z) + hX

(
1

4
{en} , 0

)
= 0 +

∥∥∥∥1

4
{en}

∥∥∥∥
ΩC(c0)

= sup
a∈ 1

4
{en}
‖a‖c0

= sup
a∈ 1

4
{en}

sup
b∈a
|b| = 1

4
.
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So (zn) ⊂ S
(
z, 1

4

)
.

Now we prove that (zn) can not has a convergent subsequence. To do this, we show that any subsequence
of (zn) is not a Cauchy sequence. Let (zkn) =

(
z + 1

4 {ekn}
)
be a subsequence of (zn) . Then

hX (zkn , zkm) = hX

(
z +

1

4
{ekn} , z +

1

4
{ekm}

)
= inf

{
r ≥ 0 : z +

1

4
{ekn} ⊆ z +

1

4
{ekm}+ S(θ, r) , z +

1

4
{ekm} ⊆ z +

1

4
{ekn}+ S(θ, r)

}

= inf



r ≥ 0 :

{(
t, 0, 0, · · · , 0, 0,

kn. term
1
4 , 0, 0, · · ·

)
: 0 ≤ t ≤ 1

}

⊆

{(
t, 0, 0, · · · , 0, 0,

km. term
1
4 , 0, 0, · · ·

)
: 0 ≤ t ≤ 1

}
+ S(θ, r) ,{(

t, 0, 0, · · · , 0, 0,
km. term

1
4 , 0, 0, · · ·

)
: 0 ≤ t ≤ 1

}

⊆

{(
t, 0, 0, · · · , 0, 0,

kn. term
1
4 , 0, 0, · · ·

)
: 0 ≤ t ≤ 1

}
+ S(θ, r)


and the includings

t, 0, 0, · · · , 0, 0, kn. term1

4
, 0, 0, · · ·

 : 0 ≤ t ≤ 1

 ⊆

t, 0, 0, · · · , 0, 0, km. term1

4
, 0, 0, · · ·

 : 0 ≤ t ≤ 1


+ S(θ, r)

(3.19)

and
t, 0, 0, · · · , 0, 0, km. term1

4
, 0, 0, · · ·

 : 0 ≤ t ≤ 1

 ⊆

t, 0, 0, · · · , 0, 0, kn. term1

4
, 0, 0, · · ·

 : 0 ≤ t ≤ 1


+ S(θ, r)

(3.20)

hold for only the balls S(θ, r) such that

r ≥ 1

4
.

The reason of this is explained in the following discuss:
For the includings (3.19) and (3.20) hold, the set S(θ, r) must contain the elements

v1 =

0, 0, 0, · · · , 0, 0,
kn. term

1

4
, 0, 0, · · · , 0, 0,

km. term

−1

4
, 0, 0, · · ·

 (3.21)

and

v2 =

0, 0, 0, · · · , 0, 0,
kn. term

−1

4
, 0, 0, · · · , 0, 0,

km. term
1

4
, 0, 0, · · ·

 , (3.22)

respectively, where it is considered km > kn without loss of generality. Then for containing the elements v1

and v2 of the ball S(θ, r), it must be
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hX (v1, θ) = ‖v1‖c0 =
1

4
≤ r

and
hX (v2, θ) = ‖v2‖c0 =

1

4
≤ r.

So, we obtain

hX

(
z +

1

4
{ekn} , z +

1

4
{ekm}

)
=

1

4
.

Clearly
(
z + 1

4 {ekn}
)
can not be a Cauchy sequence. Consequently S

(
z, 1

4

)
is not compact. This result

completes the proof of assertion in this example.

Corollary 3.38. Let E be a finite dimensional normed linear space. Any subset M in proper qls ΩC(E) is
compact if and only if M is closed and bounded.

Theorem 3.39. Let E be a normed linear space. If closed unit ball of E is compact then ΩC(E) is finite
dimensional.

Proof. Suppose that the closed unit ball S(θ, 1) = {x ∈ E : ‖x‖ ≤ 1} of normed linear space E is compact.
Then E is finite dimensional. Since

dim (ΩC(E)) = r − dim (ΩC(E)) = dim ((ΩC(E))r) = dim (E) ,

we say that proper qls ΩC(E) is finite dimensional.

Theorem 3.40. Let X be a proper normed qls. If the closed unit ball of X is compact then X is finite
dimensional.

Proof. We write (S(θ, 1))X and (S(θ, 1))Xr
to denote the closed balls of X and Xr, respectively. Firstly it is

obvious that (S(θ, 1))Xr
⊆ (S(θ, 1))X since Xr ⊆ X.

Now we suppose that closed unit ball (S(θ, 1))X of X is compact. Since (S(θ, 1))Xr
is closed in (S(θ, 1))X

(it can be easily prove this), (S(θ, 1))Xr
is compact, too. Thus linear subspace Xr is finite dimensional. Since

X is proper qls we say
dimX = r − dimX = s− dimX

and because of
r − dimX = dimXr

we obtain that X is finite dimensional.

We will complete this section by deriving several significant results concerning the proper quasilinear
space ΩC(Rn).

Let us consider any element y in proper normed qls ΩC(Rn). We have shown that the representation

y = sup
(�)
{x ∈ (ΩC(Rn))r : x � y}

is unique.
Now let us present the following lemma giving information about the norm of elements in ΩC(Rn). This

lemma states that there exists always an element in floor of y such that its norm is equal to ‖y‖. We note
that this element is important since it is a regular element.

Lemma 3.41. Let y ∈ ΩC(Rn). Then there exists an element x0 ∈ Fy such that

‖x0‖ = ‖y‖ .
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Proof. For every y ∈ ΩC(Rn), Fy is closed and bounded in Rn by Lemma 3.12. Since ΩC(Rn) is finite
dimensional (n−dimensional), Fy is compact by Teorem 3.35. Because of the fact that the norm is continuous
function which converts compact set Fy into R, this mapping assumes a maximum at some points of Fy (see:
[9, Corollary 2.5-7]). Thus we say that there exists the value of

max {‖x‖ : x ∈ Fy} .

Let max {‖x‖ : x ∈ Fy} = z. Then ‖x0‖ = z for an element x0 of Fy by definition of maximum and we write

‖y‖ = sup {‖x‖Rn : x ∈ y} = sup {‖x‖ : x ∈ Fy} = max {‖x‖ : x ∈ Fy} = z = ‖x0‖

for y ∈ ΩC(Rn).

The following considerable theorem is proved by Lemma 3.41.

Theorem 3.42.

‖y‖ =

∥∥∥∥∥sup
(�)
{x ∈ (ΩC(Rn))r : x � y}

∥∥∥∥∥ = sup{‖x‖ : x ∈ (ΩC(Rn))r , x � y}

for y ∈ ΩC(Rn).

Proof. Let us recall that the element y in ΩC(Rn) has a unique representation such that
y = sup(�){x ∈ (ΩC(Rn))r : x � y}. Since ‖x‖ ≤ ‖y‖ for every x such that x � y by the normed qls
axioms, we have

sup{‖x‖ : x ∈ (ΩC(Rn))r , x � y} ≤ ‖y‖ .

From Lemma 3.41 we know that there exists an element x0 ∈ (ΩC(Rn))r such that x0 � y and ‖y‖ = ‖x0‖.
Hence we obtain

sup{‖x‖ : x ∈ (ΩC(Rn))r , x � y} = ‖y‖ =

∥∥∥∥∥sup
(�)
{x ∈ (ΩC(Rn))r : x � y}

∥∥∥∥∥ .
Theorem 3.43. Every nontrivial proper subspace Y of the normed qls ΩC(Rn) is complete.

Proof. We consider an arbitrary Cauchy sequence (ym) in Y and show that it is convergent in Y, the limit
will be denoted by y. Since Y is a nontrivial proper subspace of ΩC(Rn) we have

r − dimY = s− dimY = dimY = k

with k ≤ n. Let {b1, b2, ..., bk} any basis for Yr. Then each xm ∈ Yr such that xm � ym has a unique
representation of the form

xm = α
(m)
1 b1 + α

(m)
2 b2 + · · ·+ α

(m)
k bk =

k∑
j=1

α
(m)
j bj

and each ym has a unique representation shaped

ym = sup
(�)
{xm ∈ Yr : xm � ym}

by aid of the elements xm ∈ Xr.
Since (ym) is Cauchy sequence, for every ε > 0 there exists N such that ‖ym − yp‖ < ε when m, p > N.

From this and Lemma 3.33 we have
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ε > ‖ym − yp‖

=

∥∥∥∥∥sup
(�)
{xm ∈ Yr : xm � ym} − sup

(�)
{xp ∈ Yr : xp � yp}

∥∥∥∥∥
≥ ‖xm − xp‖

=

∥∥∥∥∥∥
k∑
j=1

α
(m)
j bj −

k∑
j=1

α
(p)
j bj

∥∥∥∥∥∥
≥

∥∥∥∥∥∥
k∑
j=1

(
α

(m)
j − α(p)

j

)
bj

∥∥∥∥∥∥
≥ c

k∑
j=1

∣∣∣α(m)
j − α(p)

j

∣∣∣
for some c > 0. Division by c > 0 gives∣∣∣α(m)

j − α(p)
j

∣∣∣ < ε

c
, where m,n > N.

This shows that each of the k sequences
(
α

(m)
j

)
is Cauchy in R. Thus it converges; let αj denote the

limit. Using these k limits α1, α2, ..., αk, we define

z = α1b1 + α2b2 + · · ·+ αkbk.

It is obvious that z ∈ Yr. We recall that each element y such that z � y can be represented shaped

y = sup
(�)
{z ∈ Yr : z � y} .

Also, taking into account Theorem 3.42 we can write

‖ym − y‖ =

∥∥∥∥∥sup
(�)
{xm ∈ Yr : xm � ym} − sup

(�)
{z ∈ Yr : z � y}

∥∥∥∥∥
=

∥∥∥∥∥sup
(�)
{xm − z ∈ Yr : xm − z � ym − y}

∥∥∥∥∥
=

∥∥∥∥∥∥sup
(�)


k∑
j=1

(
α

(m)
j − αj

)
bj :

k∑
j=1

(
α

(m)
j − αj

)
bj � ym − y


∥∥∥∥∥∥

= sup


∥∥∥∥∥∥

k∑
j=1

(
α

(m)
j − αj

)
bj

∥∥∥∥∥∥ :
k∑
j=1

(
α

(m)
j − αj

)
bj � ym − y


≤ sup


k∑
j=1

∥∥∥(α(m)
j − αj

)
bj

∥∥∥ :
k∑
j=1

(
α

(m)
j − αj

)
bj � ym − y


= sup


k∑
j=1

∣∣∣α(m)
j − αj

∣∣∣ ‖bk‖ :
k∑
j=1

(
α

(m)
j − αj

)
bj � ym − y

 .

On the right
α

(m)
j → αj when m→∞.
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Hence ‖ym − y‖ → 0 when m → ∞ that is ym → y. Since hX(ym, y) ≤ ‖ym − y‖ in a qls, we write
hX(ym, y) → 0. This shows that (ym) is convergent in Y. Since (ym) is an arbitrary Cauchy sequence in Y,
this proves that Y is complete.

Remark 3.44. In Theorem 3.43, the subspace Y of ΩC(Rn) must be proper. Note that improper subspaces
of ΩC(Rn) may not be complete. Now it shows as an example, let’s examine the following example:

Example 3.45. We consider the qls ΩC(R). (ΩC(R))s ∪ {0} is improper subspace of ΩC(R). The singular
subspace (ΩC(R))s ∪ {0} is not complete. In fact, an example of a Cauchy sequence without limit in
(ΩC(R))s ∪ {0} is given by

un =

[
1− 1

n
, 1 +

1

n

]
converging to the singleton {1} which is not a singular element.

As a result of Theorem 3.35 and Theorem 3.43, we have:

Theorem 3.46. Every proper subspace Y of normed quasilinear space ΩC(Rn) is closed in ΩC(Rn).
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