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1. Introduction

Let Hy and Hs be two real Hilbert spaces equipped with its inner product (-,-) and norm || - ||. Let
S: Hy — Hy and T: Hy — H; be two nonlinear operators. We use Fix(S) and Fix(T") to denote the fixed
point sets of S and T', respectively. Let A: H; — Hs be a bounded linear operator with its adjoint A*. The
two-sets split common fixed point problem requires to seek an element z* € H; satisfying

z* € Fix(T) and Ax* € Fix(9). (1.1)
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We use I" to denote the set of solutions of (|1.1]), that is,
I' = {z*|z* € Fix(T), Az* € Fix(S)}.

Recently, the split common fixed point problem has attracted so much attention due to it is a general-
ization of the split feasibility problem and the convex feasibility problem: Ceng et al. [I]; Censor and Segal
[2]; Chang et al. [3]; Cholamjiak and Shehu [4]; Dong et al. [5]; He and Du [6]; Mainge [7]; Moudafi [8, O];
Tang et al. [I0]; Wang and Xu [I1]; Xu [12, 13]; Yao et al. [I4HIS].

First, we give some definitions related to the involved operators.

Definition 1.1. Let C' be a nonempty closed convex subset of a real Hilbert space H. Let T: C — C be

an operator. T: C' — C is said to be
(i) nonexpansive if | Tz — Ty| < || — y|| for all z,y € C;
(ii) quasi-nonexpansive if ||Tz — z*|| < || — 2*| for all x € C' and z* € Fix(T);
(ili) firmly nonexpansive if | Tz — Ty||*> < ||z — y||* — |(I = T)z — (I — T)y||? for all z,y € C;
)

(iv) directed (or firmly quasi-nonexpansive) if |7z — 2*||?> < ||z — 2*||? — ||Tx — = for all z € C and
x* € Fix(T);

(v) k-demicontractive if | Te —z*||?> < || —2*||>+k| Tz —=x||* where k € [0,1) for all z € C and z* € Fix(T);
(vi) pseudocontractive if (Tx — Ty, z —y) < ||z — y||* for all z,y € C;
(vii) quasi-pseudocontractive if ||Ta — z*||? < ||x — 2*||? + | Tz — x| for all x € C and z* € Fix(T).

Definition 1.2. An operator T : C' — C' is said to be L-Lipschitzian if there exists a constant L > 0 such
that
[Tz — Tyl < Lijz -y

for all z,y € C.
Next we recall some existing results regarding the split common fixed point problem in the literature.

To solve the two-sets split common fixed point problem (1.1]), Censor and Segal [2] constructed the following
iterative algorithm in the finite dimensional Euclid spaces.

Algorithm 1.3.
Initialization: Let o € RY be arbitrary.
Cycle iteration: For n > 1, assume the n-th iteration z, is constructed, then define the (n + 1)-th
iteration 11 via the following recursive form
Tyl =T (zy, + ANA*(S — 1) Azy), n>1, (1.2)
where S and T are directed operators and A € (0,2/v) with v being the spectral radius of the operator A*A.

Subsequently, Censor and Segal [2] proved the following convergence result.

Theorem 1.4. Assume that I —S and I —T are demiclosed at zero. IfT" # 0, then the sequence x, generated
by (1.2) converges to a split common fized point x* € T.

In [8], Moudafi considered a relaxation version of algorithm ((1.2)) for the k-demicontractive operator in
the infinite dimensional Hilbert spaces.

Algorithm 1.5.
Initialization: Let x¢o € H; be arbitrary.
Cycle iteration: For n > 1, assume the n-th iteration x,, is constructed. Set u, = z, + AA*(S —I) Az,
and define the (n + 1)-th iteration z,41 by the following form
Tntr1 = (1 —ap)up + anT(uy), n>1, (1.3)

where a,, € (0,1) and X € (0, %) with + being the spectral radius of the operator A*A.
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Moreover, Moudafi [§ demonstrated the strong convergence of (1.3)) to a general case in which the
involved operators are demicontractive.

Theorem 1.6. Let T: Hy — Hy and S: Hy — Hs be demicontractive operators with constants 5 and L,
respectively. Assume that I — S and I —T are demiclosed at zero. If T # (), then the sequence x,, generated
by (1.3)) converges weakly to a split common fized-point * € T', provided that o, € (6,1 — 3 —6) for a small
enough § > 0.

Subsequently, Yao et al. [16] further extended the above results to a more general class in which the
involved operators are quasi-pseudocontractive operators and they introduced the following iteration.

Algorithm 1.7.

Initialization: Let x¢y € H; be arbitrary.

Cycle iteration: For n > 1, assume the n-th iteration x, is constructed, then define the (n + 1)-th
iteration 41 by the following manner

Up = xpn + 0A™[(1 — Gu) L + G S((1 = nu) I +mpS) — I Az,
Up = anf(xn) + (I — anB)uy, (1.4)
In+l = (1 - /Bn)un + /BnT((l - ’Yn)un + ’YnTun)a n > 1)

where S, T are two quasi-pseudocontractive operators, B is a strong positive linear bounded operator and

f is a contractive operator and ¢ is a constant in (0, i jHQ ).

Remark 1.8. Note that the class of quasi-pseudocontractive operators properly includes the classes of quasi-
nonexpansive operators, directed operators and demicontractive operators, is more desirable for example in
fixed point methods in image recovery where in many cases, it is possible to map the set of images possessing
a certain property to the fixed point set of a nonlinear quasi-nonexpansive operator.

The purpose of this paper is to give a unified framework for the two-sets split common fixed point problem.
We will extend the above results to the class of uniformly Lipschitzian asymptotically pseudocontractive
operators. We construct an iterative algorithm based on the algorithm ([1.4) and demonstrate its strong
convergence.

2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H.

Definition 2.1. An operator T: C — C is said to be uniformly L-Lipschitzian if there exists a constant
L > 0 such that
[T"% = T"y|| < Li|lz — y||

for all x,y € C and for all n > 1.

Definition 2.2. An operator T': C' — C is called asymptotically pseudocontractive if there exists a sequence
{kn} C [1,00) with lim,,_, k, = 1 such that

(T"z =T,z —y) < knllx —yl|? (2.1)
for all z,y € C and for all n > 1.
Remark 2.3. Tt is easy to check that is equal to
T = T < (2ha = 1)lle =yl + o = T"2) - (y = T"%) (22)

for all x,y € C and for all n > 1.
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Definition 2.4. An operator T is said to be demiclosed if, for any sequence x,, which weakly converges to
Z, and if the sequence T'(z,) strongly converges to z, then T(Z) = z.

In any Hilbert space, the following conclusions hold:

lt + (1 = t)yl|* = tllall* + (1 = O)llyll* -t = H)ll= — yll*, ¢ € [0,1], (2.3)
lz +yl* = ll2l® + 2(z, y) + lyll?,
and
lz +ylI* < 2] + 2{y, z + v) (2.5)
for all xz,y € H.
Lemma 2.5 ([19]). Let C be a nonempty bounded and closed convex subset of a real Hilbert space H. Let

T: C — C be a uniformly L-Lipschitzian and asymptotically pseudocontraction. Then I — T is demiclosed
at zero.

Lemma 2.6 ([12]). Let {¢,} C [0,00), {sn} C (0,1) and {on} be three sequences such that

Cit1 < (1 —6)G +0n Yn > 1

Assume the following restrictions are satisfied

(i) Doty sn = 00
(i) limsup, o 2 <0 or 3372, |on| < 0.
Then limy, o0 G, = 0.

Lemma 2.7 ([18]). Let {w,} be a sequence of real numbers. Assume {w,} does not decrease at infinity,
that is, there exists at least a subsequence {wy, } of {wy} such that wy,, < wp,+1 for all k> 0. For every
n > Ny, define an integer sequence {T(n)} as

7(n) =max{i <n:wy, < Wp,4+1}-
Then T(n) — oo as n — oo and for all n > Ny

max{wy(n), Wn} < Wr(n)41-

3. Main results

Let Hy and Hs be two real Hilbert spaces. Let S: Ho — Hy be a uniformly Li-Lipschitzian asymp-
totically pseudocontractive operator with coefficient kg) and T: Hy — Hi be a uniformly Lo-Lipschitzian
asymptotically pseudocontractive operator with coefficient k:g). Let f: Hi — H; be a p-contraction. Let
A: Hy — H; be a bounded linear operator with its adjoint A* and B: H; — H; be a strong positive linear
bounded operator with coefficient & > 2p.

Our object is to solve the two-sets split common fixed point problem . First, we present the following
algorithm.

Algorithm 3.1.

Initialization: Let x¢y € H; be arbitrary.

Cycle iteration: For n > 1, assume the n-th iteration x, is constructed, then define the (n + 1)-th
iteration x4 via the following iterative scheme

([ Y= (1= Gu) T + GuS™ (1 = ) I + 1, S™)] Ay,
U = Tp + 0A™ (yn — Azy),
Up = anf(xn) + (I — anB)vy, (3.1)
Zn = (1 = ) un + T  tn,
Tnr1 = (1 = Bp)un + BT zp,n > 1,
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where {a}, {Bn} , {7}, {¢n}, and {n,} are five real number sequences in (0,1) and § is a constant in
(0, a2)-
Proposition 3.2. Let H be a real Hilbert space. LetT: H — H be a uniformly L-Lipschitzian asymptotically
pseudocontractive operator with coefficient k. If0 < <n < m for alln > 1, then

11 = Q)+ CT™(1 = )T + 5T — 212 < [1+ 20k — 1)C + 20k — 1) 2k — DirCllle — 212
for all x € H and z' € Fix(T).
Proof. Since z! € Fix(T), we have from that

IT™((1 = )] + 7Tz — ¥|* < 2k, = D (1 = n)(z — 2T) + n(T"z — 27)|?

) (3.2)
+ (A =)z +nT"z = T"((1 = n)z +nT"z)|",
and
1Tz — 2> < 2k = Dz = 2'|]* + | Tz — z||? (3-3)
for all z € H.
Since T is uniformly L-Lipschitzian and z — ((1 —n)x + nT"x) = n(z — T"x), we derive
[T"z = T™((1 = n)x + nT"z)|| < nLljz — T z|. (3-4)
From (2.3) and ({3.3]), we have
(1 =n)(x = 2) + (T —2h)|? = @ = n)]le = ¥* + 9| Tz — 27| —n(1 - n)llz — T"=|?
< (1 =n)lle —2* +n((2k, — D|lz — 27> + | T2 — =[|*) (3.5)

= (1 =) - T"z|?
= [1+2(kn — Dnlllz — 2" + || Tz — 2>,

In view of (2.2)) and (3.4)), we get
I(1 = n)z +nT"x = T"((1 — n)z + nT")|?
= (1 =n)(@ = T"((1 =) +nT™)z) + (T — T*((1 — )T +nT")z)|
= (L=n)llz = T"((1 = I +0T™)z|* + || T"z = T"((1 = n)I +nT")z||? (3.6)
— (1 —n)llz — T"=|*
< (=)l —=T"((1 =) +nT™)z|> = n(1 —n—n*L?)||z — T"z|*.
By (3.2)), , and (3.6), we obtain
IT"((1 =) +nT™)z — 2T |* < (2kp — D[+ 2(ky — D]z — 2T[]* + (2kn — Di|Jz — Tz

+ (1 =n)llz —T"((1 — n)z +nT"z)|?
—n(1—n—n*L?) |z — T"z|?

3.7
= (2kn — D[1+2(ky — ]|z — 2T|? 7
+ (L =n)lla =T = I +nT")z|?
— (1 = 2knn — " L?) |z — T ||*.
Since n < m, we deduce that 1 — 2k,n — n*>L? > 0. According to (3.7), we get
IT7((1 =)+ T TP < 2k = DL+ 20k = Ve — o) .

+ (L =n)lla = T™((L =)z +nT )|
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for all z € H and 2! € Fix(T).
Combine and to get
11 = QO+ ¢T™((1 = m)a +T"x) = 2'[* = |[(1 = )@ — =) + C(T"((1 = n)a + 9T 2) — 2)|?
= (1= Qlle = 2> + ¢ T"((1 = ) + nT"z) — «T|?
— (1= OIT™((L = mz +nT"z) — z|?
< C(2kn = DL+ 2(kn — Dl — 27| + (1 = Ol - 27|
+ (L =)z = T"((L = n)z +yT"z)|
— A= OIT™(( =)z +9T"x) -z
= [1+2(kn — )¢ + 2(kn — 1) (2ky, — V(]| — 2T||?
+ (¢ = T((1 = n)z +nTa) — x|
This together with ( < n implies that
(1= Oz +CT™(1 =)o+ ") = o2 < [1 4 20k = 1)C + 20k — 1@k — Vd] 2~ al[%. (3.9
This completes the proof. O

Theorem 3.3. Suppose the following conditions are satisfied:

(C1) : limp o0 0 =0 and Y07 | ay = 00;

(C2): 0<a1 <Bn<ci <y <b < 1

VIED 2+ L3k ;
: I D
(C3): 0<ar<(n<ca<n<by< N
(1) )
(C4) : 20 (kY — 1) < 400, 202 (k) — 1) < 400 and limp o0 =2 = limy, o =2 = 0

Then the sequence {x,} generated by algorithm converges strongly to x* = Pr(f +1 — B)z*
Proof. First, note that * = Pp(f + I — B)z* is unique. Since Az* € Fix(S), from (3.9), we get
lyn — Az*||* = [[[(1 = )T + GaS™ (1 = 0) T + 0 S™)] Azn — Az™|?
= [[[(T = )T + GuS™ (1 = 1) + 0 S™)| Ay
—[(1- Cn)f + 8™ (1 = 1) I+ 1aS™)] Az
<L+ 20k = 1)G + 260 — 1) (26D — D)npa] Az — Az |2

(3.10)

By the condition (C4), without loss of generality, we may assume that sup,, k:( ) < 2 and sup,, k:( ) < 2 for
all n > 1.

Applying (3.8), we deduce
T2 = 2| = | T™((1 = yn)un + 3T un) — ||
< (2K = D1+ 26D — D] llun — 2% + (1= 7o) lun — T2 1%,
This together with (2.3]) and (3.9) imply that
|n1 = (1P = [[(1 = Bu)un + BT 20 — ||
= (1= B)llun — x*HQ + Bnl| T2, — x*”Q = Bn(1 = Bp)llun — Tnan2

< {1 + 2(]4:,(12) — 1)571[1 + (21{3;2) - 1)771]}”“71 - x*HQ - ﬁn('Yn - /Bn)Hun - Tnzn||2 (3.11)

< {1 (kD — 1)Ba[1 + (2KD — 1>m}uun |

< L+ 8k = Dun — 2.
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From (3.1)), we have
[un — 2™ = llan(f(zn) — Bx®) + (I — anB)(vn — 27|
< anllF(@n) — Ba®l| + T — 0n B —a°| o)
< anl[f(@n) — f(@)] + anl f(z) — Bz™[| + (1 — anf)[lvn — 27|
< anpllzn — 27| + ol f(27) — Ba™|| + (1 — and)|lvn — 27||.
Utilizing equality , we get
Jon = 2| = o — & + 34" (g — AP 1o
= llzn — 2*|1? + 8| A (yn — Awp)|? + 26(2n — 2%, A*(yn — An)). '
Using the fact that A is a linear operator with its adjoint A*, we have
(X — 2", A% (yn — Azy)) = (A(xy, — %), yn — Axy)
= (Azp — Yn, Yn — Axpn) + (Yyn — Az™, Yy — Axy) (3.14)
= (Yn — A", yn — Azn) — [lyn — Al‘nHQ-
Apply (2.4) to obtain
* 1 * *
(yn — Az™, yp — Azy) = i(Hyn — AP + lyn — Az, |? - | Az, — Az*|?). (3.15)
From (3.10), (3.14)), and (3.15]), we get
_*A* — A :1 _A*Z — A Z_A_A*Q_ — A 2
1
< {4 200 6+ 2060~ DEED = DAz, — Ax'IP
(3.16)
N el e e
1
=5 llyn - Azn|? + (k) = 1)Ga[1 + (2K = 1)) || Az, — A%,
By (3.13)) and (3.16|), we derive
lon = 2*(|* = ||z — 2% + A (yp — Awn)||?
< O AIPllyn — Azl + lzn — 2> = 6llyn — Aza
+ 20[(kSY = 1)Ga + (k) = DKL = D]l Az — Az (3.17)
<l — 2|1 + (P AP = 0)llyn — Azl '
+ 2 AP (k) = 1)Gal1 + (25 = Dmp]llzn — 2712
< [1+8(ky) = D)]||zn — 2*||*.
It follows that
lon = 27| = [[en — 2% + 64 (yn — Azp)|| < [1+ 4k = D]lzn — 27| (3.18)
Substituting (3.18]) into (3.12)) to deduce
lun — 3711 < cnpllzn — 2*l| + anll fa) ~ Ball + (1= an)lon —°|
< ag f(@*) = Ba*| + [1 = (£ = pan]l|lzn — a*| + 4k = 1)@, — 27| (3.19)

< [0 4D = D] max { - o7, L=,
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From and -, we get

lznr1 = a*|| < [+ 4(kP = D]llun — 27|

< [1+4(kD = D][1+ 4k — 1)) max { lzn — |, W—Bf”*”}

E—p
n n B .
<TI0+ = 0TI+ 4k )]max{”xo— I, M}
i=1 i=1 §—p
This implies that the sequence {z,} is bounded by the conditions
SED 1) <00, S (P -1) <
n=1 n=1

Next, we consider two possible cases:

Case 1: there exists ng such that the sequence {||z, — 2*||}n>n, is decreasing.

Case 2: for any ng, there exists integer m > ng such that ||z, — z*| < ||zme1 — ¥

More precisely, regarding the situation when {||z,, —2*||} is monotonous at infinity (Case 1) and bounded
(hence convergent), we prove that its only possible limit is zero.

In Case 1, we assume there exists an integer ng > 0 such that {||x,, — 2*||} is decreasing for all n > ny.

In this case, we know that lim,, o ||z, — 2*|| exists. From (3.11)), (3.12)), and (3.17)), we have
|1 = 27 < Jlun — @*|* + 8(kD = Dlju — ||
< lanpllen — 2| + anllf (") = Ba*[| + (1 = ané)lon — 2> + 8(kP — 1) un — 2™
= o (pllzn — 2| + [ f(@") = Ba™[))* + 20 (1 — cné)(pllzn — 27|
+[1f (&%) = Ba*[|) x lon — 2™ || + (1 = ) lon — 2> + 8k = )lfuy — 2"
< M(an + kP = 1) + (1 = and)||vn — %2 (3.20)
< My + kP = 1) +8(1 = an€) (k) = Dllzn — 2" + (1 = ané) an — 2|
+ (1= an) (B[ AlI* = &) llyn — Aznl?
< (1= )OI Al7 = 8)lyn — Azall® + lwn — 2*|* + M(cn + k) =1+ &) — 1)
< M(on + kD =1+ kD — 1) + |2 — 27|,

where M > 0 is a constant such that
sup {(p\lfvn — 2| + 1 f(*) = Ba*|)Bl|lwn — || + (| f (&) — Ba™[|) + 10]Jazn, — 2*||* + 16]|un — fv*\|2} <M.
Hence,
(1= an) (6 — I AI) g — Az 2 < llzn — 2117 = llonss — *2 + M(an + KD — 1+ K2 — 1),
Since limy, oo ||2n — 2*|| exists, a, — 0, k() = 1, and k®) — 1, we deduce
lim |y — Az || = 0. (3.21)

Therefore,
li_}rn HA-Tn - Sn((l - nn)l + TlnS")Aan =0.

Observe that

Az, — S™ Azy || < [[Azn — S™((1 = m0) L + 00 S™) Az || + 15" ((1 = )L + 10 S™) Az, — S™ Ay |
< Az = S™((1 =)L+ 00S"™) An|| + Ling||Azn — 5" Az, |-
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It follows that ]
| Az, — S™ Az, || < 1_7\|A:1;n — S™"((1 = nu)I + npS™) Az, ||.
Thus,
lim ||Az, — S"Az,|| = 0. (3.22)
n—oo

Note that
[tun — 2n|l = 64" (yn — Azpn) + an(Brn + 0BA™ (yn — Azpn) — f(2,))]|
< 6||Alllyn — Azn|| + anl| Bryn + 6 BA™ (Y — Axy) — f(2n)]|-

This together with (3.21)) implies that

nh_)m |xn — unl| = 0. (3.23)
Combining (3.11]) with (| -, we get
lnsr — 2| < {1 L2k — 181 + (242 — 1>m}uun 2 = Bl — B 1t — T zn?

< {1 122 181+ (26— 1)y 1}[”% o2
+ M(an + kle) - 1)] - ﬁn(')’n - Bn)”un - Tnzn||2
< {1+2<k,&>1>+2%< 2P 1) (k2 >}||:cnx*u2
+ {1 +2(kE) — 1)Ba[1 + (26 — 1>vn]}M(an + k5D = 1) = Buln — Ba) lun — T2 .
It follows that

B = Bollin = T < {14 2662 = 1)+ 23,242 = DR = 1) Hl = "I = i = "I

{1 22 - D31+ U = 1 PG4 1D - 1),

So,
lim |lu, —T"z,| = 0. (3.24)

n—oo

Since xp41 — Up = Pn(T"2n — uyp), we get

T [la41 = ] = 0.

It follows from (3.23)) that
lim ||upt1 — upl| =0, (3.25)
n—oo

and
lim [|zp41 — 2| = 0. (3.26)
n—oo

Observe that
1w — T™up || < JJup — T 20| + | T" 20 — T"un]| < [Jun —T" 20| + Lovn|ltn — T™uy .

Thus,

This together with (3.24)) implies that

lim [Ju, — T"uy| = 0. (3.27)
n—oo
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Since T is uniformly Le-Lipschitzian, we can derive

|tni1 — Tungt| < |Jtungr — T”+1un+1H + ”Tm_lun—i-l - Tn+lun|| + HTn-Hun — Tup 1|
< ungr = T unga || + Lallungt — unll + Lol T un — wnia | (3.28)

< g1 — T"+1un+1H + 2La|[unt1 — unl| + Lol| T"un — up |-

By (3.25)), (3.27)), and (3.28)), we have immediately that

lim ||up — Tuy,| = 0.
n—oo
From and (| , we have
lim |v, —z,| = 0.
n—oo

Since S is uniformly Li-Lipschitzian, we can derive
| Az 41 = SAzpi1 || < [|Azpir — 8™ Az || + (15" Ay — S Ay |
+||S" Az, — SAz, 4|
< ||Azpi1 — 8" Az || + Li|| Az — Azl + Ly || S™ Ay, — Az | (3.29)
<N Azpyy — S" M Az || + 204 || A2y — Az || + L1]|S™ Az, — Ay ||
< |Azni1 — S" Az || + 2L1 | Alll@ns1 — @all + L1 ]| S™ Azy — Az

By §22). (B20). and (F20). we et

lim [[Azp41 — SAzp41|| = 0.

n—o0

Next, we show that limsup,,_,..(f(z*) — Bz*, u,, — 2*) < 0. Choose a subsequence {uy, } of {u,} such that

limsup(f(z*) — Bz*,u,, — 2*) = lim (f(z*) — Bz, u,, — x*).

n—00 1—00
Since the sequence {u,,} is bounded, we can choose a subsequence {Un, } of {up,} such that Un; — z. For
the sake of convenience, we assume (without loss of generality) that u,, — z. And, hence Au,, — Az. Then,
apply Lemma to deduce Az € Fix(S) and z € Fix(T). That is to say, z € I.
Therefore,
limsup(f(z*) — Bx*,u, — 2*) = lim (f(z*) — Bz, up, — z*)
n—00 1—00
= lim (f(z*) — Bx™,z — x™) (3.30)
1— 00
<0.

Applying inequality (2.5)), we have

I(Z = cnB)(vn — 2%) + an(f(wn) — Bx™)|”
(1 — ané)|lvn — 2*||* + 200 (f(x) — Bx*, up — x*)
< (1= )1+ 8k = Dlan — 2*|* + 20 (f () — Bz*,up — z*)
= (1= an&)[L+ 8k = Dllzn — 2*|1* + 200 (f () — f(2"), up — z*)
+ 20, (f(x*) — Bx™, u, — x*)
< (1= anf)[L+ 8k = D]lzn — 2™ + 2anpllen — 2*|[|up — 27|
+ 20, (f(z") — Bx™, up, — x¥)
< (1= &)L+ 8k = D]en — 2*|° + anpllzn — 27| + anpllun — 2"
+ 20, (f(2") — Bz™, u, — x*).

lun — 2|2

IN
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It follows that

(1)
— 2p)ay, . 8(1 — ay n — 1
1 —app 1 —app

200 £(2%) — Ba® up — 7).

= ™| < 1~ e — 2|2

+1_anp

Therefore,

lzner = 27 < Jlun — @** + 8(kD = 1)luy — 2*||?

(f—Qp)Odn %112 20, * * *
<[1--—=———]|lzn— — Bz™, up —
<[ " Nxn — ¥ —i—l_anp(f(x) Uy — x*)
1— and) (kY -1
4 B Z OO =D 2 8D — 1) — 2°| (33
I —anpp
—2p)ay, 2ay,
< 1= 20 o, oy () - B )

+ MED —14+E2 —1).

Applying Lemma and (3.30) to (3.31), we deduce x,, — z*.

In Case 2 above, we know that, for any integer ng, there exists another integer p > ng such that
|lzp — *|| < ||lzpr1 —2*||. Let ng be such that ||x,, — 2| < ||Tne+1 — 2*||. Set wyp = {||zn — 2*||}. Then, we
have

Wno < Wngt1-

Define an integer sequence {7,} for all n > ng as follows:
7(n) =max{l € Njng <1 <n,w; <wji1}.
It is clear that 7(n) is a non-decreasing sequence satisfying

g, Tim) = o0

and
Wr(n) S Wr(n)+1

for all n > ng.
By the similar argument as that of Case 1, we can obtain

lim HSAa:T(n) - AxT(n)H =0

n—oo
and
nh_)nolo Huﬂ'(n) - TU’T(TL) H =0.
This implies that
Wi (Ur(n)) CT.
Thus, we obtain
limsup(f(z*) — Bz™, ur(,) —2*) < 0. (3.32)
n—oo

Since wr () < Wr(n)+1, We have from (3.31)) that

W2y S Wyt
(5 - 2P)Oé7—(n) ]wg + 20‘7(71)
1- Qr(n)P (") 1- Qr(n)P

@ (3.33)

* * * 1
- (f(@") = Ba" ur(n) — >+M<k£(il)—1+k7(n)_1>'
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It follows that

(1) ©)
2 Mk -1 k -1
2 < *\ _ Bx* o 7(n) 7(n) . 34
wT(n) = 5 — 2p<f(m ) L Ur(n) — T >+ 5 — 2p( Q) + Q) ) (3 3 )
Combining (3.32)) with (3.34]), we have
limsup w; () <0,
n—oo
and hence
nl;rréo Wr(n) = 0. (3.35)
From ([3.33)), we deduce
lizr;sip Wz(n)-s—l < hgfip wz(n).
This together with (3.35)) implies that
B, Wr(+1 = 0
Apply Lemma [2.7) to get
0 < wy < max{wy(n), Wr(n)41J-
Therefore, wy, — 0. That is, x,, — =*. This completes the proof. O
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