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Abstract

In this work we use fixed point theorem method to discuss the existence of positive solutions for the
impulsive boundary value problem with Caputo fractional derivative

cDq
tu(t) = f(t, u(t)), a.e. t ∈ [0, 1];

∆u(tk) = Ik(u(tk)), ∆u′(tk) = Jk(u(tk)), k = 1, 2, . . . ,m;

au(0)− bu(1) = 0, au′(0)− bu′(1) = 0,

where q ∈ (1, 2) is a real number, a, b are real constants with a > b > 0, and cDq
t is the Caputo’s fractional

derivative of order q, f : [0, 1]× R+ → R+ and Ik, Jk : R+ → R+ are continuous functions, k = 1, 2, . . . ,m,
R+ := [0,+∞). c©2016 All rights reserved.

Keywords: Caputo fractional derivative, impulsive boundary value problem, fixed point theorem, positive
solution.
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1. Introduction

In this work we study the impulsive boundary value problem with Caputo fractional derivative
cDq

tu(t) = f(t, u(t)), a.e. t ∈ [0, 1];

∆u(tk) = Ik(u(tk)), ∆u′(tk) = Jk(u(tk)), k = 1, 2, . . . ,m;

au(0)− bu(1) = 0, au′(0)− bu′(1) = 0,

(1.1)
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where q ∈ (1, 2) is a real number, a, b are real constants with a > b > 0, and cDq
t is the Caputo’s fractional

derivative of order q; tk(k = 1, 2, . . . ,m, m ≥ 1 is a fixed integer) are constants with 0 = t0 < t1 < · · · <
tm < tm+1 = 1, u(t+k ) = limh→0 u(tk + h) and u(t−k ) = limh→0 u(tk − h) represent the right-hand and
left-hand limits of u(t) at t = tk, respectively. Moreover, f, Ik, and Jk satisfy the condition:
(H1). f : [0, 1]× R+ → R+ and Ik, Jk : R+ → R+(k = 1, 2, . . . ,m) are continuous functions.

Denote J = [0, 1], J0 = [0, t1], Jk = (tk, tk+1](k = 1, 2, . . . ,m). Furthermore, we define

PC(J) = {u|u : J → Ris continuous att 6= tk, and u(t+k ), u(t−k ) exist, u(t−k ) = u(tk), k = 1, 2, . . . ,m}.

Clearly, PC(J) is a Banach space with the norm ‖u‖ = supt∈J |u(t)| for u ∈ PC(J). Note that C(J), which
represents the set of all continuous functions on J , is also a Banach space with ‖u‖.

As is well known, it is an important method to express the solutions of differential equations by Green’s
function. However, for impulsive differential equations of fractional order (see [1–5, 9, 11, 14, 15, 17–19] and
the references therein), their integral forms are very complicated, and cannot be formulated by virtue of
some suitable Green’s functions. For example, in [14], Wang, Ahmad and Zhang investigated the existence
and uniqueness of solutions for a mixed boundary value problem of fractional differential equations with
impulses 

cDαu(t) = f(t, u(t)), 1 < α ≤ 2, t ∈ J ′;
∆u(tk) = Ik(u(tk)), ∆u′(tk) = I∗k(u(tk)), k = 1, 2, . . . , p;

Tu′(0) = −au(0)− bu(T ), Tu′(T ) = cu(0) + du(T ),

which can be written in the form

u(t) =

∫ t

tk

(t− s)α−1

Γ(α)
f(s, u(s))ds+ λ1(t)

∫ T

tp

(T − s)α−1

Γ(α)
f(s, u(s))ds

− λ2(t)
∫ T

tp

(T − s)α−2

Γ(α− 1)
f(s, u(s))ds+

k∑
i=1

[∫ ti

ti−1

(ti − s)α−1

Γ(α)
f(s, u(s))ds+ Ii(u(ti))

]

+
k−1∑
i=1

(tk − ti)

[∫ ti

ti−1

(ti − s)α−2

Γ(α− 1)
f(s, u(s))ds+ I∗i (u(ti))

]

+
k∑
i=1

(t− tk)

[∫ ti

ti−1

(ti − s)α−2

Γ(α− 1)
f(s, u(s))ds+ I∗i (u(ti))

]

+ λ1(t)

p∑
i=1

[∫ ti

ti−1

(ti − s)α−1

Γ(α)
f(s, u(s))ds+ Ii(u(ti))

]

+ λ1(t)

p∑
i=1

(tp − ti)

[∫ ti

ti−1

(ti − s)α−2

Γ(α− 1)
f(s, u(s))ds+ I∗i (u(ti))

]

−
p∑
i=1

[λ3(t) + λ1(t)tp]

[∫ ti

ti−1

(ti − s)α−2

Γ(α− 1)
f(s, u(s))ds+ I∗i (u(ti))

]
.

We all know that impulsive differential equations with integer order can be expressed by Green’s function
(see for example [7, 16, 20]), therefore, it is a natural problem whether or not the same result holds for the
fractional order case. To the best of our knowledge, only [10, 21–23] are devoted to this direction. In [10],
Liu and Jia considered the fractional impulsive differential equations:

cDα
0+u(t) = f(t, u(t), cDβ

0+u(t)), t ∈ J ′;

∆u(tk) = Ik(u(tk),
cDβ

0+u(tk));

∆cDβ
0+u(tk) = Qk(u(tk),

cDβ
0+u(tk)), k = 1, 2, . . . ,m;

u(0) = 0, u(1) =

∫ 1

0
u(t)g(t)dt,
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which can be expressed by

u(t) =

∫ 1

0
G(t, s)f(s, u(s), cDβ

0+u(s))ds+

m∑
i=1

H(t, ti)Ii(u(ti),
cDβ

0+u(ti))

+

m∑
i=1

K(t, ti)Qi(u(ti),
cDβ

0+u(ti)).

By Schauder fixed point theorem and Krasnoselskii fixed point theorem, they established some existence
theorems for the above problem.

Inspired by the above mentioned works, in this paper by Green’s function and fixed point theorem
method, we obtain the existence of (positive) solutions for (1.1) with the assumptions that the growth of f
is superlinear, asymptotically linear and sublinear.

2. Preliminaries

Let us recall some notations and preliminary lemmas of fractional calculus, for more details, see [12, 13].

Definition 2.1. The Riemann-Liouville fractional integral operator of order α > 0, of function f :
(0,+∞)→ (−∞,+∞) is defined as

Iα0+f(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s)ds,

where Γ(·) is the Euler gamma function.

Definition 2.2. The fractional derivative of f in the Caputo sense is defined as

cDα
t f(t) =

1

Γ(n− α)

∫ t

0
(t− s)n−α−1f (n)(s)ds, n− 1 < α < n,

where n = [α] + 1, [α] denotes the integer part of the number α.

Lemma 2.3. Let α > 0. Then the differential equation cDα
t u(t) = 0 has a unique solution

u(t) = c0 + c1t+ · · ·+ cn−1t
n−1

for some ci ∈ R(i = 0, 1, . . . , n− 1), where n = [α] + 1.

Lemma 2.4. Assume that u ∈ C(0, 1) ∩ L(0, 1) with a derivative of order α > 0 that belongs to C(0, 1) ∩
L(0, 1). Then

Iα0+
cDα

t u(t) = u(t) + c0 + c1t+ · · ·+ cn−1t
n−1

for some ci ∈ R(i = 0, 1, . . . , n− 1), where n = [α] + 1.

Lemma 2.5 ([22, Lemma 2.5]). Let y ∈ C(J). Then the unique solution of the boundary value problem
cDq

tu(t) = y(t), a.e. t ∈ [0, 1];

∆u(tk) = Ik(u(tk)), ∆u′(tk) = Jk(u(tk)), k = 1, 2, . . . ,m;

au(0)− bu(1) = 0, au′(0)− bu′(1) = 0,

(2.1)

is given by

u(t) =

∫ 1

0
G1(t, s)y(s)ds+

m∑
i=1

G2(t, ti)Ji(u(ti)) +
m∑
i=1

G3(t, ti)Ii(u(ti)), (2.2)
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where

G1(t, s) =


(t− s)q−1

Γ(q)
+
b(1− s)q−1

(a− b)Γ(q)
+
b(q − 1)t(1− s)q−2

(a− b)Γ(q)
+
b2(q − 1)(1− s)q−2

(a− b)2Γ(q)
, 0 ≤ s ≤ t ≤ 1;

b(1− s)q−1

(a− b)Γ(q)
+
b(q − 1)t(1− s)q−2

(a− b)Γ(q)
+
b2(q − 1)(1− s)q−2

(a− b)2Γ(q)
, 0 ≤ t ≤ s ≤ 1,

(2.3)

G2(t, s) =


ab

(a− b)2
+
a(t− ti)
a− b

, 0 ≤ ti < t ≤ 1, i = 1, 2, . . . ,m;

ab

(a− b)2
+
b(t− ti)
a− b

, 0 ≤ t ≤ ti ≤ 1, i = 1, 2, . . . ,m,

(2.4)

G3(t, s) =


a

a− b
, 0 ≤ ti < t ≤ 1, i = 1, 2, . . . ,m;

b

a− b
, 0 ≤ t ≤ ti ≤ 1, i = 1, 2, . . . ,m.

(2.5)

Lemma 2.6 ([22, Lemma 2.6]). Let a, b be real constants with a > b > 0. Then Gi(i = 1, 2, 3) have the
following properties

(i) G1(t, s) ∈ C(J × J,R+) and G1(t, s) > 0, G2(t, ti) > 0, G3(t, ti) > 0 for all t, ti, s ∈ (0, 1),

(ii) there exists a negative function M(s), s ∈ [0, 1] such that

b

a
M(s) ≤ G1(t, s) ≤M(s),

where

M(s) =
a[(1− s)a− (2− s− q)b](1− s)q−2

(a− b)2Γ(q)
, s ∈ [0, 1],

(iii)
b2

(a− b)2
≤ G2(t, ti) ≤

a2

(a− b)2
,

b

a− b
≤ G3(t, ti) ≤

a

a− b
, ∀t, ti ∈ [0, 1].

For convenience, we need to calculate the following integral

κ1 :=

∫ 1

0
M(s)ds =

a2(q − 1) + abq(q − 2) + ab

q(q − 1)(a− b)2Γ(q)
.

We define the operator A : PC(J)→ PC(J) by

(Au)(t) : =

∫ 1

0
G1(t, s)f(s, u(s))ds+

m∑
i=1

G2(t, ti)Ji(u(ti)) +
m∑
i=1

G3(t, ti)Ii(u(ti)),

where Gi(i = 1, 2, 3) are defined in (2.3), (2.4) and (2.5). Then from Lemma 2.5, solving the solutions of
(1.1) reduces to solve the fixed points of the operator equation u = Au. Furthermore, we can adopt the
Ascoli-Arzela theorem to prove A is a completely continuous operator.

Define P = {u ∈ PC(J) : u(t) ≥ 0, t ∈ [0, 1]}, and P0 = {u ∈ PC(J) : u(t) ≥ b2

a2
‖u‖, t ∈ [0, 1]}. Then

P, P0 are cone on PC(J). Moreover, we easily obtain the following lemma.

Lemma 2.7. A(P ) ⊂ P0.

Let E be a Banach space, P be a cone on E, and BR := {u ∈ E : ‖u‖ < R} for R > 0 in the sequel.

Lemma 2.8 ([6]). Let A : BR ∩ P → P be a completely continuous operator. If there exists v0 ∈ P \ {0}
such that v −Av 6= λv0 for all v ∈ ∂BR ∩ P and λ ≥ 0, then i(A, BR ∩ P, P ) = 0, where i is the fixed point
index on P .
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Lemma 2.9 ([6]). Let A : BR∩P → P be a completely continuous operator. If v 6= λAv for all v ∈ ∂BR∩P
and 0 ≤ λ ≤ 1, then i(A, BR ∩ P, P ) = 1.

Lemma 2.10 ([8]). Let A : E → E be a completely continuous operator. Assume that T : E → E is a
bounded linear operator such that 1 is not an eigenvalue of T and

lim
‖u‖→∞

‖Au− Tu‖
‖u‖

= 0.

Then A has a fixed point in E.

3. Main results

Theorem 3.1. Assume that
(H2). f : [0, 1]× R→ R and Ik, Jk : R→ R(k = 1, 2, . . . ,m) are continuous functions, moreover,

lim
u→∞

f(t, u)

u
= λ, uniformly int ∈ [0, 1],

and

lim
u→∞

Ik(u)

u
= λ, lim

u→∞

Jk(u)

u
= λ, k = 1, 2, . . . ,m.

If

|λ| <
[
κ1 +m

(
a2

(a− b)2
+

a

a− b

)]−1
,

then (1.1) has a nontrivial solution when f(t, 0) 6≡ 0 for t ∈ [0, 1].

Proof. Define T : PC(J)→ PC(J) by

(Tu)(t) := λ

[∫ 1

0
G1(t, s)u(s)ds+

m∑
i=1

G2(t, ti)u(ti) +
m∑
i=1

G3(t, ti)u(ti)

]
. (3.1)

Then T is a bounded linear operator. From Lemma 2.5, equation (3.1) is equivalent to
cDq

tu(t) = λu(t), a.e. t ∈ [0, 1];

∆u(tk) = λu(tk), ∆u′(tk) = λu(tk), k = 1, 2, . . . ,m;

au(0)− bu(1) = 0, au′(0)− bu′(1) = 0.

(3.2)

Next, we consider the following two cases.
Case 1. λ = 0. Equation (3.2) is a problem without impulse, and from Lemma 2.3 we have

u(t) = c0 + c1t

for some ci ∈ R, i = 0, 1. In view of the boundary conditions (3.2), we have c0 = c1 = 0 and thus u(t) ≡ 0
for t ∈ [0, 1]. This shows (3.2) has only a trivial solution.
Case 2. λ 6= 0. From Case 1 we see (3.2) has nontrivial solutions. Let u be a nontrivial solution for (3.2)
and then ‖u‖ > 0. Suppose that 1 is an eigenvalue of T . Then we have

‖u‖ = ‖Tu‖ ≤ |λ|‖u‖

[∫ 1

0
G1(t, s)ds+

m∑
i=1

G2(t, ti) +

m∑
i=1

G3(t, ti)

]

≤ |λ|
[
κ1 +m

(
a2

(a− b)2
+

a

a− b

)]
‖u‖ < ‖u‖.
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This is impossible.
To sum up, 1 is not an eigenvalue of T .
From (H2), for all ε > 0, there exists M > 0 such that

|f(t, u)− λu| ≤ ε|u|, |Ik(u)− λu| ≤ ε|u|, |Jk(u)− λu| ≤ ε|u|, for t ∈ [0, 1], |u| ≥M.

Moreover, if |u| ≤ M , then |f(t, u) − λu|, |Ik(u) − λu| and |Jk(u) − λu| are bounded. Hence, there exists
M1 > 0 such that

|f(t, u)− λu| ≤ ε|u|+M1, |Ik(u)− λu| ≤ ε|u|+M1, |Jk(u)− λu| ≤ ε|u|+M1, for t ∈ [0, 1], u ∈ R.

Hence

‖Au− Tu‖ = sup
t∈[0,1]

∣∣∣∣∣
∫ 1

0
G1(t, s) [f(s, u(s))− λu(s)] ds

+
m∑
i=1

G2(t, ti) [Ji(u(ti))− λu(ti)] +
m∑
i=1

G3(t, ti) [Ii(u(ti))− λu(ti)]

∣∣∣∣∣
≤ sup

t∈[0,1]

∫ 1

0
G1(t, s) |f(s, u(s))− λu(s)| ds

+ sup
t∈[0,1]

m∑
i=1

G2(t, ti) |Ji(u(ti))− λu(ti)|+ sup
t∈[0,1]

m∑
i=1

G3(t, ti) |Ii(u(ti))− λu(ti)|

≤ (ε‖u‖+M1)

[
κ1 +m

(
a2

(a− b)2
+

a

a− b

)]
,

which implies that

lim
‖u‖→∞

‖Au− Tu‖
‖u‖

≤ lim
‖u‖→∞

(ε‖u‖+M1)
[
κ1 +m

(
a2

(a−b)2 + a
a−b

)]
‖u‖

= ε

[
κ1 +m

(
a2

(a− b)2
+

a

a− b

)]
.

Note that the arbitrariness of ε, so

lim
‖u‖→∞

‖Au− Tu‖
‖u‖

= 0.

Therefore, from Lemma 2.10, A has a fixed point in PC(J), that is, (1.1) has at least one solution u.
Further, we can assert that u is nontrivial when f(t, 0) 6≡ 0 for t ∈ [0, 1]. This completes the proof.

In order to establish the following two theorems, we need some conditions as follows:
(H3). There exist c > 0 and a1 ≥ 0, a2 ≥ 0, a3 ≥ 0 satisfying

a3b
4m+ a2b

3(a− b)m > (a− b)2(a2 − aba1κ1)

such that
f(t, u) ≥ a1u− c, Ik(u) ≥ a2u− c, Jk(u) ≥ a3u− c, for all t ∈ [0, 1], u ∈ R+.

(H4). There exist r > 0 and b1 ≥ 0, b2 ≥ 0, b3 ≥ 0 satisfying

(1− κ1b1)b2(a− b)2 > m
[
a4b3 + a3(a− b)b2

]
such that

f(t, u) ≤ b1u, Ik(u) ≤ b2u, Jk(u) ≤ b3u, for all t ∈ [0, 1], u ∈ [0, r].
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(H5). There exist r > 0 and a4 ≥ 0, a5 ≥ 0, a6 ≥ 0 satisfying

a6b
4m+ a5b

3(a− b)m > (a− b)2(a2 − aba4κ1)

such that
f(t, u) ≥ a4u, Ik(u) ≥ a5u, Jk(u) ≥ a6u, for all t ∈ [0, 1], u ∈ [0, r].

(H6). There exist c > 0 and b4 ≥ 0, b5 ≥ 0, b6 ≥ 0 satisfying

(1− κ1b4)b2(a− b)2 > m
[
a4b6 + a3(a− b)b5

]
such that

f(t, u) ≤ b4u+ c, Ik(u) ≤ b5u+ c, Jk(u) ≤ b6u+ c, for all t ∈ [0, 1], u ∈ R+.

Theorem 3.2. Suppose that (H1), (H3) and (H4) hold. Then (1.1) has at least one positive solution.

Proof. Let M1 = {u ∈ P : u = Au + λψ, λ ≥ 0}, where ψ ∈ P0 is a given element. From Lemma 2.7,
u ∈M1 implies that u ∈ P0. We shall prove that M1 is bounded. If u ∈M1, then u ≥ Au. This shows

u(t) ≥
∫ 1

0
G1(t, s)f(s, u(s))ds+

m∑
i=1

G2(t, ti)Ji(u(ti)) +
m∑
i=1

G3(t, ti)Ii(u(ti)). (3.3)

Multiplying by M(t) on both sides of the above and integrating over [0, 1], we obtain∫ 1

0
u(t)M(t)dt ≥

∫ 1

0
M(t)

[∫ 1

0
G1(t, s)f(s, u(s))ds+

m∑
i=1

G2(t, ti)Ji(u(ti)) +

m∑
i=1

G3(t, ti)Ii(u(ti))

]
dt

≥ b

a
κ1

∫ 1

0
f(t, u(t))M(t)dt+

b2

(a− b)2
κ1

m∑
i=1

Ji(u(ti)) +
b

a− b
κ1

m∑
i=1

Ii(u(ti)).

(3.4)

Combining this and (H3), we find∫ 1

0
u(t)M(t)dt ≥ b

a
κ1

∫ 1

0
M(t)(a1u(t)− c)dt+

b2

(a− b)2
κ1

m∑
i=1

(a3u(ti)− c) +
b

a− b
κ1

m∑
i=1

(a2u(ti)− c)

=
b

a
a1κ1

∫ 1

0
u(t)M(t)dt+

b2

(a− b)2
a3κ1

m∑
i=1

u(ti) +
b

a− b
a2κ1

m∑
i=1

u(ti)− c1,
(3.5)

where c1 = bc
a κ

2
1 + b2cm

(a−b)2κ1 + bcm
a−bκ1. Next we consider the following two cases.

Case 1. b
aa1κ1 ≥ 1. From (3.5) and u ∈ P0, we obtain

c1 ≥ (
b

a
a1κ1 − 1)

∫ 1

0
u(t)M(t)dt+

b2

(a− b)2
a3κ1

m∑
i=1

u(ti) +
b

a− b
a2κ1

m∑
i=1

u(ti)

≥ (
b

a
a1κ1 − 1)

∫ 1

0

b2

a2
‖u‖M(t)dt+

b2

(a− b)2
a3κ1

m∑
i=1

b2

a2
‖u‖+

b

a− b
a2κ1

m∑
i=1

b2

a2
‖u‖.

(3.6)

This shows that there exists M2 > 0 such that

‖u‖ ≤ a2(a− b)2

b2
· c1

a3b2κ1m+ a2b(a− b)κ1m+ κ1(a− b)2( baa1κ1 − 1)
:= M2, for all u ∈M1.
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Case 2. b
aa1κ1 < 1. From (3.5), we have

c1 + (1− b

a
a1κ1)

∫ 1

0
u(t)M(t)dt ≥ b2

(a− b)2
a3κ1

m∑
i=1

u(ti) +
b

a− b
a2κ1

m∑
i=1

u(ti). (3.7)

Note that u ∈ P0, we have

c1 + (1− b

a
a1κ1)κ1‖u‖ ≥

b2

(a− b)2
a3κ1

m∑
i=1

b2

a2
‖u‖+

b

a− b
a2κ1

m∑
i=1

b2

a2
‖u‖. (3.8)

Therefore,

‖u‖ ≤ c1a
2(a− b)2

a3b4κ1m+ a2b3(a− b)κ1m− (a− b)2(a2 − aba1κ1)κ1
=: M3, for all u ∈M1.

To sum up, M1 is a bounded set, as required. Taking R > max{M2,M3}, we obtain

u 6= Au+ λψ, for all u ∈ ∂BR ∩ P, λ ≥ 0.

Lemma 2.8 yields
i(A, BR ∩ P, P ) = 0. (3.9)

Let M2 := {u ∈ Br ∩ P : u = λAu, λ ∈ [0, 1]}. We shall prove M2 = {0}. Indeed, if u ∈ M2, we have
u ∈ P0 and

u(t) ≤
∫ 1

0
G1(t, s)f(s, u(s))ds+

m∑
i=1

G2(t, ti)Ji(u(ti)) +
m∑
i=1

G3(t, ti)Ii(u(ti)), for all u ∈ Br ∩ P.

Similar to (3.4), multiplying by M(t) on both sides of the above and integrating over [0, 1], we obtain∫ 1

0
u(t)M(t)dt ≤κ1

∫ 1

0
M(t)f(t, u(t))dt+

a2

(a− b)2
κ1

m∑
i=1

Ji(u(ti))

+
a

a− b
κ1

m∑
i=1

Ii(u(ti)), for all u ∈ Br ∩ P.
(3.10)

This, together with (H4), implies that∫ 1

0
u(t)M(t)dt ≤ κ1b1

∫ 1

0
u(t)M(t)dt+

a2

(a− b)2
b3κ1

m∑
i=1

u(ti) +
a

a− b
b2κ1

m∑
i=1

u(ti). (3.11)

From u ∈ P0 we have

(1− κ1b1)b2

a2
κ1‖u‖ ≤ (1− κ1b1)

∫ 1

0
u(t)M(t)dt ≤ a2

(a− b)2
b3κ1

m∑
i=1

‖u‖+
a

a− b
b2κ1

m∑
i=1

‖u‖,

which contradicts the condition (1−κ1b1)b2
a2

κ1 > m
[

a2

(a−b)2 b3κ1 + a
a−bb2κ1

]
. This implies M2 = {0} and thus

u 6= λAu for all u ∈ ∂Br ∩ P and λ ∈ [0, 1]. Lemma 2.9 yields

i(A, Br ∩ P, P ) = 1. (3.12)

Equations (3.9) and (3.12) imply that

i(A, (BR\Br) ∩ P, P ) = 0− 1 = −1.

Hence the operator A has at least one fixed point on (BR \ Br) ∩ P and therefore (1.1) has at least one
positive solution. This completes the proof.
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Theorem 3.3. Suppose that (H1), (H5) and (H6) hold. Then (1.1) has at least one positive solution.

Proof. LetM3 := {u ∈ Br∩P : u = Au+λψ, λ ≥ 0}, where ψ ∈ P0 is a given element. We claimM3 ⊂ {0}.
Indeed, if u ∈M3, then u ∈ P0 and u ≥ Au. By (H5) and (3.5), we have∫ 1

0
u(t)M(t)dt ≥ b

a
a4κ1

∫ 1

0
u(t)M(t)dt+

b2

(a− b)2
a6κ1

m∑
i=1

u(ti) +
b

a− b
a5κ1

m∑
i=1

u(ti). (3.13)

If b
aa4κ1 ≥ 1, note that u ∈ P0, then

0 ≥ (
b

a
a4κ1 − 1)

∫ 1

0
u(t)M(t)dt+

b2

(a− b)2
a6κ1

m∑
i=1

u(ti) +
b

a− b
a5κ1

m∑
i=1

u(ti)

≥ (
b

a
a4κ1 − 1)

∫ 1

0

b2

a2
‖u‖M(t)dt+

b2

(a− b)2
a6κ1

m∑
i=1

b2

a2
‖u‖+

b

a− b
a5κ1

m∑
i=1

b2

a2
‖u‖.

This shows ‖u‖ ≡ 0, ∀u ∈M3.
If b

aa4κ1 < 1, then

(1− b

a
a4κ1)κ1‖u‖ ≥ (1− b

a
a4κ1)

∫ 1

0
u(t)M(t)dt ≥ b2

(a− b)2
a6κ1

m∑
i=1

u(ti) +
b

a− b
a5κ1

m∑
i=1

u(ti)

≥ b2

(a− b)2
a6κ1

m∑
i=1

b2

a2
‖u‖+

b

a− b
a5κ1

m∑
i=1

b2

a2
‖u‖,

which contradicts the property (1− b
aa4κ1)κ1 < κ1m

[
b2

(a−b)2a6
b2

a2
+ b

a−ba5
b2

a2

]
. This also verify ‖u‖ ≡ 0,∀u ∈

M3.
HenceM3 ⊂ {0}, as claimed. As a result, we have u−Au 6= λψ for all u ∈ ∂Br ∩P and λ ≥ 0. Lemma

2.8 gives
i(A, Br ∩ P, P ) = 0. (3.14)

Let M4 := {u ∈ P : u = λAu, λ ∈ [0, 1]}. We assert M4 is bounded. Indeed, if u ∈ M4, then we have
u ∈ P0 and u ≤ Au, which can be written in the form

u(t) ≤
∫ 1

0
G1(t, s)f(s, u(s))ds+

m∑
i=1

G2(t, ti)Ji(u(ti)) +

m∑
i=1

G3(t, ti)Ii(u(ti)).

By (H6) and (3.10), we obtain∫ 1

0
u(t)M(t)dt ≤ b4κ1

∫ 1

0
u(t)M(t)dt+

a2

(a− b)2
b6κ1

m∑
i=1

u(ti) +
a

a− b
b5κ1

m∑
i=1

u(ti) + c2,

where c2 = κ21c+ a2cm
(a−b)2κ1 + acm

a−bκ1.
From u ∈ P0, we get

(1− b4κ1)b2

a2
κ1‖u‖ ≤ (1− b4κ1)

∫ 1

0
u(t)M(t)dt ≤ a2

(a− b)2
b6κ1

m∑
i=1

u(ti) +
a

a− b
b5κ1

m∑
i=1

u(ti) + c2

≤ a2

(a− b)2
b6κ1

m∑
i=1

‖u‖+
a

a− b
b5κ1

m∑
i=1

‖u‖+ c2.
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Consequently, we see

‖u‖ ≤ c2a
2(a− b)2

(1− κ1b4)b2(a− b)2κ1 − κ1m [a4b6 + a3(a− b)b5]
:= M4.

NowM4 is a bounded set, as asserted. Taking R > M4, we have u 6= λAu for all u ∈ ∂BR∩P and λ ∈ [0, 1].
Lemma 2.9 yields

i(A, BR ∩ P, P ) = 1. (3.15)

Equations (3.14) and (3.15) imply that

i(A, (BR\Br) ∩ P, P ) = 1− 0 = 1.

Hence the operator A has at least one fixed point on (BR \ Br) ∩ P and therefore, (1.1) has at least one
positive solution. This completes the proof.
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