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1. Introduction

Let C be a convex and closed subset of a Banach space E and let B : C × C → R be a bifunction.
Consider the following equilibrium problem in the terminology of Blum and Oettli [4]; find x̄ ∈ C such that
B(x̄, y) ≥ 0, ∀y ∈ C. The equilibrium problem, which was introduced by Ky Fan [15] in 1972, has had a great
impact and influence in the development of several branches of pure and applied sciences. The equilibrium
problem, which includes variational inequality problems, variational inclusion problems, Nash equilibrium
and game theory as special cases, has been shown that it provides a novel and unified treatment of a wide
class of problems which arise in economics, finance, image reconstruction, ecology, transportation, network,
elasticity and optimization; see [3], [12]-[16], [19], and the references therein.

Fixed point methods recently have been used to study solutions of the equilibrium problem. Krasnoselskii-
Mann iteration method, which is also known as a one-step iteration method, is an important method to study

∗Corresponding author
Email addresses: hbgongxy@sohu.com (Xiaoying Gong), hdwangwx@sohu.com (Wenxin Wang)

Received 2015-10-02



X. Gong, W. Wang, J. Nonlinear Sci. Appl. 9 (2016), 1891–1901 1892

fixed points of nonlinear operators, in particular, nonexpansive operators. However, Krasnoselskii-Mann it-
eration only has the weak convergence for nonexpansive mappings; see [17] and the references therein. There
are a lot of real world problems, including economics [20], image recovery [12], quantum physics [13], and
control theory [16], which exist in infinite dimension spaces. In such problems, strong convergence or norm
convergence is often much more desirable than the weak convergence. To obtain the strong convergence of
the Krasnoselskii-Mann iteration, regularization techniques recently have been extensively investigated; see
[7]-[11], [18], [21]-[23], [27]-[32] and the references therein.

In this paper, we suggest and analyze a monotone projection algorithm for the equilibrium problem and
a fixed point problem. Strong convergence of the algorithm is obtained without the aid of compactness
on a non-uniformly convex Banach space. The organization of this paper is as follows. In Section 2, we
provide some necessary preliminaries. In Section 3, convergence analysis of the algorithm is obtained on a
non-uniformly convex Banach space. Some subresults are also provided as corollaries.

2. Preliminaries

Let E be a real Banach space and let E∗ be the dual space of E. Let SE be the unit sphere of E. Recall
that E is said to be a strictly convex space iff ‖x+ y‖ < 2 for all x, y ∈ SE and x 6= y. Recall that E is said
to have a Gâteaux differentiable norm iff

lim
t→0

‖x‖ − ‖x+ ty‖
t

exists for each x, y ∈ SE . In this case, we also say that E is smooth. E is said to have a uniformly Gâteaux
differentiable norm iff for each y ∈ SE , the limit is attained uniformly for all x ∈ SE . E is also said to have
a uniformly Fréchet differentiable norm iff the above limit is attained uniformly for x, y ∈ SE . In this case,
we say that E is uniformly smooth.

Recall that the normalized duality mapping J from E to 2E
∗

is defined by

Jx = {y ∈ E∗ : ‖x‖2 = 〈x, y〉 = ‖y‖2}.

It is known,

• if E is uniformly smooth, then J is uniformly norm-to-norm continuous on every bounded subset of
E;

• if E is a strictly convex Banach space, then J is strictly monotone;

• if E is a smooth Banach space, then J is single-valued and demicontinuous, i.e., continuous from the
strong topology of E to the weak star topology of E;

• if E is a reflexive and strictly convex Banach space with a strictly convex dual E∗ and J∗ : E∗ → E
is the normalized duality mapping in E∗, then J−1 = J∗;

• if E is a smooth, strictly convex and reflexive Banach space, then J is single-valued, one-to-one and
onto;

• if E is uniformly smooth, then it is smooth and reflexive.

It is also known that E∗ is uniformly convex if and only if E is uniformly smooth.
From now on, we use ⇀ and → to stand for the weak convergence and strong convergence, respectively.
Recall that E is said to have the Kadec-Klee property iff limn→∞ ‖xn − x‖ = 0 as n → ∞, for any

sequence {xn} ⊂ E, and x ∈ E with xn ⇀ x, and ‖xn‖ → ‖x‖ as n→∞.
Let C be a convex and closed subset of E and let T be a mapping on C. Recall that a point p is said to be

a fixed point of T iff p = Tp. T is said to be closed iff for any sequence {xn} ⊂ C such that limn→∞ xn = x′



X. Gong, W. Wang, J. Nonlinear Sci. Appl. 9 (2016), 1891–1901 1893

and limn→∞ Txn = y′, then x′ ∈ D(T ) and Tx′ = y′. Let D be a bounded subset of C. Recall that T is
said to be uniformly asymptotically regular on C iff

lim sup
n→∞

sup
x∈D
{‖Tn+1x− Tnx‖} = 0.

Next, we assume that E is a smooth Banach space which means J is single-valued. Study the functional

φ(x, y) := ‖x‖2 + ‖y‖2 − 2〈x, Jy〉, ∀x, y ∈ E.

Let C be a closed convex subset of a real Hilbert space H. For any x ∈ H, there exists a unique nearest
point in C, denoted by PCx, such that ‖x − PCx‖ ≤ ‖x − y‖, for all y ∈ C. The operator PC is called
the metric projection from H onto C. It is known that PC is firmly nonexpansive. In [2], Alber studied a
new mapping ΠC in a Banach space E which is an analogue of PC , the metric projection, in Hilbert spaces.
Recall that the generalized projection ΠC : E → C is a mapping that assigns to an arbitrary point x ∈ E
the minimum point of φ(x, y), which implies from the definition of φ that

φ(x, y)− φ(x, z) = φ(z, y) + 2〈x− z, Jz − Jy〉, ∀x, y, z ∈ E, (2.1)

and
(‖y‖+ ‖x‖)2 ≥ φ(x, y) ≥ (‖x‖ − ‖y‖)2, ∀x, y ∈ E. (2.2)

Recall that T is said to be quasi-φ-nonexpansive [23] iff

Fix(T ) 6= ∅, φ(p, Tx) ≤ φ(p, x), ∀x ∈ C,∀p ∈ Fix(T ).

In the framework of Hilbert spaces, it reduces to the

Fix(T ) 6= ∅, ‖p− Tx‖ ≤ ‖p− x‖, ∀x ∈ C,∀p ∈ Fix(T ).

T is said to be asymptotically quasi-φ-nonexpansive [24] iff there exists a sequence {µn} ⊂ [0,∞) with
µn → 0 as n→∞ such that

Fix(T ) 6= ∅, φ(p, Tnx) ≤ (µn + 1)φ(p, x), ∀x ∈ C,∀p ∈ Fix(T ), ∀n ≥ 1.

In the framework of Hilbert spaces, it reduces to the

Fix(T ) 6= ∅, ‖p− Tnx‖ ≤
√
µn + 1‖p− x‖, ∀x ∈ C,∀p ∈ Fix(T ).

Remark 2.1. The class of asymptotically quasi-φ-nonexpansive mappings and the class of quasi-φ-nonexpansive
mappings are more desirable than the class of asymptotically relatively nonexpansive mappings and the class
of relatively nonexpansive mappings; see [1] and [6] and the references therein.

T is said to be asymptotically quasi-φ-nonexpansive in the intermediate sense [25] iff Fix(T ) 6= ∅ and

lim sup
n→∞

sup
p∈Fix(T ),x∈C

(
φ(p, Tnx)− φ(p, x)

)
≤ 0.

Putting ξn = max{0, supp∈Fix(T ),x∈C
(
φ(p, Tnx)− φ(p, x)

)
}, we see ξn → 0 as n→∞. It follows that

φ(p, Tnx) ≤ φ(p, x) + ξn, ∀x ∈ C,∀p ∈ Fix(T ),∀n ≥ 1.

In the framework of Hilbert spaces, it reduces to the

lim sup
n→∞

sup
p∈Fix(T ),x∈C

(
‖p− Tnx‖ − |p− x‖

)
≤ 0.
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Remark 2.2. The class of asymptotically quasi-φ-nonexpansive mappings in the intermediate sense [25] is
reduced to the class of asymptotically quasi-nonexpansive mappings in the intermediate sense, which was
considered in [5] as a non-Lipschitz continuous mapping, in the framework of Hilbert spaces.

Let B : C × C → R be a bifunction. Recall that the following equilibrium problem in the terminology
of Blum and Oettli [4]: find x̄ ∈ C such that B(x̄, y) ≥ 0, ∀y ∈ C. We use Sol(B) to denote the solution set
of the equilibrium problem. That is, Sol(B) = {x ∈ C : B(x, y) ≥ 0,∀y ∈ C}. The following restrictions on
bifunction B are essential in this paper.

(R-1) B(a, a) ≡ 0,∀a ∈ C;

(R-2) B(b, a) +B(a, b) ≤ 0,∀a, b ∈ C;

(R-3) B(a, b) ≥ lim supt↓0B(tc+ (1− t)a, b), ∀a, b, c ∈ C;

(R-4) b 7→ B(a, b) is convex and lower semi-continuous, ∀a ∈ C.

We remark here that B is said to be monotone iff B(x, y) + B(y, x) ≤ 0 for all x, y ∈ C. y 7→ B(x, y) is
convex iff B(tx+ (1− t)y, z) ≤ tB(x, z) + (1− t)B(y, z) for all x, y, z ∈ C and t ∈ (0, 1). y 7→ B(x, y) is lower
semi-continuous iff B(x, yn)→ B(x, y) whenever yn → y as n→∞. It is known that the indicator function
of an open set is lower semi-continuous.

In addition, we also need the following lemmas to prove our main results.

Lemma 2.3 ([4]). Let E be a strictly convex, reflexive, and smooth Banach space and let C be a closed and
convex subset of E. Let x ∈ E. Then 〈y − x0, Jx− Jx0〉 ≤ 0, ∀y ∈ C if and only if x0 = ΠCx and

φ(y,ΠCx) ≤ φ(y, x)− φ(ΠCx, x), ∀y ∈ C.

Lemma 2.4 ([4], [23]). Let E be a strictly convex, smooth, and reflexive Banach space and let C be a closed
convex subset of E. Let B be a bifunction with restrictions (R-1), (R-2), (R-3) and (R-4). Let x ∈ E and
let r > 0. Then there exists z ∈ C such that rB(z, y) ≤ 〈y− z, Jz−Jx〉, ∀y ∈ C. Define a mapping WB,r by

WB,rx = {z ∈ C : rB(z, y) + 〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C}.

The following conclusions hold:

(1) WB,r is single-valued quasi-φ-nonexpansive.

(2) Sol(B) = Fix(WB,r) is closed and convex.

Lemma 2.5 ([26]). Let E be a uniformly convex Banach space and let r be a positive real number. Then
there exists a convex, strictly increasing and continuous function λ : [0, 2r]→ R such that λ(0) = 0 and

‖(1− t)b+ ta‖2 + t(1− t)λ(‖b− a‖) ≤ t‖a‖2 + (1− t)‖b‖2

for all a, b ∈ SE
r := {a ∈ E : ‖a‖ ≤ r} and t ∈ [0, 1].

3. Main results

Theorem 3.1. Let E be a strictly convex and uniformly smooth Banach space which also has the Kadec-Klee
property. Let C be a convex and closed subset of E and let B be a bifunction with conditions (R-1), (R-2),
(R-3) and (R-4). Let T be an asymptotically quasi-φ-nonexpansive mapping in the intermediate sense on
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C. Assume that T is uniformly asymptotically regular and closed on C and Fix(T ) ∩ Sol(B) is nonempty.
Let {xn} be a sequence generated by

x0 ∈ E chosen arbitrarily,

C1 = C,

x1 = ΠC1x0,

rnB(un, µ) ≥ 〈un − µ, Jun − Jxn〉,∀µ ∈ Cn,

yn = J−1
(
(1− αn)Jun + αnJT

nxn
)
,

Cn+1 = {z ∈ Cn : φ(z, xn) + ξn ≥ φ(z, yn)},
xn+1 = ΠCn+1x1,

where {αn} is a real sequence in (0,1) such that lim infn→∞ αn(1−αn) > 0, {rn} ⊂ [r,∞) is a real sequence,
where r is some positive real number and ξn = max{supp∈Fix(T ),x∈C

(
φ(p, Tnx) − φ(p, x)

)
, 0}. Then {xn}

converges strongly to ΠFix(T )∩Sol(B)x1.

Proof. Let e, f ∈ Fix(T ), and g = se + (1 − s)f , where s ∈ (0, 1). Note that φ(e, Tng) ≤ φ(e, g) + ξn, and
φ(f, Tng) ≤ φ(f, g) + ξn. In view of (2.1), we obtain that

φ(e, Tng) = φ(e, g) + 2〈e− g, Jg − JTng〉+ φ(g, Tng),

and
φ(f, Tng) = φ(f, g) + 2〈f − g, Jg − JTng〉+ φ(g, Tng).

It follows that
φ(g, Tng) ≤ 2〈g − e, Jg − J(Tng)〉+ ξn, (3.1)

and
φ(g, Tng) ≤ 2〈g − f, Jg − J(Tng)〉+ ξn. (3.2)

Multiplying 1− s and s on the both sides of (3.1) and (3.2), respectively yields that φ(g, Tng) ≤ ξn. Hence,
one has limn→∞ ‖Tng‖ = ‖g‖. Since E is uniformly smooth, we have E∗ is uniformly convex. Hence, E∗ is
reflexive, we may, without loss of generality, assume that J(Tng) ⇀ v∗ ∈ E∗. In view of the reflexivity of
E, we have J(E) = E∗. This shows that there exists an element v ∈ E such that Jv = v∗. It follows that

φ(g, Tng) = ‖g‖2 − 2〈g, J(Tng)〉+ ‖J(Tng)‖2.

Taking lim infn→∞ on the both sides of the equality above, we obtain that

0 ≥ ‖g‖2 − 2〈g, v∗〉+ ‖v∗‖2

= ‖g‖2 − 2〈g, Jv〉+ ‖Jv‖2

= ‖g‖2 − 2〈g, Jv〉+ ‖v‖2

= φ(g, v)

≥ 0.

This implies that g = v, that is, Jg = v∗. It follows that

J(Tng) ⇀ Jg ∈ E∗.

Using the Kadec-Klee property of E∗, we obtain

lim
n→∞

‖J(Tng)− Jg‖ = 0.
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Since J−1 is a demicontinuous mapping, we see that Tng ⇀ g. By virtue of the Kadec-Klee property of E,
we see Tng → g as n→∞. Hence, TTng = Tn+1g → g, as n→∞. In view of the closedness of T , we obtain
that g ∈ Fix(T ). This shows that Fix(T ) is convex. Using Lemma 2.4, we find that Sol(B) is convex and
closed. This proves that Sol(B) ∩ Fix(T ) is convex and closed. So, ProjSol(B)∩Fix(T )x is well defined, for
any element x in E.

Next, we prove that Cn is convex and closed. It is obvious that C1 = C is convex and closed. Assume
that Cm is convex and closed for some m ≥ 1. Let p1, p2 ∈ Cm+1. It follows that

p = sp1 + (1− s)p2 ∈ Cm,

where s ∈ (0, 1). Notice that
φ(p1, ym)− φ(p1, xm) ≤ ξm,

and
φ(p2, ym)− φ(p2, xm) ≤ ξm.

Hence, one has
2〈p1, Jxm − Jym〉 − ‖xm‖2 ≤ ξm − ‖um‖2,

and
2〈p2, Jxm − Jym〉 − ‖xm‖2 ≤ ξm − ‖um‖2.

Using the above two inequalities, one has

φ(p, xm) + ξm ≥ φ(z, ym).

This shows that Cm+1 is closed and convex. Hence, Cn is a convex and closed set. This proves that ΠCn+1x1
is well defined.

Next, we prove Sol(B) ∩ Fix(T ) ⊂ Cn. Note that Sol(B) ∩ Fix(T ) ⊂ C1 = C is clear. Suppose that
Sol(B) ∩ Fix(T ) ⊂ Cm for some positive integer m. For any w ∈ Sol(B) ∩ Fix(T ) ⊂ Cm, we see that

φ(w, ym) = ‖(1− αm)Jum + αmJT
mxm‖2 + ‖w‖2

− 2〈w, (1− αm)Jum + αmJT
mxm〉

≤ (1− αm)‖um‖2 + αm‖Tmxm‖2 + ‖w‖2

− 2(1− αm)〈w, Jum〉 − 2αm〈w, JTmxm〉
= (1− αm)φ(w, um) + αmφ(w, Tmxm)

≤ φ(w, xm) + αmξm,

where
ξm = max{ sup

p∈Fix(T ),x∈C

(
φ(p, Tmx)− φ(p, x)

)
, 0}.

This shows that w ∈ Cm+1. This implies that Sol(B) ∩ Fix(T ) ⊂ Cn. Using Lemma 2.3, one has
〈z − xn, Jx1 − Jxn〉 ≤ 0, for all z ∈ Cn. It follows that

〈w − xn, Jx1 − Jxn〉 ≤ 0,∀w ∈ Sol(B) ∩ Fix(T ) ⊂ Cn.

Using Lemma 2.3 yields that
φ(xn, x1) ≤ φ(ΠFix(T )∩Sol(B)x1, x1),

which implies that {φ(xn, x1)} and {xn} are bounded. Since E is a reflexive Banach space, we may assume
that xn ⇀ x̄ ∈ Cn. Therefore, one has

φ(xn, x1) ≤ φ(x̄, x1).
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This implies that

φ(x̄, x1) ≤ lim inf
n→∞

(‖xn‖2 + ‖x1‖2 − 2〈xn, Jx1〉) = lim inf
n→∞

φ(xn, x1) ≤ φ(x̄, x1).

It follows that
lim
n→∞

φ(xn, x1) = φ(x̄, x1).

Hence, we have limn→∞ ‖xn‖ = ‖x̄‖. Using the Kadec-Klee of the spaces, one obtains that sequence {xn}
converges strongly to x̄ as n→∞. It follows that

φ(xn+1, xn) ≤ φ(xn+1, x1)− φ(xn, x1).

Therefore, we have
lim
n→∞

φ(xn+1, xn) = 0.

Since xn+1 ∈ Cn+1, one sees that

0 ≤ φ(xn+1, yn) ≤ φ(xn+1, xn) + ξn.

It follows that
lim
n→∞

φ(xn+1, yn) = 0.

Hence, one has
lim
n→∞

(‖yn‖ − ‖xn+1‖) = 0.

This implies that
lim
n→∞

‖Jyn‖ = lim
n→∞

‖yn‖ = ‖x̄‖ = ‖Jx̄‖.

This implies that {Jyn} is bounded. Assume that {Jyn} converges weakly to y∗ ∈ E∗. In view of the
reflexivity of E, we see J(E) = E∗. This shows that there exists an element y ∈ E such that Jy = y∗. It
follows that

φ(xn+1, yn) + 2〈xn+1, Jyn〉 = ‖xn+1‖2 + ‖Jyn‖2.

Taking lim infn→∞, one has
0 ≥ ‖x̄‖2 − 2〈x̄, y∗〉+ ‖y∗‖2

= ‖x̄‖2 + ‖Jy‖2 − 2〈x̄, Jy〉
= φ(x̄, y)

≥ 0.

That is, x̄ = y, which in turn implies that Jx̄ = y∗. Hence, Jyn ⇀ Jx̄ ∈ E∗. Using the Kadec-Klee property
again, we obtain limn→∞ Jyn = Jx̄. Since J−1 is demi-continuous and E has the Kadec-Klee property, one
gets yn → x̄, as n→∞. It follows that

lim
n→∞

(
φ(z, xn)− φ(z, yn)

)
= 0, ∀z ∈ Fix(T ) ∩ Sol(B). (3.3)

By using Lemma 2.5, one has

φ(z, yn) ≤ (1− αn)‖un‖2 + αn‖Tnxn‖2 + ‖z‖2

− 2(1− αn)〈z, Jun〉 − 2αn〈z, JTnxn〉 − αn(1− αn)λ(‖Jun − JTnxn‖)
= (1− αn)φ(z, un)− αn(1− αn)λ(‖Jun − JTnxn‖) + αnφ(z, Tnxn)

≤ φ(z, xn)− αn(1− αn)λ(‖Jun − JTnxn‖) + αnξn,

where
ξm = max{ sup

p∈Fix(T ),x∈C

(
φ(p, Tmx)− φ(p, x)

)
, 0}.
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Using (3.3) and Lemma 2.5, one has

lim
j→∞

‖|Jun − JTnxn‖ = 0.

It follows that JTnxn → Jx̄. Since J−1 : E∗ → E is demi-continuous, one has Tnxn ⇀ x̄. This further
implies ‖Tnxn‖ → ‖x̄‖ as n→∞. Since E has the Kadec-Klee property, one has

lim
n→∞

‖|x̄− Tnxn‖ = 0.

Since T is also uniformly asymptotically regular, one has limn→∞ ‖x̄−Tn+1xn‖ = 0. That is, T (Tnxn)→ x̄.
Using the closedness of T , we find T x̄ = x̄. This proves x̄ ∈ Fix(T ).

Next, we show that x̄ ∈ Sol(B). Since B is monotone, we find that B(µ, x̄) ≤ 0. For 0 < t < 1, define

µt = (1− t)x̄+ tµ.

This implies that 0 ≥ B(µt, x̄). Hence, we have

0 = B(µt, µt) ≤ tB(µt, µ).

It follows that B(x̄, µ) ≥ 0, ∀µ ∈ C. This implies that x̄ ∈ Sol(B).
Finally, we prove x̄ = ΠSol(B)∩Fix(T )x1. Note the fact 〈xn − z, Jx1 − Jxn〉 ≥ 0, ∀z ∈ Sol(B) ∩ Fix(T ).

It follows that
〈x̄− z, Jx1 − Jx̄〉 ≥ 0, ∀z ∈ Fix(T ) ∩ Sol(B).

Using Lemma 2.3, we find that that x̄ = ΠFix(T )∩Sol(B)x1. This completes the proof.

Remark 3.2. Theorem 3.1, which mainly improves the corresponding results in [18], [23], [31], [32], unify
the recent results of the monotone projection algorithms. The nonlinear mapping in Theorem 3.1 is more
generalized than the corresponding results in the literature which only involve (asymptotically) quasi-φ-
nonexpansive mappings. The sequence {un} is generated shrinkingly instead of always finding in set C
and it also deserves mentioning that there is no bounded restriction imposed on the common solution set
Fix(T ) ∩ Sol(B).

If T is a quadi-φ-nonexpansive mapping, we have the following result.

Corollary 3.3. Let E be a strictly convex and uniformly smooth Banach space which also has the Kadec-
Klee property. Let C be a convex and closed subset of E and let B be a bifunction with conditions (R-1),
(R-2), (R-3) and (R-4). Let T be an asymptotically quasi-φ-nonexpansive mapping on C. Assume that T
is closed on C and Fix(T ) ∩ Sol(B) is nonempty. Let {xn} be a sequence generated by

x0 ∈ E chosen arbitrarily,

C1 = C,

x1 = ΠC1x0,

rnB(un, µ) ≥ 〈un − µ, Jun − Jxn〉,∀µ ∈ Cn,

yn = J−1
(
(1− αn)Jun + αnJTxn

)
,

Cn+1 = {z ∈ Cn : φ(z, xn) ≥ φ(z, yn)},
xn+1 = ΠCn+1x1,

where {αn} is a real sequence in (0,1) such that lim infn→∞ αn(1−αn) > 0, {rn} ⊂ [r,∞) is a real sequence,
where r is some positive real number. Then {xn} converges strongly to ΠFix(T )∩Sol(B)x1.

From Theorem 3.1, the following results are not hard to derive.
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Corollary 3.4. Let E be a strictly convex and uniformly smooth Banach space which also has the Kadec-
Klee property. Let C be a convex and closed subset of E and let B be a bifunction with conditions (R-1),
(R-2), (R-3) and (R-4) such that Sol(B) 6= ∅. Let {xn} be a sequence generated by

x0 ∈ E chosen arbitrarily,

C1 = C,

x1 = ΠC1x0,

rnB(un, µ) ≥ 〈un − µ, Jun − Jxn〉,∀µ ∈ Cn,

yn = J−1
(
(1− αn)Jun + αnJxn

)
,

Cn+1 = {z ∈ Cn : φ(z, xn) ≥ φ(z, yn)},
xn+1 = ΠCn+1x1,

where {αn} is a real sequence in (0,1) such that lim infn→∞ αn(1−αn) > 0, {rn} ⊂ [r,∞) is a real sequence,
where r is some positive real number. Then {xn} converges strongly to ΠSol(B)x1.

Corollary 3.5. Let E be a strictly convex and uniformly smooth Banach space which also has the Kadec-
Klee property. Let C be a convex and closed subset of E. Let T be an asymptotically quasi-φ-nonexpansive
mapping in the intermediate sense on C. Assume that T is uniformly asymptotically regular and closed on
C and Fix(T ) is nonempty. Let {xn} be a sequence generated by

x0 ∈ E chosen arbitrarily,

C1 = C,

x1 = ΠC1x0,

yn = J−1
(
(1− αn)Jxn + αnJT

nxn
)
,

Cn+1 = {z ∈ Cn : φ(z, xn) + ξn ≥ φ(z, yn)},
xn+1 = ΠCn+1x1,

where ξn = max{supp∈Fix(T ),x∈C
(
φ(p, Tnx)−φ(p, x)

)
, 0}, {αn} is a real sequence in (0,1) such that lim infn→∞

αn(1− αn) > 0. Then {xn} converges strongly to ΠFix(T )∩Sol(B)x1.

In the framework of Hilbert spaces, one has
√
φ(x, y) = ‖x− y‖, ∀x, y ∈ E. The generalized projection

is reduced to the metric projection and the class of asymptotically quasi-φ-nonexpansive mappings in the
intermediate sense is reduced to the class of asymptotically quasi-nonexpansive mappings in the intermediate
sense. Using Theorem 3.1, we also have the following results.

Corollary 3.6. Let E be a Hilbert space. Let C be a convex and closed subset of E and let B be a bifunction
with conditions (R-1), (R-2), (R-3) and (R-4). Let T be an asymptotically quasi-nonexpansive mapping in
the intermediate sense on C. Assume that T is uniformly asymptotically regular and closed on C and
Fix(T ) ∩ Sol(B) is nonempty. Let {xn} be a sequence generated by

x0 ∈ E chosen arbitrarily,

C1 = C,

x1 = PC1x0,

rnB(un, µ) ≥ 〈un − µ, un − xn〉,∀µ ∈ Cn,

yn = (1− αn)Jun + αnJT
nxn,

Cn+1 = {z ∈ Cn : ‖xn − z‖2 + ξn ≥ ‖z − yn‖2},
xn+1 = PCn+1x1,

where {αn} is a real sequence in (0,1) such that lim infn→∞ αn(1−αn) > 0, {rn} ⊂ [r,∞) is a real sequence,
where r is some positive real number and ξn = max{supp∈Fix(T ),x∈C

(
‖p−Tnx‖2−‖p−x‖2

)
, 0}. Then {xn}

converges strongly to ΠFix(T )∩Sol(B)x1.
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