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Abstract

The main goal of this paper is to characterize evolutes at singular points of curves in hyperbolic plane by
analysing evolutes of null torus fronts. We have done some work associated with curves with singular points
in Euclidean 2-sphere [H. Yu, D. Pei, X. Cui, J. Nonlinear Sci. Appl., 8 (2015), 678–686]. As a series of
this work, we further discuss the relevance between singular points and geodesic vertices of curves and give
different characterizations of evolutes in the three pseudo-spheres. c©2015 All rights reserved.
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1. Preliminaries

As a subject closely related to nonlinear sciences, singularity theory [1, 2, 3, 4, 7] has been extensively
applied in studying classifications of singularities of submanifolds in Euclidean spaces and semi-Euclidean
spaces [11, 12]. However, little information has been got at singular points from the view point of differential
geometry. In this paper we characterize the behaviors at singular points of curves in hyperbolic plane.

If a curve has singular points, we can not construct its moving frame. However, we can define a moving
frame of a frontal for a framed curve in the unit tangent bundle. Along with the moving frame, we get a
pair of smooth functions as the geodesic curvature of a regular curve. It is quite useful to analyse curves
with singular points. Because we can get information at singular points through analysing framed curves.
We have researched curves with singular points in Euclidean 2-sphere in [13]. In general, one can not define
evolutes at singular points of curves on Euclidean 2-sphere, but we define evolutes of fronts under some
conditions.
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In this paper, we focus on hyperbolic plane and further discuss the relevance between singular points
and geodesic vertices. We show that curves in hyperbolic plane must be spacelike. It is different from the
case of Euclidean 2-sphere. We consider a null torus T4

2 [10], and it is a section of a null cone. It is also a
product space of hyperbolic plane and de Sitter sphere, that is T4

2 = H2
0×S2

1. Spacelike curves with singular
points in hyperbolic plane are also null torus frontals. We give the characterizations of evolutes not only
in hyperbolic plane but also in de Sitter sphere and nullcone. We point that the evolute at singular points
only lies in hyperbolic plane, and the parts in de Sitter sphere must be regular. For the case of Euclidean
plane, there are some creative works [5, 6].

Theorem 4.6 describes the evolute of a null torus front by the geodesic curvature. At first we define the
evolute of a null torus front. At the regular part, it inherits the definition for a regular curve in hyperbolic
plane given by the second author et al. [8], as the locus of the center of its osculating pseudo-spheres. At
the singular part, we define it by the limit of the evolutes of its parallel curves. It works, since the evolute
of the spacelike curve coincides with the evolute of its parallel curve under some conditions.

On the other hand, we further give some properties. In [8] and [9], the authors point that the four-vertex
theorem holds for hyperbolic plane. For a closed curve without inflection points, we discuss the relevance
between singular points and geodesic vertices in Theorem 4.13. For a closed curve with inflection points, we
discuss the relevance between inflection points and geodesic vertices in Theorem 4.14.

We assume throughout the paper that all manifolds and maps are C∞ unless explicitly stated otherwise.

2. Regular hyperbolic plane curves

The Minkowski 3-space (R3
1, 〈, 〉) is the vector space R3 endowed with the metric induced by the pseudo-

scalar product

〈x,y〉 = −x1y1 + x2y2 + x3y3

for any vectors x = (x1, x2, x3) and y = (y1, y2, y3) in R3. The non-zero vector x in R3
1 is called spacelike,

null or timelike if 〈x,x〉 > 0, 〈x,x〉 = 0 or 〈x,x〉 < 0, respectively. We have the following pseudo-spheres
in R3

1:

Q2
ε =

{
H2

0 = {x ∈ R3
1|〈x,x〉 = −1} if ε = −

S2
1 = {x ∈ R3

1|〈x,x〉 = 1} if ε = +.

And we take

H2
+ = {(x1, x2, x3) ∈ H2

0|x1 ≥ 1},
H2
− = {(x1, x2, x3) ∈ H2

0|x1 ≤ −1}

and H2
0 = H2

+

⋃
H2
−. We call H2

0 a hyperbolic plane and S2
1 a de Sitter sphere.

We call H2
+ × S2

1 a null torus, denoted by T4
2, that is

T4
2 = H2

+ × S2
1 = {(x,y) ∈ R6

2|x ∈ H2
+,y ∈ S2

1}.

For any z ∈ T4
2, 〈z, z〉 = 0. So T4

2 is a part of a null cone.
Let γ : I → H2

+ ⊂ R3
1 be a regular curve (i.e. γ̇(t) 6= 0 for any t ∈ I), where I is an open interval.

We can show that 〈γ̇(t), γ̇(t)〉 > 0 for any t ∈ I. We call such a curve a spacelike curve. If t0 is a singular
point of γ, i.e. γ̇(t0) = 0, γ can also be taken as a spacelike curve. In fact, we can take zero vector as a
spacelike vector. The norm of the vector x ∈ R3

1 is defined by ‖x‖ =
√
|〈x,x〉|. We take s as the arc-length

parameter of γ satisfying ‖γ ′(s)‖ = 1, and t as the general parameter of γ.
For any x = (x1, x2, x3), y = (y1, y2, y3) ∈ R3

1, the pseudo vector product of x and y is defined as follows:

x ∧ y =

∣∣∣∣∣∣
−e1 e2 e3
x1 x2 x3
y1 y2 y3

∣∣∣∣∣∣ = (−(x2y3 − x3y2), x3y1 − x1y3, x1y2 − x2y1).
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Obviously we have that 〈x ∧ y, z〉 = det(x,y, z). Hence, x ∧ y is pseudo-orthogonal to x, y. Let us denote
t(s) = γ ′(s) as the unit tangent vector of γ and e(s) = γ(s) ∧ t(s) as the unit normal vector. We also have{

t(s) ∧ e(s) = −γ(s)
e(s) ∧ γ(s) = t(s).

Therefore we obtain a pseudo-orthonormal frame {γ(s), t(s), e(s)} along γ, where γ(s) is a timelike vector,
t(s) and e(s) are spacelike vectors.

Proposition 2.1 (see [8]). The hyperbolic Frenet-Serret formula of γ is as follows: γ ′(s)t′(s)
e′(s)

 =

 0 1 0
1 0 κg(s)
0 −κg(s) 0

 γ(s)
t(s)
e(s)

 ,
where κg(s) = det(γ(s), t(s), t′(s)) is the geodesic curvature of γ in H2

+.

For the general parameter t, we get t(t) = γ̇(t)/‖γ̇(t)‖ and e(t) = γ(t) ∧ t(t).

Proposition 2.2. We have the following hyperbolic Frenet-Serret formula of γ: γ̇(t)
ṫ(t)
ė(t)

 =

 0 ‖γ̇(t)‖ 0
‖γ̇(t)‖ 0 ‖γ̇(t)‖κg(t)

0 −‖γ̇(t)‖κg(t) 0

 γ(t)
t(t)
e(t)

 ,
where κg(t) = det(γ(t), t(t), ṫ(t))/‖γ̇(t)‖.

The definition of evolute of γ in H2
+ has been given in [8] as follows.

Definition 2.3. Under the assumption κg(t) 6= ±1, the evolute of a regular curve γ is defined as Eγ : I → Q2
ε

by

Eγ(t) =
1√

ε(1− κ2g(t))
(κg(t)γ(t) + e(t)).

Eγ is called hyperbolic evolute or de Sitter evolute of γ, respectively when ε = −1 or ε = 1.

Remark 2.4. Eγ(t) is located in H2
0 with κ2g(t) < 1, and it is in S2

1 with κ2g(t) > 1.

Example 2.5. Let γ : I → H2
+ be a curve,

γ(t) = (cosh(t), sinh(t) cos(t), sinh(t) sin(t)).

It is a regular curve, since γ̇(t) 6= 0. We get κg(t) = 1 + 1/ cosh2(t) > 1. Thus,

Eγ(t) =
(2 cosh(t), sinh(t) cos(t)− cosh(t) sin(t), cosh(t) cos(t) + sinh(t) sin(t))√

2 cosh2(t) + 1
.

See Figure 1. The red part is γ, and the green part is Eγ .

Remark 2.6. If Eγ has a singular point t0, then t0 is just the vertex of γ. In fact,

E′γ(s) = −
κ′g(s)(γ(s) + κg(s)e(s))

(κ2g(s)− 1)3/2
.

Thus E′γ(s) = 0 if and only if κ′g(s) = 0.

Note that even if γ is a regular curve, Eγ may have singularities. However we can’t consider the evolute
of Eγ . In this paper, we give the definition of evolute of a curve with singular points, see § 4. First, we
introduce the notions of null torus fronts and null torus frontals in the next section.
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Figure 1: regular curve and its evolute

3. Framed Curves and Framed Immersions

If γ has a singular point, we can not construct a moving frame of γ in a traditional way. However, we
could define a moving frame of a null torus front. First we give the notions.

Definition 3.1. We say that (γ, ν) : I → T4
2 is a null torus framed curve, if 〈γ(t), ν(t)〉=0 and 〈γ̇(t), ν(t)〉=0

for all t ∈ I. Moreover, if (γ, ν) is an immersion, namely, (γ̇(t), ν̇(t)) 6= (0, 0), we call (γ, ν) a null torus
framed immersion.

Definition 3.2. We say that γ : I → H2
+ is a null torus frontal if there exists a smooth mapping ν : I → S2

1

such that (γ, ν) is a null torus framed curve. We also say that γ : I → H2
+ is a null torus front if there exists

a smooth mapping ν : I → S2
1 such that (γ, ν) is a null torus framed immersion.

Throughout the paper, we assume that the pair (γ, ν) is co-orientable, the singular points of γ are finite.
They can be removed by Remark 4.8 and 4.9, however, we add them for the sake of simplicity.

In order to consider properties of the evolute of a null torus front, we need a moving frame. Let
(γ, ν) : I → T4

2 be a null torus framed curve. If γ is singular at t0, we can’t define a frame in a traditional
way. However, ν always exists even if t is a singular point of γ. We take µ = ν∧γ. We call the pair {γ, µ, ν}
is a moving frame of γ and the Hyperbolic Frenet-Serret formula is given by γ̇(t)

µ̇(t)
ν̇(t)

 =

 0 α(t) 0
α(t) 0 −`(t)

0 `(t) 0

 γ(t)
µ(t)
ν(t)

 ,
where `(t) = 〈ν̇(t), µ(t)〉, ν(t) and µ(t) are both unit spacelike vectors. We declare that (γ,−ν) is also a
null torus framed curve. In this case, `(t) dose not change, but α(t) changes to −α(t). If (γ, ν) is a null
torus framed immersion, we have (`(t), α(t)) 6= (0, 0) for each t ∈ I. The pair (`, α) is an important pair
of functions of the null torus framed curves as the geodesic curvature of a regular curve. We call the pair
(`, α) geodesic curvature of the null torus framed curve.

We also have {
µ ∧ ν = −γ
γ ∧ µ = ν.

Remark 3.3. (`, α) depends on a parametrisation. In fact, let I and Ĩ be intervals. A smooth function
s : Ĩ → I is a change of parameter. Let (γ, ν) : I → T4

2 and (γ̃, ν̃) : Ĩ → T4
2 be null torus framed curves
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whose geodesic curvatures are (`, α) and (˜̀, α̃) respectively. Suppose (γ, ν) and (γ̃, ν̃) are parametrically
equivalent via the change of parameter s : Ĩ → I. Thus (γ̃(t), ν̃(t)) = (γ(s(t)), ν(s(t))) for all t ∈ Ĩ. By
differentiation, we have

˜̀(t) = `(s(t))ṡ(t), α̃(t) = α(s(t))ṡ(t).

However, it presents good behaviors if we consider a null torus framed immersion, because its geodesic
curvature never depends on a parametrisation. It is just an analogous result to the case of Euclidean plane
[5]. We only give its the normalized geodesic curvature. Let (γ, ν) be a null torus framed immersion. Then
(`(t), α(t)) 6= (0, 0). Setting

(˜̀(t), α̃(t)) = (
`(t)√

`2(t) + α2(t)
,

α(t)√
`2(t) + α2(t)

).

By Remark 3.3, the normalized curvature (˜̀(t), α̃(t)) is independent on the choice of a parametrization.
Next, we give the relationship between (`(t), α(t)) of the framed curve and κg(t) if γ is a regular curve.

Proposition 3.4. If γ is a regular curve, then `(t) = −|α(t)|κg(t).
Proof. By a direct calculation, ‖γ̇(t)‖ = |α(t)|, γ ∧ µ = ν, and

κg(t) =
det(γ(t), t(t), ṫ(t))

‖γ̇(t)‖

=
det(γ(t), µ(t),−`(t)ν(t) + α(t)γ(t))

|α(t)|

= − `(t)

|α(t)|
.

Therefore we have `(t) = −|α(t)|κg(t).

Accordingly, it is a nature generalisation. Moreover, for a null torus framed immersion (γ, ν), we say
that t0 is an inflection point of the front γ if `(t0) = 0. Since α(t0) 6= 0 and Proposition 3.4, `(t0) = 0 is
equivalent to the condition κg(t0) = 0.

Example 3.5. Let γ : I → H2
+ be a curve,

γ(t) =
(
cosh(t2), sinh(t2) cos(t3), sinh(t2) sin(t3)

)
.

We get

γ̇(t) = (2t sinh(t2), 2t cosh(t2) cos(t3)− 3t2 sinh(t2) sin(t3), 2t cosh(t2) sin(t3) + 3t2 sinh(t2) cos(t3)).

So γ is singular at t = 0. Take ν = (ν1, ν2, ν3), where

ν1(t) =
3t sinh2(t2)√

4 + 9t2 sinh2(t2)
,

ν2(t) =
2 sin(t3 + 3t sinh(t2) cosh(t2) cos(t3))√

4 + 9t2 sinh2(t2)
,

ν3(t) =
−2 cos(t3 + 3t sinh(t2) cosh(t2) sin(t3))√

4 + 9t2 sinh2(t2)
.

It satisfies 〈γ, ν〉 = 〈γ̇, ν〉 = 0 and 〈ν, ν〉 = 1. Hence, (γ, ν) is a null torus framed curve. See the left one in
Figure 2. In general, if

γ(t) = (cosh(tm), sinh(tm) cos(tn), sinh(tm) sin(tn)) ,

it is also a null torus framed curve. When m = 3, n = 4, see the right one in Figure 2.
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Figure 2: null torus framed curve with m=2, n=3 and projection of a null torus framed curve with m=3, n=4 along the timelike
axis

4. Evolute of Null Torus Fronts

In this section, we give the definition of the evolute of a null torus front and further focus on its properties.
First, we introduce the parallel curves.

Let (γ, ν) : I → T4
2 be a null torus framed curve with the geodesic curvature (`, α). We define a parallel

curve γλ : I → Q2
ε of γ by

γλ(t) =
γ(t) + λν(t)√
ε(λ2 − 1)

,

where λ 6= ±1.
Through a direct calculation, we have the following.

Lemma 4.1. If γλ is a regular curve, then

`(t) + λα(t) = −|α(t) + λ`(t)|κgλ(t).

Lemma 4.2. For a null torus framed immersion (γ, ν) : I → T4
2, the parallel curve γλ : I → Q2

ε is a null
torus front for each λ 6= ±1.

Proof. We consider the case of ε = −1. It means the parallel curve is located in H2
+. Take

νλ(t) =
λγ(t) + ν(t)√

1− λ2
∈ S2

1.

Since

γλ(t) =
γ(t) + λν(t)√

1− λ2
and γ̇λ(t) =

γ̇(t) + λν̇(t)√
1− λ2

,

we have 〈γλ(t), νλ〉 = 〈γ̇λ(t), νλ〉 = 0. We make a hypothesis that γλ is not a front. There exists t0 ∈ I, such
that (γ̇λ(t0), ν̇λ(t0)) = (0, 0). It means

γ̇(t0) + λν̇(t0) = λγ̇(t0) + ν̇(t0) = 0.

Accordingly, (γ̇(t0), ν̇(t0)) = (0, 0). This contradicts with the fact that (γ, ν) is an immersion.
When ε = 1, we consider timelike parallel curves located in S2

1. Proof is similar, that we omitted here.
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Proposition 4.3. Let (γ, ν) be a null torus framed curve. If γ is a regular curve and λ 6= 1/κg(t), then a
parallel curve γλ is also a regular curve and

Eγλ(t) = −εEγ(t).

Proof. Since

γλ(t) =
γ(t) + λe(t)√
ε(λ2 − 1)

and γ̇λ(t) =
|γ̇(t)|(1− λκg(t))t√

ε(λ2 − 1)

and λ 6= 1/κg(t), γλ is a regular curve. By a direct calculation, we have

κgλ(t) =
κg(t)− λ
|1− λκg(t)|

,

eλ(t) =
1− λκg(t)
|1− λκg(t)|

1√
ε(λ2 − 1)

(e(t) + λγ(t)).

Hence

Eγλ(t) =
1√

ε(1− κ2gλ)
(κgλ(t)γλ(t) + eλ(t))

=
1√

ε(1− (
κg(t)−λ
|1−λκg(t)|)

2)
(
κg(t)− λ
|1− λκg(t)|

γ(t) + λe(t)√
ε(λ2 − 1)

+
1− λκg(t)
|1− λκg(t)|

1√
ε(λ2 − 1)

(e(t) + λγ(t)))

=
1√

ε(1− κ2g(t))(1− λ2)
(

1− λ2√
ε(λ2 − 1)

κg(t)γ(t) +
1− λ2√
ε(λ2 − 1)

e(t))

=
1− λ2√

ε(λ2 − 1)
√
ε(λ2 − 1)

κg(t)γ(t) + e(t)√
ε(1− κ2g(t))

=− εEγ(t).

Remark 4.4. Let (γ, ν) be a null torus framed immersion. If t0 is a singular point of the front γ, then
limt→t0 |κg(t)| =∞. By the equality

κgλ(t) =
κg(t)− λ
|1− λκg(t)|

,

we have limt→t0 |κgλ(t)| 6= 0.

We now define the evolute of a null torus front.

Definition 4.5. Let (γ, ν) : I → T4
2 be a null torus framed immersion. We define an evolute Eγ : I → Q2

ε

of γ as follows. If t is a regular point,

Eγ(t) =
1√

ε(1− κ2g(t))
(κgγ(t) + e(t)).

If t0 is a singular point, for any t ∈ (t0 − δ, t0 + δ)

Eγ(t) =
−ε√

ε(1− κ2gλ(t))
(κgλγλ(t) + eλ(t)),

where δ is a sufficiently small positive real number and λ ∈ R is satisfied the condition λ 6= 1/κg(t).
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We give another representation of the evolute by using the moving frame and its geodesic curvature.

Theorem 4.6. Under the condition of |α(t)| 6= |`(t)|, the evolute of a null torus front Eγ(t) : I → Q2
ε is

represented by

Eγ(t) =
−`(t)γ(t) + α(t)ν(t)√

ε(α2(t)− `2(t))
(4.1)

and Eγ(t) is a null torus front.

Proof. First suppose that γ is a regular curve. Since γ̇(t) = α(t)µ(t), we have |α(t)| 6= 0 and

t(t) =
α(t)

|α(t)|
µ(t), e(t) = γ(t) ∧ t(t) =

α(t)

|α(t)|
ν(t).

By Proposition 3.4, κg(t) = −`(t)/|α(t)|. Then

Eγ(t) =
−`(t)γ(t) + α(t)ν(t)√

ε(α2(t)− `2(t))
.

Second suppose that t0 is a singular point of γ. Consider γλ in hyperbolic plane, we know γλ is a regular
curve around the neighbourhood of t0 with λ 6= 1/κg(t). Since γ̇λ(t) = (α(t) + λ`(t))/

√
1− λ2µ(t), we have

|α(t) + λ`(t)| 6= 0 and

tλ(t) =
α(t) + λ`(t)

|α(t) + λ`(t)|
µ(t),

eλ(t) = γλ(t) ∧ tλ(t) =
α(t) + λ`(t)

|α(t) + λ`(t)|
ν(t) + λγ(t)√

1− λ2
.

By lemma 4.1, κgλ(t) = −(`(t) + λα(t))/|α(t) + λ`(t)|.
Then,

Eγ(t)

=Eγλ(t)

=
1√

−(1− κ2gλ(t))
(κgλ(t)γλ(t) + eλ(t))

=
|α(t) + λ`(t)|√

(`(t) + λα(t))2 − (α(t) + λ`(t))2
(− `(t) + λα(t)

|α(t) + λ`(t)|
γ(t) + λν(t)√

1− λ2
+

α(t) + λ`(t)

|α(t) + λ`(t)|
ν(t) + λγ(t)√

1− λ2
)

=
1√

(1− λ2)(`2(t)− α2(t))

(−`(t)(1− λ2)γ(t) + α(t)(1− λ2)ν(t))√
1− λ2

=
−`(t)γ(t) + α(t)ν(t)√

`2(t)− α2(t)
.

If we take ν̃(t) = µ(t), then (Eγ(t), ν̃(t)) is a framed immersion. In fact,

Ėγ(t) =
α̇(t)`(t)− α(t) ˙̀(t)

(`2(t)− α2(t))3/2
(`(t)ν(t)− α(t)γ(t))

=
d(α(t)/`(t))

dt

`2(t)

(`2(t)− α2(t))3/2
(`(t)ν(t)− α(t)γ(t)).
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Accordingly, 〈Eγ(t), ν̃(t)〉 = 〈Ėγ(t), ν̃(t)〉 = 0. And

˙̃ν(t) = −`(t)ν(t) + α(t)γ(t) = 0

equals to `(t) = α(t) = 0. Since (γ, ν) is a null torus framed immersion, we get ˙̃ν(t) 6= 0. It follows that Eγ
is a null torus front.

On the other hand, if γλ is in S2
1, we have Eγ(t) = −Eγλ(t). We can give the proof by the same way, that

we omitted here.

Remark 4.7. If |α| = |`|, the evolute Eγ of the null torus front is exactly located on the null cone. We can
characterize it by some null directions, for example −`γ + αν.

Remark 4.8. Let (γ, ν) be a null torus framed immersion, then (γ,−ν) is also a null torus framed immersion.
However Eγ does not change. It follows that we can define an evolute of a non co-orientable front by taking
double covering of γ.

Remark 4.9. By the representation (4.1), we may define the evolute of a null torus front even if γ have
non-isolated singularities, under the condition |`(t)| 6= |α(t)|.

Corollary 4.10. Under the above notations, the evolute of an evolute of a null torus front Eγ is given by

EEγ (t) =
(`2(t)− α2(t))3/2Eγ(t) + (α̇(t)`(t)− α(t) ˙̀(t))µ(t)√

(`2(t)− α2(t))3 − (α̇(t)`(t)− α(t) ˙̀(t))2
.

If t0 is a singular point of γ, then α(t0) = 0. As a corollary of Theorem 4.6, we have following.

Corollary 4.11. If t0 is a singular point of γ, then

Eγ(t0) = − `(t0)

|`(t0)|
γ(t0).

Remark 4.12. The evolute of a null torus front lies in Q2
ε . However, it only lies in H2

0 at a singular point
t0, which can be taken as the limit position of the evolute of its parallel curves in Q2

ε . In other words, the
part in S2

1 of the evolute must be regular, singularities only occur in H2
0.

Then we give a natural generalization for a null torus frontal in form. If there exists a unique smooth
function Ω(t) : I → R such that α(t) = Ω(t)`(t), let

Eγ(t) =
−γ(t) + Ω(t)ν(t)√
ε(−1 + Ω2(t))

be the evolute of the null torus frontal.
It is well known that a singular point of the evolute of a regular plane curve is corresponding to a vertex

of this curve, namely κ̇(t0) = 0. Here, we extend the notion to hyperbolic plane curves.
For a null torus framed immersion (or a null torus framed curve) (γ, ν) with the geodesic curvature

(`, α), t0 is a geodesic vertex of γ if

(d/dt)(α/`)(t0) = 0 (or (d/dt)Ω(t0) = 0),

namely, (d/dt)Eγ(t0) = 0. Note that if t0 is a regular point of γ, the definition of the geodesic vertex
coincides with usual geodesic vertex for regular curves.

In 1945, Jackson gave the four-vertex theorem for surfaces of constant curvature [9]. Moreover, in [8]
the authors also declared that four vertices theorem holds for curves in H2

+. As a further and intensive
exploration, we discuss the correlations between the singularites and geodesic vertices for a closed null torus
framed curve. First, we give a result for a closed null torus framed immersion without inflection points.
And then we consider the closed null torus framed curve with inflection points.
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Theorem 4.13. Let (γ, ν) : [0, 2π)→ T4
2 be a closed null torus framed immersion without inflection points.

(1) If γ has at least 2p singular points which degenerate more than 3/2 cusp, then γ has at least 4p geodesic
vertices.

(2) If γ has at least p singular points, then γ has at least p geodesic vextices where p ≥ 2.

Proof. (1) We declare that if t0 is a singular point of γ which degenerate more than 3/2 cusp, then t0 is a
geodesic vertex of the front γ. In fact, because of α(t0) = α̇(t0) = 0, we have (d/dt)(α/`)(t0) = 0.

Let ti be a singular point of γ for each i ∈ {1, . . . , n}. Suppose that at least two of them are degenerate
more than 3/2 cusp. So there is at least one geodesic vertex between the two adjacent singular points.
Because there is no inflection points of γ, the sign of the geodesic curvature of γ on regular part will not
change. Accordingly, either limt→ti κg(t) = ∞ or limt→ti κg(t) = −∞ for all i ∈ {1, . . . , n}. This concludes
there exist t ∈ (ti, ti+1) such that κ̇g(t) = 0 for all i ∈ {1, . . . , n}. Besides, as γ is closed, there exists
t ∈ [0, t1) ∪ (tn, 2π) such that κ̇g(t) = 0. Then, γ has at least four vertices. It is easy to see that if γ has at
least 2p singular points which degenerate more than 3/2 cusp, then γ has at least 4p geodesic vertices.

(2) It can be proved by the same method of (1).

Theorem 4.14. Let (γ, ν) : [0, 2π)→ T4
2 be a closed null torus framed curve. If γ has at least 2p inflection

points, then γ has at least 2p geodesic vertices.

Proof. Let t0 be an inflection point of γ. We have κg(t0) = 0 and the sign of κg(t) changes at the opposite
site of t0. Moreover, since γ is closed, the number of inflection points are even. Suppose that there are two
inflection points t1 and t2. This concludes that there exists a point t ∈ (t1, t2) such that κ̇(t) = 0. Because
of the closed curve, there also exists a point t ∈ [0, t1) ∪ (t2, 2π) such that κ̇(t) = 0. Therefore, γ has 2
vertices. It is obvious that if γ has at least 2n inflection points, then γ has at least 2n vertices.

Then we give an example of a framed curve.

Example 4.15. By Example 3.5, we get the geodesic curvature of the null torus framed curve (γ, ν) as
follows,

α(t) =t

√
4 + 9t2 sinh2(t2),

`(t) =
3(9t4 cosh3(t2)− 9t4 cosh(t2) + 8t2 cosh(t2) + 2 sinh(t2))

9t2 cosh2(t2)− 9t2 + 4
.

We have (α(0), `(0)) = (0, 0), thus, γ is a null torus frontal. Take

Ω(t) =
t
(
3t2 cosh2(t2)− 3t2 + 4/3

)3/2
9t4 cosh3(t2)− 9t4 cosh(t2) + 8t2 cosh(t2) + 2 sinh(t2)

.

Through a direct calculation, α(t) = Ω(t)`(t).
Thus, Eγ(t) = (Eγ1, Eγ1, Eγ3), where

Eγ1 = −cosh(t2)√
1− P

+
tTS1

Q
√

1− P
,

Eγ2 = −sinh(t2) cos(t3)√
1− P

+
tTS2

Q
√

1− P
,

Eγ2 = −sinh(t2) sin(t3)√
1− P

+
tTS3

Q
√

1− P
.

Here,

P =
t2(4 + 9t2 sinh2(t2))T 2

Q2
,
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Q = cosh(t2)(27t4 cosh2(t2)− 27t4 + 24t2) + 6 sinh2(t2),

T = 9t2 cosh2(t2)− 9t2 + 4,

S1 = 3t sinh2(t2),

S2 = 3 sin(t3) + 3t sinh(t2) cosh(t2) cos(t3),

S3 = −2 cos(t3) + 3t sinh(t2) cosh(t2) sin(t3).
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