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1. Introduction and Preliminaries

The basic unit of analysis in order theory is the binary relation. It is well known that a relation < on
a set X is a subset of X × X. We denote (x, y) ∈ < by x<y. An ”order” on a set X is a relation on X
satisfying some additional conditions. Order relations are usually denoted by �.

Definition 1.1 ([6]). A relation � on a set X is called a partial order if � is transitive, reflexive and
antisymmetric; the pair (X,�) is called a partially ordered set or poset. In addition, a relation � on a set
X is called a linear order if any two elements in X are comparable, that is,

for each x, y ∈ X, either x � y or y � x. (1.1)

The pair (X,�) is called a linearly ordered set or chain.

In [1], Banach proved a very important result in nonlinear analysis, the contraction mapping principle.
In [14], Ran and Reurings established an analogue of Banach’s fixed point theorem in partially ordered sets
and discussed several applications to linear and nonlinear matrix equations. Later on, Nieto and López [13]
extended some of their results to study a problem regarding ordinary differential equations.
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Definition 1.2 ([13]). Let (X,�) be a poset and A be a subset of X.

(i) If for all a ∈ A there exists an x ∈ X such that a � x, then x is called an upper bound for the set A.
If x ∈ X is the smallest upper bound, then x is called the least upper bound (sup) of the set A.

(ii) If for all a ∈ A there exists an x ∈ X such that x � a, then x is called a lower bound for the set A. If
x ∈ X is the greatest lower bound, then x is called the largest lower bound (inf) of the set A.

(iii) A mapping f : X → X is called monotone nondecreasing if

x, y ∈ X,x � y ⇒ fx � fy

Definition 1.3 ([2]). Let (X,�) be a partially ordered set. (X,�) is said to be directed if every pair of
elements has an upper bound, that is, for every a, b ∈ X, there exists c ∈ X such that a � c and b � c.

Theorem 1.4 ([14]). Let (X,�) be a partially ordered set endowed with a metric d and (X, d) be a complete
metric space, such that every pair x, y ∈ X has a lower bound and an upper bound. If f : X → X is a
continuous, monotone (i.e., either order-preserving or order-reversing) map from X into X such that

∃ 0 < c < 1 : d (fx, fy) ≤ cd (x, y) , x ≥ y (1.2)

and
∃x0 ∈ X : x0 ≤ fx0 or x0 ≥ fx0,

then f has a unique fixed point x ∈ X. Moreover, for every x ∈ X, lim
n→∞

fnx = x.

In [13], Nieto and López showed that the continuity condition for the mapping f can be replaced with
the requirement that if any nondecreasing sequence {xn} in X converges to z, then xn � z for all n ≥ 0.
Also, to guarantee the uniqueness of the fixed point, they gave an alternative condition to the requirement
that every pair x, y ∈ X have a lower bound and an upper bound, namely that for every x, y ∈ X there
should exist z ∈ X which is comparable to x and y.

In [5], Ćirić et al. introduced the concept of g-monotone mapping and proved some fixed point and
common fixed point theorems for g- nondecreasing generalized nonlinear contractions in complete partially
ordered metric spaces. Based on this concept, Choudhury and Kundu [4] considered (ψ, α, β)-weak contrac-
tions, proving coincidence point and common fixed point results in posets. Cherichi and Samet [2] presented
new coincidence and fixed point theorems in the setting of complete ordered gauge spaces (X,F ,�) for
generalized weak contractions involving two families of functions (see also [10, 12, 16]).

In this work, we investigate generalized weak (ψ, α, β) contractions in posets in order to establish ana-
logues of the Banach, Kannan [9] and Chatterjea [3] fixed point theorems in this setting.

2. Main Results

For simplicity, we will make the following notations:

• Ψ is the set of functions ψ : [0,∞)→ [0,∞) satisfying the properties:

(ψ1) ψ is continuous and monotone nondecreasing;

(ψ2) ψ (t) = 0 if and only if t = 0.

• Φ is the set of functions α : [0,∞)→ [0,∞) satisfying:

(α1) α is continuous;

(α2) α (t) = 0 if and only if t = 0.

• Γ1 is the set of functions β : [0,∞)→ [0,∞) satisfying:

(β1) β is lower semi-continuous;



M. Kir, H. Kiziltunc, J. Nonlinear Sci. Appl. 8 (2015), 1141–1149 1143

(β2) β (t) = 0 if and only if t = 0.

• Γ2 is the set of functions β : [0,∞)2 → [0,∞) satisfying:

(β′1) β is continuous;

(β′2) β is monotone increasing in both arguments;

(β′3) β (0, 0) = 0 and β (ε, 0) = 0 implies ε = 0.

Definition 2.1 ([11, 15]). Let (X, d) be a metric space. A mapping T : X → X is said to be subsequentially
convergent if every sequence {yn} with the property that {Tyn} is convergent has a convergent subsequence.

We will denote by Sb−COP (X) the set of all mappings T : X → X which are subsequentially convergent,
continuous, one to one and preserve the order.

Theorem 2.2. Let (X,�) be a partially ordered set endowed with a metric d such that (X, d) is a complete
metric space. Let T ∈ Sb − COP (X) and f : X → X be a monotone nondecreasing mapping with the
property that, for all x, y ∈ X with x � y,

ψ (d (Tfx, Tfy)) ≤ α (d (Tx, Ty))− β (d (Tx, Ty)) (2.1)

where ψ ∈ Ψ, α ∈ Φ, β ∈ Γ1 are such that

ψ (t1) ≤ α (t2)⇒ t1 ≤ t2 (2.2)

and
ψ (t)− α (t) + β (t) > 0, ∀t > 0. (2.3)

Also, suppose that either
(C1) f is continuous, or
(C2) if any nondecreasing sequence {xn} in X converges to z, then xn � z for all n ≥ 0.
If there exists x0 ∈ X with x0 � fx0, then f has a fixed point in X. Moreover, if for all (x, y) ∈ X ×X

there exists z ∈ X such that x � z and y � z (i.e. (X,�) is directed), then the fixed point is unique.

Proof. Let x0 ∈ X be an arbitrary point and xn = fxn−1 = fnx0, n = 1, 2, 3, .... As f is nondecreasing with
x0 � fx0 and T ∈ Sb− COP (X), we have

Tx0 � Tfx0 � Tf2x0 � Tf3x0 � · · · � Tfnx0 � · · · (2.4)

that is, Txn � Txn+1 for all n. The rest of the proof consists of four steps.
Step 1. We will show that lim

n→∞
d (Txn+1, Txn) = 0.

For convenience, let Dn := d (Txn, Txn+1) for all n ≥ 0. From (2.1) we get

ψ (Dn+1) = ψ (d (Txn+1, Txn+2)) ≤ α (Dn)− β (Dn) ≤ α (Dn) . (2.5)

Using the condition (2.2), we obtain that {Dn} is a monotone decreasing sequence of non-negative real
numbers and consequently, there exists r ≥ 0 such that lim

n→∞
Dn = r. Letting n→∞ in (2.5), we get

ψ (r) ≤ α (r)− β (r) as n→∞.

By hypothesis (2.3), this implies that lim
n→∞

Dn = 0.

Step 2. We show that {Txn} is a Cauchy sequence.
We proceed by contradiction. Suppose that {Txn} is not a Cauchy sequence. Then there exists ε > 0

for which we can find subsequences
{
Txm(k)

}
and

{
Txn(k)

}
of {Txn} with n (k) > m (k) > k such that

d
(
Txm(k), Txn(k)

)
≥ ε. (2.6)
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Furthermore, we can choose n (k) to be the smallest integer with n (k) > m (k), for all k. As a consequence,

d
(
Txm(k), Txn(k)−1

)
< ε.

From (2.6) we have

ε ≤ d
(
Txm(k), Txn(k)

)
≤ d

(
Txm(k), Txn(k)−1

)
+ d

(
Txn(k), Txn(k)−1

)
, (2.7)

whence, by letting k →∞, we obtain

lim
k→∞

d
(
Txm(k), Txn(k)

)
= ε.

Also,
d
(
Txm(k), Txn(k)−1

)
≤ d

(
Txm(k), Txn(k)

)
+ d

(
Txn(k), Txn(k)−1

)
, (2.8)

implying for k →∞ that
lim
k→∞

d
(
Txm(k), Txn(k)−1

)
= ε.

Moreover, by letting k →∞ in the inequality

d
(
Txm(k)−1, Txn(k)

)
≤ d

(
Txm(k)−1, Txm(k)

)
+ d

(
Txm(k), Txn(k)

)
, (2.9)

we obtain
lim
k→∞

d
(
Txm(k)−1, Txn(k)

)
= ε.

Finally, from
d
(
Txm(k)−1, Txn(k)−1

)
≤ d

(
Txm(k)−1, Txm(k)

)
+ d

(
Txm(k), Txn(k)−1

)
(2.10)

we get
lim
k→∞

d
(
Txm(k)−1, Txn(k)−1

)
= ε.

From (2.1), we have

ψ (ε) ≤ ψ
(
d
(
Txm(k), Txn(k)

))
≤ α

(
d
(
Txm(k)−1, Txn(k)−1

))
− β

(
d
(
Txm(k)−1, Txn(k)−1

))
(2.11)

whence by letting k →∞ we get
ψ (ε) ≤ α (ε)− β (ε) . (2.12)

This inequality together with hypothesis (2.3) imply that ε = 0, contradicting our initial assumption.
Therefore we conclude that {Txn} is a Cauchy sequence.

Step 3. We prove that there exists an element p ∈ X such that lim
n→∞

xn = p and p is a fixed point of f .

Indeed, as {Txn} is a Cauchy sequence in the complete metric space (X, d), there exists v ∈ X such
that lim

n→∞
Txn = v. Since T ∈ Sb− COP (X), {xn} has a convergent subsequence

{
xn(k)

}
and there exists

p ∈ X such that
lim
k→∞

xn(k) = p.

Also, T is continuous and xn(k) → p, therefore Txn(k) → Tp as k → ∞. Since T preserves the order, that
is, Txn(k) � Tp, we have

lim
k→∞

d
(
Txn(k), Tp

)
= 0.

We show that p ∈ X is a fixed point of f . We have two cases.
Case 1: If (C1) holds, then from the continuity of f we have

Tp = lim
k→∞

Txn(k) = lim
k→∞

Tfxn(k)−1 = Tfp.
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Using the fapt that T is one to one, we obtain fp = p, i.e. p ∈ X is a fixed point of f .
Case 2: Assume (C2) holds. Since

{
Txn(k)

}
converges to Tp ∈ X, for all ε > 0 there exists N1 ∈ N such

that for all n (k) > N1 we have

d
(
Txn(k), Tp

)
<
ε

2
.

Also, as
{
Txn(k)

}
converges to Tp, from (C2) we get Txn(k) � Tp and we have

ψ
(
d
(
Tfn(k)+1x, Tfp

))
≤ α

(
d
(
Tfn(k)x, Tp

))
− β

(
d
(
Tfn(k)x, Tp

))
. (2.13)

Letting k →∞ in (2.13), we get
ψ (d (Tp, Tfp)) ≤ α (0)− β (0) . (2.14)

The inequality (2.14) implies that Tp = Tfp. As T is one to one, it follows that p ∈ X is a fixed point of f .
Step 4. Finally, we show that, if for all x, y ∈ X there exists z ∈ X such that x � z and y � z, then

the fixed point is unique.
For this, let p′ ∈ X be another fixed point of f . By (1.1), there exists an element z in X such that z is

comparable to p and p′. The monotonicity of f implies that fz is comparable to p = fp and p′ = fp′. As
T ∈ Sb− COP (X), Tfz is comparable to Tp and Tp′. Also, as ψ ∈ Ψ, we have

ψ
(
d
(
Tp, Tp′

))
≤ ψ

(
d
(
Tfp, Tfp′

))
≤ α

(
d
(
Tp, Tp′

))
− β

(
d
(
Tp, Tp′

))
.

From the condition (2.3), we get
d
(
Tp, Tp′

)
= 0.

Since T is one to one it follows that p = p′. This completes the proof.

Corollary 2.3 ([8]). Let (X,�) be a partially ordered set endowed with a metric d and (X, d) be a complete
metric space. Let f : X → X be monotone nondecreasing. Suppose that, for all x, y ∈ X with x � y,

ψ (d (fx, fy)) ≤ ψ (d (x, y))− φ (d (x, y)) ,

where ψ and φ are altering distance functions. Also, suppose that either (C1) or (C2) holds. If there exists
x0 ∈ X with x0 � fx0, then f has a fixed point in X. Moreover, if (X,�) is directed, then the fixed point
is unique.

Corollary 2.4 ([7]). Let (X,�) be a partially ordered set endowed with a metric d and (X, d) be a complete
metric space. Let f : X → X be a monotone nondecreasing mapping. Suppose that for all x, y ∈ X with
x � y,

d (fx, fy) ≤ β (d (x, y)) d (x, y) ,

where β : [0,∞) → [0, 1) and β (tn) → 1 implies tn → 0. Also, suppose that either condition (C1) or (C2)
holds. If there exists x0 ∈ X with x0 � fx0, then f has a fixed point in X. Moreover, if (X,�) is directed,
then the fixed point is unique.

Example 2.5. Let X = [1,∞) × [1,∞) and consider the usual order given by (a, b) � (c, d) if and only if
a ≤ c and b ≤ d. Then (X,�) is a partially ordered set. Let X be endowed with the Euclidean distance. We
define a mapping f : X → X by f (x, y) =

(
4 3
√
x, 4 3
√
y
)
. It is clear that f does not satisfy the contractive

condition (1.2).
Now we define T : X → X by T (x, y) = (ln ex, ln ey), and set ψ (t) = t, α (t) = t

3 , β (t) = 0. Then we
have

ψ (d (Tf (a, b) , T f (c, d))) = d (Tf (a, b) , Tf (c, d))

=
1

3

√(
ln
a

c

)2
+

(
ln
b

d

)2

=
1

3
d (T (a, b) , T (c, d)) .

(2.15)
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According to Theorem 2.2, f has a fixed point. Indeed, (8, 8) ∈ X is a fixed point of f . As X is directed,
this fixed point is unique.

Theorem 2.6. Let (X,�) be a partially ordered set endowed with a metric d and (X, d) be a complete
metric space. Let T ∈ Sb− COP (X) and f : X → X be a monotone nondecreasing mapping satisfying the
inequality

ψ (d (Tfx, Tfy)) ≤ α
(

1

2
(d (Tx, Tfx) + d (Ty, Tfy))

)
− β (d (Tx, Tfx) , d (Ty, Tfy)) (2.16)

for all x, y ∈ X with x � y, where ψ ∈ Ψ, α ∈ Φ, β ∈ Γ2 are such that

ψ (t1) ≤ α (t2)⇒ t1 ≤ t2, (2.17)

and for all t > 0,
ψ (t)− α (t) + β (t) > 0. (2.18)

Also, suppose that either
(C1) f is continuous, or
(C2) if any nondecreasing sequence {xn} in X converges to z, then xn � z for all n ≥ 0.
If there exists x0 ∈ X with x0 � fx0, then f has a fixed point in X. Moreover, if (X,�) is directed,

then the fixed point is unique.

Proof. Let x0 ∈ X be an arbitrary point such that xn = fxn−1 = fnx0, n = 1, 2, 3, .... As f is nondecreasing
with x0 � fx0 and T ∈ Sb− COP (X), we have

Tx0 � Tfx0 � Tf2x0 � Tf3x0 � · · · � Tfnx0 � · · · ,

that is, Txn � Txn+1 for all n.The proof consists of four steps.
Step 1. We show that lim

n→∞
d (Txn+1, Txn) = 0.

For convenience, we denote Dn+1 := d (Txn+1, Txn+2) for all n ≥ 0. From (2.16) we obtain

ψ (Dn+1) = ψ (d (Tfxn, Tfxn+1)) ≤ α
(

1

2
(Dn +Dn+1)

)
− β (Dn, Dn+1)) ≤ α

(
1

2
(Dn +Dn+1)

)
. (2.19)

By (2.17), we have Dn+1 ≤ Dn for all n, that is, {Dn} is a monotone decreasing sequence of non-negative
real numbers. Thus there exists r ≥ 0 such that lim

n→∞
Dn = r. By (2.19), ψ (r) ≤ α (r)− β (r, r) as n→∞.

Taking into account the hypothesis (2.18), it follows that lim
n→∞

Dn = 0.

Step 2. We prove that {Txn} is a Cauchy sequence in X.
If we suppose the contrary, then there exists ε > 0 for which we can find subsequences

{
Txm(k)

}
and{

Txn(k)
}

of {Txn} with n (k) > m (k) > k such that

d
(
Txm(k), Txn(k)

)
≥ ε.

From (2.16), we have

ψ (ε) ≤ ψ
(
d
(
Txm(k), Txn(k)

))
= ψ

(
d
(
Tfxm(k)−1, Tfxn(k)−1

))
≤ α

(
1

2

(
Dm(k)−1 +Dn(k)−1

))
− β

(
Dm(k)−1, Dn(k)−1

)
, (2.20)

whence by letting k →∞ we obtain
ψ (ε) ≤ α (0)− β (0, 0) .

Due to the hypothesis (2.18), the inequality (2.20) implies that ε = 0, a contradiction. Therefore we conclude
that {Txn} is Cauchy sequence.
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Step 3. By proceeding similarly as in Step 3 of the proof of Theorem 2.2, we obtain that there exists
p ∈ X such that {Txn} converges to Tp ∈ X.

Next, we will show that p is a fixed point of f . We have two cases.
Case 1: If (C1) holds, from the continuity of f , we have

Tp = lim
k→∞

Txn(k) = lim
k→∞

Tfxn(k)−1 = Tfp,

and since T is one to one it follows that p ∈ X is a fixed point of f .
Case 2: Suppose (C2) holds. Since

{
Txn(k)

}
converges to Tp ∈ X, for all ε > 0 there exists N1 ∈ N

such that for all n (k) > N1 we have

d
(
Txn(k), Tu

)
<
ε

2
.

As
{
Txn(k)

}
converges to Tp, from (C2) we obtain Txn(k) � Tp and we have

ψ
(
d
(
Txn(k)+1, Tfp

))
≤ α

(
1

2

(
Dn(k) + d (Tp, Tfp)

))
− β

(
Dn(k), d (Tp, Tfp)

)
. (2.21)

Letting k →∞ in the above relation, we have

ψ (d (Tp, Tfp)) ≤ α
(

1

2
d (Tp, Tfp)

)
− β (0, d (Tp, Tfp)) . (2.22)

This inequality implies that Tp = Tfp. As T is one to one, it follows that p ∈ X is a fixed point of f .
Step 4. Finally, we prove that, under the assumption that (X,�) is directed, the fixed point is unique.
Indeed, let p′ ∈ X be another fixed point of f . From (1.1), there exists an element z ∈ X such that z is

comparable to p and p′. The monotonicity of f implies that fz is comparable to p = fp and p′ = fp′. As
T ∈ Sb − COP (X), Tfz is comparable to Tp and Tp′. Also, it is easy to obtain that ψ (d (Tp, Tp′)) ≤ 0.
As T is one to one, we get that p = p′, and the proof is completed.

Remark 2.7. It is clear that Theorem 2.6 is an extension of the Kannan fixed point theorem to the context
of partially ordered metric spaces.

In Theorem 2.6, if we consider ψ (t) = α (t), then we obtain the following result which is more general
than Theorem 2 in [15].

Corollary 2.8. Let (X,�) be a partially ordered set endowed with a metric d and (X, d) be a complete
metric space. Let f : X → X be a monotone nondecreasing mapping and T ∈ Sb−COP (X). Suppose that
for all x, y ∈ X with x � y,

ψ(d (Tfx, Tfy)) ≤ ψ
(

1

2
(d (Tx, Tfx) + d (Ty, Tfy))

)
− β (d (Tx, Tfx) , d (Ty, Tfy)) .

Also, suppose that
(C1) f is continuous, or
(C2) if any nondecreasing sequence {xn} in X converges to z, then xn � z for all n ≥ 0.
If there exists x0 ∈ X with x0 � fx0, then f has a fixed point in X. Moreover, if (X,�) is directed,

then the fixed point is unique.

Theorem 2.9. Let (X,�) be a partially ordered set endowed with a metric d and (X, d) be a complete
metric space. Let T ∈ Sb− COP (X) and f : X → X be a monotone nondecreasing mapping satisfying

ψ (d (Tfx, Tfy)) ≤ α
(

1

2
(d (Tx, Tfy) + d (Ty, Tfx))

)
− β (d (Tx, Tfy) , d (Ty, Tfx)) (2.23)
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for all x, y ∈ X with x � y, where ψ ∈ Ψ, α ∈ Φ, β ∈ Γ2 are such that

ψ (t1) ≤ α (t2)⇒ t1 ≤ t2, (2.24)

and for all t > 0,
ψ (t)− α (t) + β (t) > 0. (2.25)

Also, suppose that either
(C1) f is continuous, or
(C2) if any nondecreasing sequence {xn} in X converges to z, then xn � z for all n ≥ 0.
If there exists x0 ∈ X with x0 � fx0, then f has a fixed point in X. Moreover, if (X,�) is directed,

then the fixed point is unique.

Proof. Let x0 ∈ X be an arbitrary point and let xn = fxn−1 = fnx0, n = 1, 2, 3, .... As f is nondecreasing,
x0 � fx0 and T ∈ Sb − COP (X), we have that Txn � Txn+1 for all n. Again, the proof consists of four
steps.

Step 1. We show that lim
n→∞

d (Txn+1, Txn) = 0.

Let Dn+1 := d (Txn+1, Txn+2) for all n ≥ 0. From (2.23) we obtain

ψ (Dn+1) = ψ (d (Tfxn, T fxn+1)) ≤ α
(

1

2
d (Txn, Txn+2)

)
− β (d (Txn, Txn+2) , 0))

≤ α
(

1

2
(Dn +Dn+1)

)
− β (Dn, 0) ≤ α

(
1

2
(Dn +Dn+1)

)
. (2.26)

The hypothesis (2.24) implies that d (Txn+1, Txn+2) ≤ d (Txn, Txn+1), that is, {d (Txn, Txn+1)} is a
monotone decreasing sequence of non-negative real numbers. Consequently, there exists r ≥ 0 such that
lim
n→∞

d (Txn, Txn+1) = r.

Passing to the limit for n → ∞ in (2.26), we obtain that ψ (r) ≤ α (r) − β (r, 0), whence, by (2.25), it
follows that r = 0.

Step 2. We show that {Txn} is a Cauchy sequence in X.
As in the proof of Theorem 2.2, we see that if {Txn} is not a Cauchy sequence, then there exists

ε > 0 such that d
(
Txm(k), Txn(k)

)
≥ ε and the sequences

{
d
(
Txm(k)−1, Txn(k)

)}
,
{
d
(
Txm(k), Txn(k)−1

)}
converge to ε.

From (2.23), we have

ψ (ε) ≤ ψ
(
d
(
Txm(k), Txn(k)

))
≤ α

(
1

2

(
d
(
Txm(k)−1, Txn(k)

)
+ d

(
Txn(k)−1, Txm(k)

)))
− β

(
d
(
Txm(k)−1, Txn(k)

)
, d
(
Txn(k)−1, Txm(k)

))
. (2.27)

For k →∞ in (2.27), we obtain
ψ (ε) ≤ α (0)− β (0, 0) ,

which, together with (2.25), implies that ε = 0, a contradiction. We conclude that {Txn} is Cauchy sequence.
Steps 3 and 4. By using similar methods as in Theorems 2.2 and 2.6, we infer that there exists p ∈ X

such that {xn} converges to p and p is a fixed point of f . Furthermore, if (X,�) is directed, then the fixed
point is unique.

Remark 2.10. It is clear that Theorem 2.9 extends the Chatterjea fixed point theorem to the context of
partially ordered metric spaces.

In Theorem 2.9, if we consider ψ (t) = α (t), then we obtain the following result which is more general
than Theorem 1 in [15].
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Corollary 2.11. Let (X,�) be a partially ordered set endowed with a metric d and (X, d) be a complete
metric space. Let f : X → X be a monotone nondecreasing mapping and T ∈ Sb−COP (X). Suppose that
for all x, y ∈ X with x � y,

ψ(d (Tfx, Tfy)) ≤ ψ
(

1

2
(d (Tx, Tfy)) + d (Ty, Tfx))

)
− β (d (Tx, Tfy) , d (Ty, Tfx)) .

Also, suppose that
(C1) f is continuous, or
(C2) if any nondecreasing sequence {xn} in X converges to z, then xn � z for all n ≥ 0.
If there exists x0 ∈ X with x0 � fx0, then f has a fixed point in X. Moreover, if (X,�) is directed,

then the fixed point is unique.
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