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1. Introduction and Preliminaries

The basic unit of analysis in order theory is the binary relation. It is well known that a relation R on
a set X is a subset of X x X. We denote (x,y) € R by zRy. An "order” on a set X is a relation on X
satisfying some additional conditions. Order relations are usually denoted by <.

Definition 1.1 ([6]). A relation < on a set X is called a partial order if < is transitive, reflexive and
antisymmetric; the pair (X, <) is called a partially ordered set or poset. In addition, a relation < on a set
X is called a linear order if any two elements in X are comparable, that is,

for each z,y € X, either x <y or y < . (1.1)
The pair (X, <) is called a linearly ordered set or chain.

In [I], Banach proved a very important result in nonlinear analysis, the contraction mapping principle.
In [I4], Ran and Reurings established an analogue of Banach’s fixed point theorem in partially ordered sets
and discussed several applications to linear and nonlinear matrix equations. Later on, Nieto and Lépez [13]
extended some of their results to study a problem regarding ordinary differential equations.
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Definition 1.2 ([I3]). Let (X, <) be a poset and A be a subset of X.

(i) If for all a € A there exists an x € X such that a < z, then x is called an upper bound for the set A.
If x € X is the smallest upper bound, then z is called the least upper bound (sup) of the set A.

(i) If for all @ € A there exists an z € X such that z < a, then z is called a lower bound for the set A. If
x € X is the greatest lower bound, then z is called the largest lower bound (inf) of the set A.

(iii) A mapping f: X — X is called monotone nondecreasing if
vyeX,e 2y = fr=xfy

Definition 1.3 ([2]). Let (X, =) be a partially ordered set. (X, <) is said to be directed if every pair of
elements has an upper bound, that is, for every a,b € X, there exists ¢ € X such that a < cand b < c.

Theorem 1.4 ([14]). Let (X, =) be a partially ordered set endowed with a metric d and (X,d) be a complete
metric space, such that every pair x,y € X has a lower bound and an upper bound. If f : X — X is a
continuous, monotone (i.e., either order-preserving or order-reversing) map from X into X such that

d0<c<l:d(fa, fy) <cd(z,y),z>y (1.2)

and
Jxg € X : 29 < fxg or x9 > fxo,

then f has a unique fized point T € X. Moreover, for every x € X, lim f"z =T7.
n—oo

In [13], Nieto and Lépez showed that the continuity condition for the mapping f can be replaced with
the requirement that if any nondecreasing sequence {x,} in X converges to z, then x,, < z for all n > 0.
Also, to guarantee the uniqueness of the fixed point, they gave an alternative condition to the requirement
that every pair x,y € X have a lower bound and an upper bound, namely that for every z,y € X there
should exist z € X which is comparable to = and y.

In [5], Ciri¢ et al. introduced the concept of g-monotone mapping and proved some fixed point and
common fixed point theorems for g- nondecreasing generalized nonlinear contractions in complete partially
ordered metric spaces. Based on this concept, Choudhury and Kundu [4] considered (¢, , 5)-weak contrac-
tions, proving coincidence point and common fixed point results in posets. Cherichi and Samet [2] presented
new coincidence and fixed point theorems in the setting of complete ordered gauge spaces (X, F, =) for
generalized weak contractions involving two families of functions (see also [10, 12}, 16]).

In this work, we investigate generalized weak (¢, o, ) contractions in posets in order to establish ana-
logues of the Banach, Kannan [9] and Chatterjea [3] fixed point theorems in this setting.

2. Main Results
For simplicity, we will make the following notations:

e U is the set of functions 1 : [0, 00) — [0, 00) satisfying the properties:
(11) 1 is continuous and monotone nondecreasing;
(12) ¢ (t) =0 if and only if t = 0.
e & is the set of functions « : [0, 00) — [0, 00) satisfying:
(1) « is continuous;
(a2) a(t) =0 if and only if ¢t = 0.
e I'; is the set of functions 3 : [0, 00) — [0, 00) satisfying:

(B1) B is lower semi-continuous;
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(B2) B (t) =0 if and only if t = 0.

e I’y is the set of functions 3 : [0, oo)2 — [0, 00) satisfying:

(B]) B is continuous;
(B5) B is monotone increasing in both arguments;
(/B:I%) B (07 0) =0and 3 (6, 0) = 0 implies € = 0.

Definition 2.1 ([I1,[15]). Let (X, d) be a metric space. A mapping 7" : X — X is said to be subsequentially
convergent if every sequence {y,} with the property that {T'y,} is convergent has a convergent subsequence.

We will denote by Sb—COP (X) the set of all mappings 7' : X — X which are subsequentially convergent,
continuous, one to one and preserve the order.

Theorem 2.2. Let (X, <) be a partially ordered set endowed with a metric d such that (X, d) is a complete
metric space. Let T € Sb— COP (X) and f : X — X be a monotone nondecreasing mapping with the
property that, for all x,y € X with x <y,

P(d(Tfz,Tfy)) < a(d(Tz,Ty)) - B(d(Tz, Ty)) (2.1)
where Y € ¥, o € ®, B € I'1 are such that
V() Sa(te) =t <t (2.2)
and
Y (t)—a(t)+B(t) >0, Vt>0. (2.3)

Also, suppose that either

(C1) f is continuous, or

(C2) if any nondecreasing sequence {xy,} in X converges to z, then x,, < z for alln > 0.

If there exists xg € X with xo = fxo, then f has a fixed point in X. Moreover, if for all (z,y) € X x X
there exists z € X such that x < z and y < z (i.e. (X, =) is directed), then the fixed point is unique.

Proof. Let xg € X be an arbitrary point and =, = fz,_1 = f"xo,n =1,2,3,.... As f is nondecreasing with
x0 = frg and T € Sb— COP (X), we have

Twg = Tfrg = Tf2v0 < Tf3z9 < I Tf zo < - (2.4)

that is, Tz, < Txpy1 for all n. The rest of the proof consists of four steps.
Step 1. We will show that lim d(T'zy1,Tx,) = 0.
n—oo

For convenience, let Dy, := d (Txy, Twp41) for all n > 0. From (2.1]) we get

¢ (Dny1) = ¢ (d(Tzny1, Teny2)) < (D) = 5(Dn) < a(Dn). (2.5)

Using the condition (2.2)), we obtain that {D,} is a monotone decreasing sequence of non-negative real
numbers and consequently, there exists > 0 such that lim D,, = r. Letting n — oo in ([2.5)), we get

Y (r)<a(r)—p(r) asn — oco.

By hypothesis (2.3)), this implies that lim D,, = 0.
n—oo
Step 2. We show that {T'z,} is a Cauchy sequence.

We proceed by contradiction. Suppose that {T'z,} is not a Cauchy sequence. Then there exists € > 0
for which we can find subsequences {1k} and {Tw,} of {Tx,} with n (k) > m (k) > k such that

d (Txm(k), Tl'n(k)) > €. (2.6)
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Furthermore, we can choose n (k) to be the smallest integer with n (k) > m (k), for all k. As a consequence,
d (Ta:m(k),Txn(k,),l) <e.
From we have
e < d(Txmp), Trnm) < d (T, Tny-1) + d (T2, T -1) (2.7)
whence, by letting k — 0o, we obtain

klg{)lod (T:Em(k), Tmn(k)) =E¢.
Also,
d (T (), Tnr)—1) < d (TZpp), Tnry) + d (T2, Tnry—1) (2.8)

implying for k — oo that
kli{r()lod (Tmm(k),Ta:n(k)_l) =¢.

Moreover, by letting k — oo in the inequality
d (T ppy—1, Tonry) < d(Tm)—1, TTmpy) + d (T2, TTn)) » (2.9)

we obtain
lim d (T.Z'm(k)_l, Ta:n(k)) =c.

k—o0

Finally, from
d (Tzpy—1, Tonry—1) < d (TTpp)—1, TZm)) + d (TTpp), TEny—1) (2.10)

we get
lim d (T:[:m(k),l, Txn(k),l) =¢&.

k—o00

From , we have
¢ (6) < ¢ (d (Txm(k)aTxn(k))) <« (d (T'rm(k)—lv Txn(k)—l)) - 5 (d (Txm(k)—lv Txn(k)—l)) (211)

whence by letting £k — co we get
P(e) <afle) —f(e). (2.12)

This inequality together with hypothesis (2.3) imply that ¢ = 0, contradicting our initial assumption.
Therefore we conclude that {Tz,} is a Cauchy sequence.
Step 3. We prove that there exists an element p € X such that li_>m xn = p and p is a fixed point of f.
n—,oo

Indeed, as {Tx,} is a Cauchy sequence in the complete metric space (X, d), there exists v € X such
that lim Tz, = v. Since T' € Sb— COP (X), {z,} has a convergent subsequence {a:n(k)} and there exists

n—oo

p € X such that

lim x = p.
k—o0 n(k) p

Also, T' is continuous and ;) — p, therefore Tz, — Tp as k — oco. Since T" preserves the order, that
is, Txyyy = T'p, we have
klirgod (Txn(k), Tp) = 0.

We show that p € X is a fixed point of f. We have two cases.
Case 1: If (C1) holds, then from the continuity of f we have

Tp= limT = lim T = Tfp.
p = lim Ty = lim JTn)—1 Ip
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Using the fapt that 7' is one to one, we obtain fp = p, i.e. p € X is a fixed point of f.
Case 2: Assume (C2) holds. Since {Tmn(k)} converges to T'p € X, for all € > 0 there exists N1 € N such
that for all n (k) > Ny we have

d (T, Tp) < =.

2
Also, as {Ta;n(k)} converges to T'p, from (C2) we get T'r,,) < Tp and we have
" (d (Tf"“f)“x,Tfp)) <a (d (Tf"(k)x,Tp)) _ 8 <d (Tf“(k)x,Tp)) . (2.13)
Letting k£ — oo in , we get
¢ (d(Tp,Tfp)) <a(0)—p5(0). (2.14)

The inequality implies that Tp = T fp. As T is one to one, it follows that p € X is a fixed point of f.
Step 4. Finally, we show that, if for all x,y € X there exists z € X such that z < z and y < z, then
the fixed point is unique.
For this, let p’ € X be another fixed point of f. By , there exists an element z in X such that z is
comparable to p and p’. The monotonicity of f implies that fz is comparable to p = fp and p' = fp’. As
T € Sb— COP (X), Tfzis comparable to Tp and Tp'. Also, as ¢ € ¥, we have

¥ (d(Tp,Tp')) <o (d(Tfp, Tfp')) < a(d(Tp,Tp)) —B(d(Tp,TV')).
From the condition , we get
d (Tp, Tp') = 0.
Since T is one to one it follows that p = p’. This completes the proof. O

Corollary 2.3 ([§]). Let (X, <) be a partially ordered set endowed with a metric d and (X, d) be a complete
metric space. Let f: X — X be monotone nondecreasing. Suppose that, for all xz,y € X with x <y,

P (d(fz, fy)) <¢(d(z,y) — o (d(z,y)),

where 1 and ¢ are altering distance functions. Also, suppose that either (C1) or (C2) holds. If there exists
xo € X with xy = fxg, then f has a fived point in X. Moreover, if (X, =) is directed, then the fized point
18 unique.
Corollary 2.4 ([7]). Let (X, =) be a partially ordered set endowed with a metric d and (X,d) be a complete
metric space. Let f : X — X be a monotone nondecreasing mapping. Suppose that for all z,y € X with
T2y,

d(fz, fy) < B(d(z,y))d(z,y),
where B :[0,00) = [0,1) and B (t,) — 1 implies t, — 0. Also, suppose that either condition (C1) or (C2)
holds. If there exists xo € X with xo X fxo, then f has a fixved point in X. Moreover, if (X, <) is directed,
then the fized point is unique.

Example 2.5. Let X = [1,00) X [1,00) and consider the usual order given by (a,b) < (¢,d) if and only if
a < cand b <d. Then (X, =) is a partially ordered set. Let X be endowed with the Euclidean distance. We
define a mapping f : X — X by f(x,y) = (4\3/:5,4{3/@). It is clear that f does not satisfy the contractive

condition (|1.2]).
Now we define T : X — X by T (z,y) = (Inex,Iney), and set ¢ (t) =t, a(t) = £, B(t) = 0. Then we
have

P (d(Tf(a,b),Tf(c,d))) = d(Tf(a,0),Tf(c,d))

- :1))\/<1n %)2 n (m 2)2 (2.15)

_ édma,b),ﬂc,d))-
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According to Theorem[2.2] f has a fixed point. Indeed, (8,8) € X is a fixed point of f. As X is directed,
this fixed point is unique.

Theorem 2.6. Let (X, =) be a partially ordered set endowed with a metric d and (X,d) be a complete
metric space. Let T € Sb— COP (X) and f: X — X be a monotone nondecreasing mapping satisfying the
nequality

V@I LaT) < o (J 8T + A0 TI) ) - 6d(T0Tfa) ATy TH) (210
for all x,y € X with x <y, where v € ¥, a € ®, B € I'y are such that
vt <a(t) =t <h, (2.17)
and for all t > 0,

W) —a(t)+B(t) > 0. (2.18)

Also, suppose that either

(C1) f is continuous, or

(C2) if any nondecreasing sequence {x,} in X converges to z, then x, < z for all n > 0.

If there exists xy € X with xg = fxg, then f has a fixed point in X. Moreover, if (X, =) is directed,
then the fixed point is unique.

Proof. Let xg € X be an arbitrary point such that x, = fr,—1 = f"zg, n =1,2,3,.... As f is nondecreasing
with xg < fzg and T € Sb— COP (X), we have

Twg = Tfrg = Tf?v0 < Tf3z0 < < Tf 20 < -+,

that is, Tz, =< Txpy1 for all n. The proof consists of four steps.
Step 1. We show that li_>rn d(Tzps1, Txy) = 0.
n [o.¢]

For convenience, we denote Dy 1 := d (Txp11, Txpio) for all n > 0. From (2.16]) we obtain

6 (Duin) =6 (@(T fan Tni) < @ (§ (D4 D)) = (D Do) < (5 D0+ D)) 219)

By (2.17), we have D,,+1 < D,, for all n, that is, {D,,} is a monotone decreasing sequence of non-negative
real numbers. Thus there exists » > 0 such that lim D, =r. By (2.19), ¢ (r) < a(r) — B (r,7) as n — oo.
n—o0

Taking into account the hypothesis (2.18)), it follows that lim D,, = 0.
n—oo

Step 2. We prove that {Tx,} is a Cauchy sequence in X.
If we suppose the contrary, then there exists € > 0 for which we can find subsequences {T xm(k)} and
{Tx,} of {Tx,} with n (k) > m (k) > k such that

d (T:L‘m(k), T:En(k)) > €.
From , we have
V() S U (d (Txmpy, Trnw))) =¥ (d (TfTmuy—1. T fTni)-1))

1
o (2 (Dm(k)—l + Dn(k)—1)> - ﬂ (Dm(k)—lv Dn(k;)—l) ) (220)

IN

whence by letting k& — oo we obtain
¥ (e) <a(0)—5(0,0).

Due to the hypothesis (2.18)), the inequality (2.20])) implies that ¢ = 0, a contradiction. Therefore we conclude
that {T'z,} is Cauchy sequence.
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Step 3. By proceeding similarly as in Step 3 of the proof of Theorem we obtain that there exists
p € X such that {Tz,} converges to Tp € X.

Next, we will show that p is a fixed point of f. We have two cases.

Case 1: If (C1) holds, from the continuity of f, we have

Tp= lim Txp,p) = lim T =T
P = fin Tongy = i T foug1 =TI

and since T' is one to one it follows that p € X is a fixed point of f.
Case 2: Suppose (C2) holds. Since {Txn(k)} converges to Tp € X, for all € > 0 there exists N1 € N
such that for all n (k) > N; we have

€
d (T:L‘n(k),Tu) < 3

As {Tl’n(k)} converges to T'p, from (C2) we obtain T, < Tp and we have

Y (d (Txny+1, Tfp)) < <; (Dpry +d (Tp,Tfp))> — B (Dyy, d(Tp, T fp)) - (2.21)

Letting £ — oo in the above relation, we have

¥(d(Tp.Tfp) < a (id (Tp. Tfp)) ~ B(0,d(Tp.Tfp)). (2.22)

This inequality implies that Tp = T fp. As T is one to one, it follows that p € X is a fixed point of f.
Step 4. Finally, we prove that, under the assumption that (X, <) is directed, the fixed point is unique.
Indeed, let p’ € X be another fixed point of f. From , there exists an element z € X such that z is

comparable to p and p’. The monotonicity of f implies that fz is comparable to p = fp and p' = fp’. As

T € Sb— COP (X), Tfz is comparable to Tp and Tp'. Also, it is easy to obtain that ¢ (d (Tp,Tp’)) < 0.

As T is one to one, we get that p = p/, and the proof is completed. O

Remark 2.7. 1t is clear that Theorem [2.0] is an extension of the Kannan fixed point theorem to the context
of partially ordered metric spaces.

In Theorem if we consider v (t) = « (t), then we obtain the following result which is more general
than Theorem 2 in [15].

Corollary 2.8. Let (X,=) be a partially ordered set endowed with a metric d and (X,d) be a complete
metric space. Let f: X — X be a monotone nondecreasing mapping and T € Sb— COP (X). Suppose that
for all x,y € X with x <y,

WATfn T1) < 0 (@8 T + AT TH)) - (T8 T d TR T ).

Also, suppose that

(C1) f is continuous, or

(C2) if any nondecreasing sequence {x,} in X converges to z, then x, < z for all n > 0.

If there exists xy € X with xg < fxo, then f has a fixed point in X. Moreover, if (X, =) is directed,
then the fixed point is unique.

Theorem 2.9. Let (X,=) be a partially ordered set endowed with a metric d and (X,d) be a complete
metric space. Let T € Sb— COP (X) and f : X — X be a monotone nondecreasing mapping satisfying

VT T) < o (G (T Th) +d(T9TIa)) - 6d(T0Tr) ATy T0) (229
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for all x,y € X with x <y, where Y € ¥, a € ®, § € 'y are such that
P (t) <altz) =t <ty (2.24)

and for all t > 0,
W (t)—a(t)+ 8(t) > 0. (2.25)

Also, suppose that either

(C1) f is continuous, or

(C2) if any nondecreasing sequence {xy,} in X converges to z, then x,, < z for alln > 0.

If there exists xy € X with xog X fxg, then f has a fized point in X. Moreover, if (X, =) is directed,
then the fized point is unique.

Proof. Let zp € X be an arbitrary point and let x, = fr,—1 = f"xg, n =1,2,3,.... As f is nondecreasing,
o % frg and T € Sb— COP (X), we have that Tz, < Tz, for all n. Again, the proof consists of four
steps.

Step 1. We show that hm d(Txpy1, Txy) = 0.

Let Dyt1:=d (Txny1, Txn+2) for all n > 0. From we obtain
1
(0 (Dn+1) = (d (fom Tf$n+1)) < <2d (Txm Txn+2)> -3 (d (Txm T$n+2) >O))

<a (3004 Du)) = 500 < (5Dt Dur)). (2.26)

The hypothesis implies that d (Tzp41,Txny2) < d(Txy, Txny1), that is, {d(Tzp, Trps1)} is a
monotone decreasing sequence of non-negative real numbers. Consequently, there exists r > 0 such that
nler;Od (Txyp, Txpir) =r.

Passing to the limit for n — oo in ([2.26)), we obtain that ¢ (r) < a(r) — B (r,0), whence, by (2.25)), it
follows that r = 0.

Step 2. We show that {T'z,} is a Cauchy sequence in X.

As in the proof of Theorem we see that if {Tx,} is not a Cauchy sequence, then there exists
€ > 0 such that d (Tmm(k),Twn(k)) > ¢ and the sequences {d (T:cm(k),l,Txn(k))}, {d (Txm(k),Txn(k),l)}
converge to e.

From (2.23), we have
¥ (e) < ¢ (A (T2mey, TTnw))
<a <; (d (T2 (-1, Ton(r)) +d (Txn<k>—17T$m<k>))>
= B(d(Tzm)—1: TTn)) » & (TTpy—1, TTma))) - (2.27)
For k — oo in (2.27), we obtain

¥ (e) <a(0)=5(0,0),

which, together with (|2 -, implies that ¢ = 0, a contradiction. We conclude that {T'x,} is Cauchy sequence.

Steps 3 and 4. By using similar methods as in Theorems [2.2] and [2.6] we infer that there exists p € X
such that {z,} converges to p and p is a fixed point of f. Furthermore if (X, <) is directed, then the fixed
point is unique. O

Remark 2.10. It is clear that Theorem [2.9) extends the Chatterjea fixed point theorem to the context of
partially ordered metric spaces.

In Theorem [2.9} if we consider 9 (t) = a/(t), then we obtain the following result which is more general
than Theorem 1 in [15].
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Corollary 2.11. Let (X, =) be a partially ordered set endowed with a metric d and (X,d) be a complete
metric space. Let f: X — X be a monotone nondecreasing mapping and T € Sb— COP (X). Suppose that
for all x,y € X with z <y,

VTS T1) < 0 (@8 TI) + ATy TS2) ) - BT Thy) (T3, Tf2),

Also, suppose that
(C1) f is continuous, or
(C2) if any nondecreasing sequence {x,} in X converges to z, then x,, < z for alln > 0.

If there

exists xg € X with xg X fxg, then f has a fized point in X. Moreover, if (X, <) is directed,

then the fized point is unique.
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