Available online at www.tjnsa.com
J. Nonlinear Sci. Appl. 9 (2016), 2986-3001

Research Article

Nonlincar Scicnces
% = Asomcamens

;’( imffﬁffif ) Journal of Nonlinear Science and Applications

Print: ISSN 2008-1898 Online: ISSN 2008-1901

Heat flux performance in a porous medium
embedded Maxwell fluid flow over a vertically
stretched plate due to heat absorption

N. F. M. Noor?®*, Rizwan Ul Haqb, S. Abbasbandy*©, 1. Hashimd-e

?Institute of Mathematical Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.

bDepartment of Mathematics, Capital University of Science and Technology, Islamabad 44000, Pakistan.

“Department of Mathematics, Imam Khomeini International University, Ghazvin, 34149-16818, Iran.

4School of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.

®Research Institute, Center for Modeling & Computer Simulation (Rl/CM&CS), King Fahd University of Petroleum & Minerals,
Dhahran 31261, Saudi Arabia.

Communicated by A. Atangana

Abstract

Heat absorption and thermal radiation effects in a non-Newtonian fluid on a vertical stretching sheet with
suspended particles are considered. The nonlinear partial differential equations are reduced to nonlinear
ordinary differential equations via similarity approach. The equations are further solved using shooting-
RK4 method and validated with homotopy-Padé solutions. Comparison between previous and present
results revealed agreement up to five significant figures. The influence of various parameters on the flow
velocity, temperature and concentration are examined. The profiles of reduced skin friction coefficient,
Nusselt number and Sherwood number against selected parameters are sketched and discussed. Streamlines
of the flow for different Maxwell parameters are visualized too. It is proclaimed that the heat flux of the flow
is uplifted as value of either heat absorption or thermal radiation is multiplied. (©2016 All rights reserved.
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1. Introduction

Based on the law of conservation of energy in physics, energy is an entity that cannot be originated
nor demolished but it can be transferred or transformed into diverse forms via medias around. A body
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that posses energy experiences a proportional change in mass/momentum to satisfy Einstein’s mass-energy
equivalence [2] for static objects or energy-momentum equivalence for dynamic objects. Absorption is one
of normal mechanisms of how a particular energy can be converted into another form. Energy absorption
has wide applications in heat exchanger systems of automotive, machinery and reactor, metal suspension in
bridge and building constructions, in material reactions such as laser and nuclear, in automated anti icing
and retractor systems, and in shock absorber systems especially for permanent crash control, security and
transportation safety barriers design and manufacturing. For viscous fluid flows, heat absorption is included
in the energy equation to further discourse thermal distribution of the flows.

Most industrial applications of convective heat and mass transfers are based on non-Newtonian fluids.
The Maxwell fluid, being the simplest subclass of the non-Newtonian models is the first viscoelastic rate type
fluid which still in research favor. A Maxwellian fluid flow due to impulsively started plate is considered
by Fatecau and Fatecau [4]. Concurrently they also provided a new exact solution for a Maxwell fluid
on an infinite plate [5]. Sakiadis flow based on upper-convected Maxwell (UCM) fluid on a fixed plate is
investigated by Sadeghy et al. [25] and they concluded that an increment in Deborah number affects the wall
skin friction to decrease. On the other hand, a homotopy series solution for a magnetohydrodynamics UCM
fluid flow is provided by Hayat and Sajid [12] while a unidirectional flow of an incompressible viscoelastic
Maxwell fluid along an infinite permeable plate is examined by Wang and Hayat [28]. Fatecau et al. [3]
concluded that the velocity profiles of an unsteady fractional derivative Maxwell fluid flow tend to be similar
with the velocity profiles of ordinary Maxwell model if a tends to 1. Previous literatures on Maxwell model
include heat transfer analysis for a UCM fluid flow on a horizontal stretching surface [Il, 22], the mass
transfer [10], the chemical reaction species [9] and the MHD channel flow embedded in a porous medium
with radiation effects [13].

Thermophoresis is a phenomenon of suspended micro sized particles migration in a non-isothermal
gas towards declining thermal gradient direction [9, [10, 13 22]. Thermophoretic velocity and force are
experienced by the particles as a result of temperature differences [11, 14]. Being an effective tool for
collecting particles on surfaces surrounding by low temperature environment, it has abundance applications
such as in microelectronics control clean room, modification of chemical /material depositions, air circulation
and sampling of aerosol particles, formation in heat exchangers and particles removal from combustion
systems of exhaust gases [24]. Thermophoresis is also an important mechanism in the study of semi-conductor
technology especially in MHD energy generation system operations as well as in controlled high-quality wafer
production [24]. A pioneer study on the nature of thermophoresis in the behavior of a laminar fluid flow
over a surface with hot/cold convective conditions is conducted by Goren [6].

The homotopy analysis method (HAM) is an established analytical method inspired by Liao [16]. Ever
since, this method has been widely employed to many problems of fluid flow and heat transfer, cf. [17, 23], 29].
Some recent developments of HAM include the new technique of the homotopy analysis method (nHAM),
the spectral homotopy analysis method (SHAM), the Tau and homotopy analysis method (THAM) and
the optimal HAM. The nHAM was proposed by reconstructing the second order nonlinear differential term
of the deformation equation into two differential equations of first order [§]. In SHAM, Motsa et al. [21]
blends Chebyshev pseudospectral method with HAM aspects while Shaban et al. [26] initiated THAM in the
construction of shifted Chebyshev functions and their operational matrices to solve higher order deformation
equations. Unlike the conventional HAM, the optimal HAM with averaged residual error can give better
approximation with faster convergence [19]. Currently, the homotopy-Padé technique is employed in a limit
analysis of circular plates [15] and in a real life epidemic model of smoking habit in Spain [7]. Surprisingly, the
homotopy-Padé scheme seems to have better approximation property than the optimal HAM as reported by
Liao [18]. Thus the objectives of the present paper are firstly to study the effects of internal heat absorption
and thermal radiation in heat transfer enhancement of the Maxwell fluid flow, secondly to perform a shooting
technique with fourth order Runge-Kutta method in the extended model solution and finally to validate the
numerical solutions obtained with results produced by homotopy analysis method aided with Padé series
acceleration.
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2. Problem formulation

2.1. The governing equations and conditions
Let a steady magnetohydrodynamic Maxwell fluid flowing along a vertical stretching plate in a porous
medium of Darcian type as clearly visualized in Fig. [l A typical magnetic field By is imposed normal to
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Figure 1: Geometry of the Maxwell model over a vertical surface embedded in a Darcian porous medium.

the flow direction so that the magnetic field distribution is uniform along the plate. The magnetic Reynolds
number is taken to be sufficiently small such that the induced magnetic field can be ignored in regard to
the applied magnetic field. The surface variable temperature is denoted by T,,(z) while the surface variable
concentration is Cy,(z). Uniform ambient temperature T, and concentration Cy, are experienced by the
Maxwell fluid with T;, > T, and C,, > C respectively. The particles concentration flux is assumed to
be sufficiently small so that the thermophysical properties of relatively small number of particles will not
affect the velocity and temperature distributions of the main stream. Constant particle diffusivity and
sufficiently diluted particles concentration are assumed to prevent particles coagulation in the viscous flow
region. Under these conventions with Boussineq’s approximation, the boundary layer flow can be governed

[11] as

Oou Ov
=0 (2.1)
ou  Ou 502 5 0% 0*u
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T T N\ T 1 9, > oB?
ua—+va—:—ga—2——aq SCLNY S S <8u> + 20,2, (2.3)
ox dy  pcp Oy pcp 0y pey pcp \ 0y PCp
oC oC 0’C  o(vrC)
— — =D — 2.4
“am+“ay oy? oy '’ (2:4)
subject to the following boundary conditions
u=Uy(x)=axr, v=0, T=T,y(r)=Tx+br, C=Cyx)=Cx+cx, at y=0, (2.5)
ou
u— 0, 8——)0, T > Ty, C—Csx, asy— oo, (2.6)
Y

with v and v are the z and y velocity components, A; is the Maxwell relaxation time, p is the dynamic
viscosity, v is the kinematic viscosity, p is the density of Maxwell fluid, K is the permeability of porous
medium, o is the electrical conductivity, g is the gravity acceleration, T is the fluid temperature, C' is the
concentration field, Bt is the temperature coefficient, B¢ is the diluted volume coefficient, A4 is the fluid
thermal conductivity, ¢, is the specific heat at constant pressure, ()¢ is the internal heat absorption, Vr is
the thermophoretic velocity, D is the molecular diffusivity of species concentration, a is the rate of surface
stretching while b and ¢ are the coefficients for temperature and concentration gradients respectively.
Under Rosseland approximation, the thermal radiative transfer rate ¢, [27] has the form

4o 1 6T4
3k* oy’
with o1 is Stefan-Boltzmann constant and k* is a coefficient of mean absorption. From the second term in
the RHS of the equation ([2.3)), the expression ([2.7]) will take positive value automatically. The differences in

temperature throughout the flow are sufficiently small so it is permissible for 7% to be expressed as a linear
function of temperature [27],

qr = (27)

T* = AT, 3T — 3T, (2.8)
Making use of equations (2.7)—(2.8)), the equation (2.3) can then be utilized as
OT AT A, T  1601Tx> 0T ou\®> oB?
ws oS = fe O 20 T + Qo oy 2 (2u) B 2 (2.9)
ox dy  pcp Oy 3pcpk* Oy pCp pcp \ 0y pCp

Note that the second until the fifth terms in the RHS of represent the expressions of thermal radiation,
internal heat sink, viscous and magnetic heating respectively.

The thermophoresis effect is normally defined based on the mean velocity of a particle due to difference in
temperature. Since the temperature gradient in the boundary layer is mainly reflected in the-y direction thus
only the thermophoretic velocity in that direction should be focused on. Consequently, the thermophoretic
velocity Vi which appears in can be addressed as [27]:

vT kv 0T

- (2.10)
Tref Tref 8y
where T,y is the control temperature whereas k is the coefficient for the thermophoretic velocity. The
parameter of thermophoretic velocity, 7 is now defined as follows [20]:

k(Ty —T.
o M= Ty) (2.11)
Tref

Typical values of 7 = 0.01,0.05,0.1 correspond to approximated values of k(T,, — Too) = 3K,15K,30K
respectively for the control temperature T,.; = 300K. The negative sign in (2.11]) refers to direction of
particles velocity from a hot surface to a cooler surroundings. After similarity transformation is performed
in the next section, the negative sign of the last term of the equation ([2.16) will simultaneously impose the
expression (2.11]) to return only positive value.

Vir = —kv
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2.2. Similarity equations

The governing equations (2.2)—(2.4)) can be converted to a system of nonlinear ODES by adopting the
non-dimensional variables as follow [11]:

a T-Ty O —-Cx
n= \/:ya ¥ =vavzf(n), 0(n) = Ty —Too ¢(n) = Cow— O (2.12)
where the stream function v fulfills (2.1)) correctly when
0 0
u= —wzaa:f’(n), v:—jz—\/@f(n). (2.13)
Ay Ox

Using the equations (2.12)) and (2.13]), the transformed similarity equations and boundary conditions
[11] are:

" U+ MR = () 42811 f" = B — A+ M) f' +4[0+ N¢| = 0, (2.14)
(1 - §R> 0" + Pr(f0 — f'0) + Préf + Pr Ec(M?f? + f"*) = 0, (2.15)
¢" + Sclf¢ — f'o—7(0'¢' +0"9)] =0, (2.16)
subject to
f0)=0, f(0)=1, 6(0)=1, ¢0)=1, atn=0, (2.17)
ff—=o0, f"—=0 0—-0 ¢—=0  asn— oo, (2.18)

where 8 = Aja is the Maxwell relaxation time parameter also known as Deborah number, M? = aBg /pa
is the magnetic parameter, A = v/aK is the porosity parameter, v = Gr,/Re2 is the local buoyancy
parameter, Gr, = gB7r(Tyw — Tno)2?/v? is the local Grashof number, Re, = U,z /v is the local Reynolds
number, N = Bc(Cy — Cx)/B1r(Tw — Too) is the ratio of volumetric expansion towards thermal expansion,
R = 401T§’O//€*)\g is the parameter for thermal radiation, Pr is the Prandtl number, 6 = Qo/pac, is the
internal heat absorption parameter, Ec = U2 /c,(T, — Txo) is the Eckert number and Sc = v/D is the
Schmidt number.

Hence, the local skin friction coefficient, local Nusselt number and local Sherwood number are defined
as

2Ty Tqw

o
:pUEJ, Nuy, = Sh, =

Cle (T — Too)’ D(Cy — Cs)’

(2.19)

in which the surface skin friction 7, the surface heat flux g,, and the surface mass flux j,, are given by

ou 160173 OT . ocC
= _— w = — 0 —_— 3 w = —D —_— . 2.20
= : <8y ) y=0 ’ K (k - 3k* ay ) y=0 / < 8y )y:O ( )

Consequently the following non-dimensional variables can be obtained:

1
CfsRez =2f"(0),
1 3
NuyRe, "
uzfte <3+4R> 7(0),
1
2

ShyRez ? = —¢/(0).
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3. Numerical approach

The system of nonlinear higher order ordinary differential equations (2.14)—(2.16) subject to the condi-
tions (2.17)—(2.18)) is first solved using a shooting technique. Hence the following system is established after
converting ([2.14)—(2.16)) into first order ordinary differential equations:

=, (3.1)
f// _ p/ —q (3.2)
P = = (0 — (o MPOIS —2B11 S+ (M =0+ NG, (3
9/ =, (34)
0" =1 = — P F'0 — f0') — Pro6 — Pr Ec(M?f"% + )], (3.5)
¢/ =s, (36)

"= = Scl+f'o— fol + (08 +0"9)), (3.7)

subject to the converted conditions of
f(0)=0, p0)=1, 6(0)=1, ¢0)=1, at n=0, (3.
p—0, ¢g—0 6—0 ¢—0, asn— co. (3.

)
)

For the purpose of solving f while satisfying the initial condition , the values of ¢(0) =
17(0), r(0) = ¢(0) and s(0) = ¢'(0) are required but not given initially. Therefore suitable guess values for
q(0), 7(0) and s(0) are chosen so that further integration can be performed. Next, the calculated values for
P(Mmaz) = 0, ¢(Mmaz) = 0, O(Mmaz) = 0 and ¢(Nmaz) = 0 at Nymer = 12 (say) are compared with the boundary
condition while the estimated values of ¢(0), 7(0) and s(0) are adjusted to give better approximations
for the solution. The classical Runge-Kutta method of fourth order with the step size An = 0.01 is employed
and the previous process is repeated so that the asymptotically converged results can be achieved at 1076
numeracy tolerance level.

8
9

4. Analytical solution
The expressions of velocity f(n), temperature 6(n) and concentration ¢(n) can be exemplified by the
following base functions {n'exp(—in)|l,i > 0} [16].

oo o0

F) =aoo+ Y > aim'e ™, 0(n) = bim'e M, () =D > cm'e ™, (4.1)

=0 [=0 =0 =0 =0 [=0

where a;;,b;; and ¢;; are the coefficients. The initial guesses fo, 6y and ¢o of f(n),0(n) and ¢(n) satisfying
the solution rule [11] are

fom) =1—=e™, bo(n) =", do(n) =e". (4.2)

The following auxiliary linear operators [11],

B3f  of 020 0%¢
_ZJ _Z ———_9 = 4.
F= 98 " Ly oz ¥ Ly o ¢ (4.3)
are chosen with the properties
,Cf[Al + Age + Agein] =0, Ly [144677 + A5ein] =0, L'd)[A@e" + A7677]] =0, (4.4)

where Aj, (j =1,..,7) are the arbitrary constants.
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If ¢ € [0, 1] is the embedding parameter while /¢, hy and &y are the nonzero auxiliary parameters such as
H¢(n), Ho(n) and Hy(n) are the nonzero auxiliary functions respectively, then the zeroth order deformation
equations [16] can be constructed as

(L= )Ls[F(n;<) = fon)] = shpH ()N [F(n; ), ©(m;), 2(n; )], (4.5)
(1 —=<)Lo[O(n; ) — O0(n)] = shoHo(n)Np[F(1;5),0(n;5), ®(n; <)), (4.6
(1 =) Lo[®(n5¢) — do(n)] = sheHyg(mN[F (1), ©(n; <), @(m; )], (4.7)

subject to
F(0;6) =0, F'(0;6)=1, O(0;6)=1, ®(0;6)=1,F(00;5) =0, ©O(00;5) =0, P(c0;6)=0. (4.8)
The nonlinear operators Ny, Ny and Ny are
Ni[F(n;6),0(n;6), ®(n;6)] =F" (n;5) + (1 4+ M>B)F (n; ) F" (n;5) — [F' (n; )]
— (A + M?)F'(;6) 4 28F (1;) F'(1; ) F" (;) (4.9)
— BIE(m; )P F" (n;6) +7[0(n;6) + N®(n; )],

Nl (75). €00 ) ®(i)] = 1+ 3 1) € i) + Pro6 (i

+ PP (n: )0 (n:5) — F'(n:6)0(1:) (4.10)
+ Be[[F" (n;9)]> + M2[F (n;9)7]],
No[F(n56), ©(n;6), @ (1 <)) =" (5 6) + Se[F(m; <)@ (ms <) — F'(1; <) (13 )] (4.11)
— Ser[®'(1;9)@' (n;6) + 0" (1;6) (15 ). ‘
When ¢ =0 and ¢ = 1, we have
F(n;0) = fo(n), F(n:1) = f(n), (4.12)
@(77; O) = 90(’7)a @(77; 1) - 0(77)7 (4'13)
(1;0) = ¢o(n),  @(n;1) = ¢(n). (4.14)
F(n;s), O(n;¢) and ®(n;<) can be expanded in terms of Taylor series of ¢ [16],
+oo
F(n;5) = foln) + Z filn)s', (4.15)
O(n;5) = bo(n) + Ze, (4.16)
O (n;5) = do(n) + Z AOS (4.17)
=1
before the [n,n] Padé-approximants can be generated where
1 [0'F(n;6)]
= | d ] (4.18)
1 [0'0(n;9)]
O1(n) = il % . (4.19)
1 [8'9(n;9)]
du(n) = 35 _%_ i (4.20)
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In order for the deformation equations . to converge at ¢ = 1, the auxiliary parameters and

functions must be properly chosen [16]:

“+o0o
F(n) = folm)+>_ filn)

N
é(n) = do(n) + Y _ di(n)
=1

The mth-order deformation equations can now be obtained as follows [16]:

L[fm(n) = XmFm—1(n)] = higHy ()RE, (1),
Lo[0m (1) — XmOm—1(n)] = hoHo(n)RE, (n),
Ls[6m (1) = Xm&m-1(0)] = higHy ()RS, (1),

subject to
for m > 1, where

-1

R ) =H" = N+ M)+ [+ MPB)fif{ i — ff1)

=0

A -1
+2522fkf i = BY Y frfickf i (0 + Neiy),

1=0 k=0 1=0 k=0

-1

4
R (n) = <1 + 3R) 01 + PTZ[fiequi — fl_1-40i] + Prdb; 4
i=0

-1

+P1"ECZM2ffl TR A4 TR N
=0

-1

-1
RE() =8> [fidi 1 — fi1_itil - Sch R /Y

=0

and

0, m<1
Xm = 1, m>1.

The solutions for the mth-order deformation equations can now be expressed as
fm(n) = fr(n) + Ay + Age” + Age™,
Om(n) = 05, (n) + Ase” + Ase™,
Pm(n) = b (n) + Ase” + Aze™",

where

Afm(n)

Ay=Ay=A4=0,A41=—-A3— f(0), A3= [ an

and [ (n), 0,(n), ¢k, (n) are the resulting equations from the multiple integration process.

} A5 = —05,(0), A7 = —7(0),
n=0

(4.21)

(4.22)

(4.23)

(4.24)
(4.25)
(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)
(4.32)
(4.33)
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5. Results and discussion

The reliability of homotopy analysis method is mainly dependent on convergence control parameter h.
In HAM, proper value of this parameter is defined when the A curve is horizontally straight such that values
of the reduced skin friction coefficient, Nusselt number and Sherwood number become almost stagnant in
the y-direction of the graph. Since this method consumes time, we employ the homotopy-Padé technique
to speed up the convergence of the HAM solutions f. The results are generated in the form
of a fraction with one polynomial of order ™ in the numerator and another polynomial of order ™ in the
denominator. The algorithm for solving the equations f is coded in Mathematica software. In all
computations done, the auxiliary functions Hy(n) =1, Hp(n) = 1 and Hy(n) = 1 are considered. The single
auxiliary parameter / is introduced to represent the values of iy, hg and hy, i.e. h = hy = hg = hy. Based
on Fig. lwhen =7=02, M =y=N=X=1,Pr=3, Sce= Ec=0.5, R=0.3 and § = —1 respectively,
better convergent values can be taken within the close range of —0.3 < A < —0.2 in conventional HAM. On
top of that, if the optimal value of # is to be selected using the optimal homotopy analysis method, it can be
done by minimizing the summation of the discrete squared residual of the governing equations 7,
[19].

4 L] L] L] L] L]
— 7(0)
2F £'(0) 1
----- - 20
0
-2k . ]
-4k .
05 0.4 03 02 01 0.0
h

Figure 2: The h curves for f(0), 6’(0) and ¢'(0) using the 20th-order HAM for the case =7 =02, M = A=~ =N =1,
Pr=3, Sc= FEc=0.5, R=0.3 and 6 = —1 respectively.

The present numerical result and the accelerated convergence of the homotopy solutions via Padé ap-
proximation are presented in Table [ Since we have calculated the HAM solutions with 74 terms, it is
possible to obtain up to [37,37] homotopy-Padé scheme. Note that at the [30,30] order when Pr = 10, all
solutions converge to the [37,37] order of homotopy-Padé within six significant figures. On the other hand,
the present values of —f”(0) obtained using shooting-RK4 method and [20, 20] homotopy-Padé scheme are
compared with numerical results produced by [I] and [22] in Table [2/ when Hartmann number, porosity and
buoyancy parameters are equal to zero while Maxwell parameter is varied. These values agree with each
other up to five significant figures possibly due to discrepancy between numerical and analytical methods
employed. More results of wall skin friction, wall heat flux and wall mass flux are tabulated in Table [3| and
Table {] for variations in Hartmann number, ratio of volumetric towards thermal expansions, porosity, ther-
mophoresis, radiation and heat absorption respectively. As M or X increases, the values of —f”(0) increase
while —60'(0) and —¢'(0) decrease. Opposite effects are accomplished by the ratio of volumetric-thermal
expansions N while thermophoresis replicates the qualitative influences of M and A with exception on the
wall mass transfer —¢'(0). Eventually, thermal radiation R and heat sink § cause all values of —f"(0),
—0'(0) and —¢'(0) to decline as showed in Table
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Table 1: The [n,n] homotopy-Padé approximations when 7 = 3=02, M =A=N=~v=1, Pr=10, Ec= Sc=0.5, R=0.3
and § = —1.

[, 7] —f"(0)  -0'(0) —9'(0)
[5,5]  1.1559440 2.5949672 0.76014478
10,10]  1.1435399 2.6296448 0.84408154
15,15]  1.1420161 2.6341925 0.84158538
20,20]  1.1419568 2.6344352  0.8409284

10, 10]
'
25,25 11419520 2.6344877  0.8409083
[30,30]
[35, 3]
[36, 36]

30, 30 1.1419488 2.6344904  0.8409055
35,35 1.1419483 2.6344911  0.8409050
36, 36 1.1419483 2.6344911  0.8409049

[37,37] 1.1419483 2.6344911  0.8409049
Numerical 1.1419812 2.6344318 0.8409742

Table 2: The values of —f”/(0) when M = X =~ =0 and 3 is varied.

B Ref.ll  Ref[22] Present Results
Numerical [20,20] HAM-Padé

0.0 0.999962 0.999963  1.000000 1.000000

0.2 1.051948 1.051949 1.051890 1.051890

0.4 1.101850 1.101851 1.101904 1.101903

0.6 1.150163 1.150162 1.150143 1.150137

0.8 1.196692 1.196693 1.196722 1.196711

Table 3: The values of f”(0), 6’(0) and ¢'(0) when 7 = 0.2, vy =1, Pr = 3, Sc = Ec = 0.5, 3 = R = 0.3 and § = —1 using
numerical method and [20, 20] homotopy-Padé scheme.

M N A Numerical [20,20] HAM-Padé
—f"(0)  —0(0)  —¢(0) —f"(0) —0'(0) —¢'(0)

0 1 1 0.730603 2.013695 0.841720 0.730511 2.013780 0.841607
05 1 1 0.829239 1.899656 0.816404 0.829132 1.899750 0.816236
1 0 1 1511944 1.380897 0.619069 1.511944 1.380897 0.614536
1 05 1 1.299346 1.500350 0.698009 1.299270 1.500410 0.697227
1 1 0 0.738269 1.703249 0.808438 0.738146 1.703310 0.808331
1 1 05 0.927704 1.647621 0.777160 0.927559 1.647720 0.776932
1 1 1 1.099996 1.589807 0.748344 1.099660 1.589860 0.747996

Table 4: The values of f”(0), 6'(0) and ¢’'(0) when 3 =0.3, M = N =X =~ =1, Pr = 3 and Sc = Ec = 0.5 using numerical
method and [20, 20] homotopy-Padé scheme.
T R 9 Numerical [20,20] HAM-Padé

—f"0)  =0'(0)  —=¢'(0) —f"(0) —0'(0) —4'(0)
0.2 03 -1 1.099996 1.589807 0.748344 1.099660 1.589860 0.747996
0.5 03 -1 1.120546 1.577188 0.938601 1.120373 1.577337 0.938226
0.3 -1 1.152192 1.557277 1.257871 1.152013 1.557439 1.257486
0.5 -1 1.138839 1.448185 1.209956 1.138663 1.448309 1.209572
1.183650 1.973015 1.451393 1.183460 1.973090 1.450862
1 -2 1.154788 1.648550 1.302678 1.154604 1.648647 1.302269
1 -1 1.112279 1.254950 1.127236 1.112115 1.255062 1.126862

o T e S =
—_
1
w
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The effects of Maxwell relaxation time parameter 5, Hartmann number M, porosity A, buoyancy =, ratio
of volumetric-thermal expansions IV, thermal radiation R, Prandtl number Pr, internal heat sink J, Eckert
number Fc¢, Schmidt number Sc¢ and thermophoresis 7 towards the velocity, temperature and concentration
profiles are revealed in Fig. [3]and Fig. [ respectively. The physical behaviors demonstrated in these figures
are conforming the values of wall skin friction, wall heat flux and wall mass flux as enlisted in Table
and Table Based on Fig. (a)7 no significant effect of 5 is detected on the temperature profile. The
flow velocity declines with an increment in M as the applied transverse magnetic field produces a Lorentz
drag force in the opposite direction of the flow. Consequently, this phenomenon induces a slight hike in
the temperature profile due to Lorentz force addendum on the existing skin friction implies more heat to
be transferred from the wall thus heating the flow. These low velocity, high friction and low temperature
on the wall also contribute to increasing mass deposition on the surface. The same consequences of M
are postulated by A in Fig. b) but due to porosity interference in the flow direction. Adversely greater
buoyancy -y assists the flow dynamics and cooling while avoiding concentration build-up near the surface
area. As thermal radiation R proliferates in Fig. c), the flow is streaming and cooling down at a slower
rate leading to faster concentration reduction from the wall. Similar behaviors are observed for expansion
ratio IV except for the flow temperature where the effect is slightly reversed.
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Figure 3: The flow profiles under influences of (a) Hartmann number, (b) buoyancy and (c) thermal radiation when 7 = 0.2,
B=R=03,A=7=1,Pr=3, M =N = Sc= FEc=0.5 and § = —1 respectively.
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Figure 4: The flow profiles under influences of (a) Prandtl number, (b) heat sink and (c) thermophoresis when 7 = 0.2,
A=M=N=1,Pr=3,=v7=R=Sc=Ec=0.5 and § = —1 respectively.
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Prandtl number represents diffusivity ratio of momentum towards energy while a heat sink is a mech-
anism that cools a medium by dissipating heat to surroundings. The differences between a heat source
and a heat sink lie in the opposite sign of the values and in the opposite directions of the progress impact.
As the value of 0 moves closer towards negative axial plane, the effect of heat absorption will come into
practice. On the other hand, thermophoresis tends to drive away mass deposition from the wall surface of
temperature T,, which is hotter than the surroundings. Based on Fig. [4] all velocity profiles increase with
Prandtl number Pr, Eckert number Fc¢ and heat sink §. Since these parameters (excluding () affect directly
the heat equation , primary discussions can be focalized on temperature and concentration profiles.
With higher value of Pr, momentum diffusivity becomes greater than thermal diffusivity. Therefore the
flow temperature slightly declines while the concentration is improved. When the value of § approaching
zero or a positive number, the role of internal heat sink transforms into a heat source factor causing the
flow temperature to hike and lowering the concentration level. On the other hand, warmer temperature
in the flow promotes higher migration of diluted particles to cooler surroundings thus lessening the fluid
concentration near the plate with an increment in thermophoresis. Apparently Eckert and Schmidt numbers
have similar effects towards fluid flow extra heating and lower concentration.

1

1 _
The profiles of reduced skin friction coefficient C' f, ReZ , reduced Nusselt number Nu, Re, ? and reduced
1

Sherwood number Sh,Re, > under influence of internal heat absorption parameter §, thermal radiation
parameter R, Eckert number Fc¢, Maxwell relaxation time parameter 3, buoyancy parameter -, expansion
ratio N, thermophoresis parameter 7 and Schmidt number Sc are illustrated in Figs. respectively.
Thermal radiation is a type of non-ionizing radiation that radiates through space where the thermal energy
is conserved in a vacuum. Conventionally, it is considered as harmless as long as extreme temperature rise
is not produced. From Fig. it is evidenced that as thermal radiation increases, the reduced Nusselt
number is multiplied while the reduced skin friction coefficient and the reduced Sherwood number decline.
Obviously, both internal heat source (by taking positive values of heat absorptilon parame‘ger) and Eckert

1 _1 _1
number contribute to significant reduction of the three physical quantities C' f, ReZ, NuyRe, ? and ShyRey 2
as depicted in Fig. [6] Based on Fig. [5[b) and Fig. [6[(b), it is found that the heat transfer performance is
progressively advanced as the negative sign of the internal heat absorption value is intensified.
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Figure 5: The effects of thermal radiation R and internal heat sink § on (a) reduced skin friction coefficient, (b) reduced Nusselt
number and (c) reduced Sherwood number when 8 =A=7=M =~ =N = Ec= 0.5, Pr = 5, Sc = 0.25 respectively.
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0 = —1 respectively.
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Figure 9: Influence of thermophoresis and Schmidt number Sc on reduced (a) skin friction, (b) Nusselt number and (¢) Sherwood
number when =M =N =A== R=Sc= FEc=0.5, Pr=5, § = —1 respectively.

Maxwell relaxation time parameter, [ is an important factor that sets apart the characteristics between
a general Newtonian fluid as compared to the Maxwell fluid which represents a rate-type of non-Newtonian
fluid. Due to an increase in shear stress property of non-Newtonian fluid towards it’s motion, the layer of the
fluid molecules becomes slightly sticky and the fluid dynamics is slower due to relaxation period is increased
and the flow can now hold sufficiently minimum extra pressure for a bit longer time. The impacts of 5 in
stimulating higher reduced skin friction coefficient as opposed to the flow direction while deflating the heat
and mass fluxes are in contrast consequence with buoyancy v and volumetric-thermal expansion ratio N as
demonstrated in Fig. [7] and Fig. [§ respectively. With greater friction and lower rate of transfer of heat and
mass amounts from the plate, the cooler plate becomes a proper bedding for attracting higher deposition
of diluted micro and nano scaled particles due to accumulating thermophoresis and Schmidt number as
revealed in Fig. 9] Finally the streamlines in Fig. provide a snapshot of the flow field characteristics in
comparison between a general Newtonian fluid (5 = 0) and the Maxwell non-Newtonian fluid (8 # 0) as
the relaxation time parameter is varied.

Figure 10: The flow streamlines in (a) two dimensions and (b) three dimensions when Maxwell parameter is varied.
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6. Concluding remarks

In this study, the influence of internal heat sink as heat dissipating mechanism in the Maxwell fluid flow
past a vertical sheet has been considered. The set of governing equations has been transformed to ordinary
differential equations by means of similarity variables before they are solved using the shooting-RK4 method
validated with homotopy-Padé series acceleration. The present numerical and analytical solutions agree to
each other up to three significant figures at minimum. The profiles of velocity, temperature and concentration
distributions for selected variation of the flow parameters are also presented along with graphical results
of reduced skin friction coefficient, reduced Nusselt number and reduced Sherwood number. The following
points are concluded:

e The buoyancy parameter ~ assists the flow dynamics and cooling while avoiding concentration build-up
near the surface area.

e As thermal radiation R proliferates, the flow is streaming and cooling down at a slower rate leading
to faster concentration reduction from the wall.

e Asthermal radiation increases, the reduced Nusselt number is multiplied while the reduced skin friction
coefficient and the reduced Sherwood number decline.

e All velocity profiles increase with Prandtl number Pr, Eckert number Ec¢ and heat sink §.
e With higher value of Pr, the flow temperature slightly declines while the concentration is improved.

e When the value of § approaching zero or positive number, the role of internal heat sink transforms
into a heat source factor causing the flow temperature to hike and lowering the concentration level.

e It is found that the heat transfer performance is progressively advanced as the internal heat absorption
0 holds greater value in the negative axial direction.

e Warmer temperature in the flow promotes higher migration of diluted particles to cooler surroundings
thus lessening the fluid concentration near the plate with an increment in thermophoresis.

e Eckert and Schmidt numbers contribute similar effects towards fluid flow extra heating and lower
concentration.

e Both internal heat source and Eckert number contribute to significant reduction of the skin friction
coefficient, reduced Nusselt number and reduced Sherwood number.

e The impacts of Maxwell relaxation time parameter § in stimulating higher reduced skin friction coef-
ficient in the flow direction while deflating the heat and mass fluxes are in contrast consequence with
buoyancy v and volumetric-thermal expansion ratio V.

e With greater friction and lower rates of heat and mass transfers, the cooler plate is attracting higher
deposition of diluted micro and nano scaled particles due to accumulating thermophoresis and Schmidt
number.
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