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Abstract

As an application of partial metrics and fuzzy set theory, the concept of L-partial pseudo-quasi-metric
spaces is introduced and its topological properties are investigated. It is shown that L-partial pseudo-quasi-
metrics are reasonable generalizations of partial pseudo-quasi-metrics and pointwise metrics in the sense of
Shi. Also, it is proved that an L-partial pseudo-quasi-metric space can be endowed with an L-cotopology
and a pointwise quasi-uniformity. Moreover, an L-partial pseudo-quasi-metric and its induced pointwise
quasi-uniformity induce the same L-cotopology. c©2016 All rights reserved.
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1. Introduction

Metric spaces play an important part in the research of general topology. Every metric space can
be endowed with a uniformity and a topological structure. And there are close relations among metrics,
uniformities and topological structures. In [10], Matthews introduced the notion of partial metrics, as a part
of the study of denotational semantics of dataflow networks. In particular, he established a nice relationship
between partial metric spaces and the so-called weightable quasi-metric spaces. In a partial metric space,
the self-distance for any point need not be equal to zero. In fact, partial metrics are also generalizations of
metrics. Partial metrics have received much attention for its applications in computer science [11, 14, 15].
Moreover, the existence of several connections between partial metrics and topological aspects of domain
theory has been pointed [16, 17, 18, 23, 24].
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Since Zadeh introduced fuzzy set theory, there have been many different kinds of fuzzy metrics, including
Erceg metric [2], KM metric [9], GV metric [3, 4, 5], pointwise metric [20] and (L,M)-fuzzy metric [21]. In the
framework of fuzzy metric spaces, researchers usually discussed their topological properties. Erceg showed
each Erceg metric space can be endowed with an L-topology and an L-uniformity in the sense of Hutton [7, 8].
Yue and Shi [28] proved each GV metric can induce a fuzzifying topology and a fuzzifying uniformity. Shi
showed each pointwise pseudo-metric space can be equipped with a pointwise quasi-uniformity [19] and each
(L,M)-fuzzy pseudo-quasi-metric space can be equipped with an (L,M)-fuzzy topology. In [12, 13], Pang
and Shi proved that each (L,M)-fuzzy pseudo-quasi-metric (resp. pseudo-metric) space can be endowed
with a pointwise (L,M)-fuzzy quasi-uniformity [25] (resp. uniformity [27]).

As an application of metrics or fuzzy set theory, the concept of fuzzy metrics is actually a combination
of metrics and fuzzy sets. Inspired by this, Yue and Gu [26] proposed the concept of fuzzy partial metrics,
which provided a new research direction for partial metrics. In fact, the notion of fuzzy partial metrics in
the sense of Yue and Gu is a simultaneous generalization of KM metrics and partial metrics. As we all
know, pointwise metrics in the sense of Shi generalized metrics in a different way from KM metrics. Based
on this fact, we will provide a new method to generalize partial metrics in the the sense of pointwise metrics.
Moreover, we will investigate its topological properties.

In this paper, we first generalize pointwise metrics in the sense of Shi and partial metrics in the sense
of Matthews to a more general framework, so called L-partial metrics. Then we shall endow an L-partial
pseudo-quasi-metric space with an L-cotopology and a pointwise quasi-uniformity, and show that an L-
partial pseudo-quasi-metric and its induced pointwise quasi-uniformity induce the same L-cotopology.

2. Preliminaries

Throughout this paper, L denotes a completely distributive lattice. The smallest element and the largest
element in L are denoted by ⊥ and >, respectively. For a, b ∈ L, we say that a is wedge below b in L, in
symbols a ≺ b, if for every subset D ⊆ L,

∨
D > b implies d > a for some d ∈ D [1]. A complete lattice L

is completely distributive if and only if b =
∨
{a ∈ L | a ≺ b} for each b ∈ L. An element a in L is called

co-prime if a 6 b ∨ c implies a 6 b or a 6 c [6]. The set of non-zero co-prime elements in L is denoted by
J(L).

For a nonempty set X, LX denotes the set of all L-subsets on X. LX is also a completely distributive
lattice when it inherits the structure of lattice L in a natural way, by defining ∨, ∧, 6 pointwisely. The set
of non-zero co-prime elements in LX is denoted by J(LX). Each member in J(LX) is also called a point. It
is easy to see that J(LX) is exactly the set of all fuzzy points xλ (λ ∈ J(L)). The smallest element and the
largest element in LX are denoted by ⊥ and >, respectively. Let (LX , η) denote an L-cotopological space,
i.e., η contains ⊥ and >, and is closed under finite unions and arbitrary intersections.

Definition 2.1 ([22]). Let (LX , η) be an L-cotopological space. A closed L-subset P is called a closed
remote-neighborhood (or a closed R-nbd, in short) of e ∈ J(LX) if e 
 P . An L-subset Q is called a
remote-neighborhood (or a R-nbd, in short) of e ∈ J(LX) if there is a closed R-nbd P of e such that P > Q.
For each e ∈ J(LX), η(e) (η−(e)) denotes the set of all R-nbds (closed R-nbds) of e. ξ ⊆ η(e) is called an
R-nbd base of e if ∀P ∈ η(e), ∃Q ∈ ξ such that Q > P .

Definition 2.2 ([22]). (LX , η) is said to be the first countable if each point has a countable R-nbd basis.

Definition 2.3 ([20]). A pointwise pseudo-quasi-metric (pq-metric, in short) on LX is a mapM : J(LX)×
J(LX) −→ [0,+∞) satisfying: ∀a, b, c ∈ J(LX),

(PM1) M(a, a) = 0;

(PM2) M(a, c) 6M(a, b) +M(b, c);

(PM3) M(a, b) =
∧
c≺bM(a, c);

(PM4) a 6 b =⇒M(a, c) 6M(b, c).
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For a pointwise pq-metric M on LX , the pair (X,M) is called a pointwise pq-metric space.

Remark 2.4. In [20], the lattice L is required to be a completely distributive DeMorgan algebra, where ′ is
an order-reversing involution on L. Based on this, Shi defined the concept of a pointwise pseudo-metric on
LX , which is a map M : J(LX)× J(LX) −→ [0,+∞) satisfying (PM1)–(PM4) and

(PM5) Given u, v ∈ J(LX),
∧
a
u′M(a, v) =

∧
b
v′M(b, u).

The pair (X,M) is called a pointwise pseudo-metric space. It will be called a pointwise metric if M
satisfies

(PM6) M(a, b) = 0 if and only if a 6 b.

The pair (X,M) is called a pointwise metric space.

Let D(LX) be the set of all maps from J(LX) to LX such that a 
 d(a) for all a ∈ J(LX). For any
f, g ∈ D(LX), we define:

(1) f 6 g if and only if ∀a ∈ J(LX), f(a) 6 g(a),
(2) (f ∨ g)(a) = f(a) ∨ g(a),
(3) (f � g)(a) =

∧
{f(b) | b 
 g(a)}.

Then we can prove that f ∨ g, f � g ∈ D(LX), f � g 6 f, f � g 6 g and the operations “∨” and “�” satisfy
the associate law.

Definition 2.5 ([19]). A pointwise quasi-uniformity on LX is a nonempty subset U of D(LX) satisfying:

(PU1) f ∈ U , g ∈ D(LX), g 6 f implies g ∈ U ;

(PU2) f, g ∈ U implies f ∨ g ∈ U ;

(PU3) f ∈ U implies ∃g ∈ U such that g � g > f .

For a pointwise quasi-uniformity U on LX , the pair (X,U ) is called a pointwise quasi-uniform space.

Definition 2.6 ([10]). A partial metric on X is a map p : X ×X −→ [0,+∞) satisfying: ∀x, y, z ∈ X,

(P1) p(x, x) 6 p(x, y),

(P2) p(x, y) 6 p(x, z) + p(z, y)− p(z, z),
(P3) p(x, y) = p(y, x),

(P4) x = y iff p(x, y) = p(x, x) = p(y, y).

For a partial metric p on X, the pair (X, p) is called a partial metric space. We call p a partial pseudo-
quasi-metric (pseudo-metric) if it satisfies (P1)–(P2) ((P1)–(P3)).

3. L-partial pseudo-quasi-metrics

In this section, we introduce the concept of L-partial pseudo-quasi-metrics and show that it is a gener-
alization of both pointwise pq-metrics and partial pq-metrics.

Definition 3.1. An L-partial pseudo-quasi-metric (pq-metric, in short) on LX is a map P : J(LX) ×
J(LX) −→ [0,+∞) satisfying: ∀a, b, c ∈ J(LX),

(LPM1) P(a, a) 6 P(a, b);

(LPM2) P(a, b) 6 P(a, c) + P(c, b)− P(c, c);

(LPM3) P(a, b) =
∧
c≺b P(a, c);

(LPM4) a 6 b =⇒ P(a, c)− P(a, a) 6 P(b, c)− P(b, b).

For an L-partial pq-metric P on LX , the pair (X,P) is called an L-partial pq-metric space.
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If ′ is an order-reversing involution on L, then we can define L-partial pseudo-metrics and L-partial
metrics.

Definition 3.2. An L-partial pq-metric on LX is called an L-partial pseudo-metric (p-metric, in short) if
it satisfies

(LPM5) Given u, v ∈ J(LX),
∧
a
u′ P(a, v) =

∧
b
v′ P(b, u).

It will be called an L-partial metric if it satisfies

(LPM6) P(a, a) = P(a, b) = P(b, b) if and only if a 6 b.

Remark 3.3.

(1) If P(a, a) = 0 for all a ∈ J(LX), then this L-partial (pq-, p-) metric is a pointwise (pq-, p-) metric.

(2) If L = {0, 1}, then the axioms (LPM1), (LPM2), (LPM5) and (LPM6) are equivalent to the following
axioms, respectively.

(P1) P(x, x) 6 P(x, y),
(P2) P(x, y) 6 P(x, z) + P(z, y)− P(z, z),
(P3) P(x, y) = P(y, x),
(P4) x = y iff P(x, y) = P(x, x) = P(y, y).

Hence, a {0, 1}-partial (pq-, p-) metric is a partial (pq-, p-) metric. By (1) and (2), we know L-partial
metrics are generalizations of both pointwise metrics and partial metrics.

Example 3.4. Let X = R+, the set of non-negative real numbers and let L = I = [0, 1], the unit interval.
Then J(LX) = {xα | x > 0, α ∈ (0, 1]}. Define P : J(IX)× J(IX) −→ [0,+∞) as follows:

∀xα, yβ ∈ J(IX), P(xα, yβ) = max{x, y}.

We prove that P is an I-partial pq-metric on IX . It suffices to verify that P satisfies (LPM1)–(LPM4). In
fact,

(LPM1) If xα, yβ ∈ J(IX), then P(xα, xα) = x 6 max{x, y} = P(xα, yβ).

(LPM2) Take xα, yβ, zγ ∈ J(IX). Then

P(xα, yβ) + P(yβ, zγ)− P(yβ, yβ) = max{x, y}+ max{y, z} − y
> max{x, z}
= P(xα, zγ).

(LPM3) Take xα, yβ, zγ ∈ J(IX). Then zγ ≺ yβ is equivalent to z = y and γ < β. It therefore follows
that ∧

zγ≺yβ

P(xα, zγ) =
∧
γ<β

P(xα, yγ)

=
∧
γ<β

max{x, y}

= max{x, y} = P(xα, yβ).

(LPM4) Take xα, yβ, zγ ∈ J(IX) with xα 6 yβ. Then x = y and α 6 β. Hence we have

P(xα, zγ)− P(xα, xα) = max{x, z} − x
= max{y, z} − y
= P(yβ, zγ)− P(yβ, yβ).
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In the classical case, we know that each partial pq-metric can induce a pq-metric. In the following
theorem, it is shown that each L-partial pq-metric can also induce a pointwise pq-metric.

Theorem 3.5. Let P be an L-partial pq-metric on LX and define MP : J(LX) × J(LX) −→ [0,+∞) as
follows:

∀a, b ∈ J(LX), MP(a, b) = P(a, b)− P(a, a).

Then MP is a pointwise pq-metric on LX .

Proof. It suffices to prove that MP satisfies (PM1)–(PM4).
(PM1) MP(a, a) = P(a, a)− P(a, a) = 0.
(PM2) Take any a, b, c ∈ J(LX). Then

MP(a, b) +MP(b, c) = P(a, b)− P(a, a) + P(b, c)− P(b, b)

= (P(a, b) + P(b, c)− P(b, b))− P(a, a)

> P(a, c)− P(a, a) (by (LPM2))

=MP(a, c).

(PM3) Take any a, b ∈ J(LX). Then

MP(a, b) = P(a, b)− P(a, a)

=
∧
c≺b
P(a, c)− P(a, a) (by (LPM3))

=
∧
c≺b

(P(a, c)− P(a, a))

=
∧
c≺b
MP(a, c).

(PM4) Take any a, b ∈ J(LX) with a 6 b. Then

MP(a, c) = P(a, c)− P(a, a) 6 P(b, c)− P(b, b) =MP(b, c).

This proves that MP is a pointwise pq-metric on LX .

4. L-cotopologies induced by L-partial pq-metrics

In this section, we demonstrate that an L-partial pseudo-quasi-metric can induce an L-closure operator
and further it can induce an L-cotopology. Moreover, this induced L-cotopology has a countable R-nbd
basis, so it is the first countable.

Definition 4.1. Let P be an L-partial pq-metric on LX and define Rt : J(LX) −→ LX for each t > 0 as
follows:

∀a ∈ J(LX), Rt(a) =
∨
{b ∈ J(LX) | P(a, b)− P(a, a) > t}.

Then {Rt | t ∈ (0,+∞)} is called the family of remote-neighborhood maps (R-nbd maps, in short) of P.

Lemma 4.2. If P is an L-partial pq-metric on LX , then for a, b, c ∈ J(LX), we have

b 6 c =⇒ P(a, c) 6 P(a, b).

Proof. By (LPM3), it follows that

P(a, c) =
∧
e≺c
P(a, e) 6

∧
e≺b
P(a, e) = P(a, b).
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Lemma 4.3. If P is an L-partial pq-metric on LX with the family of R-nbd maps {Rt | t ∈ (0,+∞)}, then
for a, b ∈ J(LX), we have

b 6 Rt(a)⇐⇒ P(a, b)− P(a, a) > t.

Proof. It suffices to show that b 6 Rt(a) =⇒ P(a, b) − P(a, a) > t. Take c ∈ J(LX) with c ≺ b 6 Rt(a).
Then there exists e ∈ J(LX) such that c 6 e and P(a, e) − P(a, a) > t. By Lemma 4.2, it follows that
P(a, c)− P(a, a) > t. By the arbitrariness of c, we obtain

P(a, b)− P(a, a) =
∧
c≺b
P(a, c)− P(a, a) =

∧
c≺b

(P(a, c)− P(a, a)) > t,

as desired.

Theorem 4.4. If P is an L-partial pq-metric on LX with the family of R-nbd maps {Rt | t ∈ (0,+∞)},
then the following statements hold:

(LPR1) ∀a ∈ J(LX),
∧
t>0Rt(a) = ⊥,

(LPR2) ∀a ∈ J(LX), ∀t > 0, a 
 Rt(a),

(LPR3) ∀t, s > 0, Rt �Rs > Rt+s,

(LPR4) ∀a ∈ J(LX), Rt(a) =
∧
s<tRs(a),

(LPR5) ∀t > 0, Rt is order-preserving.

Proof. (LPR1) Suppose that
∧
t>0Rt(a) 6= ⊥ for some a ∈ J(LX). Then there exists b ∈ J(LX) such that

b 6
∧
t>0Rt(a) 6= ⊥. It follows that b 6 Rt(a) for all t > 0. By Lemma 4.3, we have P(a, b) − P(a, a) > t

for all t > 0, which is contradict to P(a, b) ∈ [0,+∞).
(LPR2) Since P(a, a) − P(a, a) = 0 � t for all t > 0, by Lemma 4.3, it follows that a 
 Rt(a) for all

t > 0.
(LPR3) Let a, c ∈ J(LX) with c 
 Rt �Rs(a). By the definition of Rt �Rs, there exists b ∈ J(LX) such

that b 
 Rs(a) and c 
 Rt(b). By Lemma 4.3, we have P(a, b) − P(a, a) < s and P(b, c) − P(b, b) < t.
Hence, with (LPM2), it follows that

P(a, c)− P(a, a) 6 P(a, b) + P(b, c)− P(b, b)− P(a, a) < t+ s.

This implies c 
 Rt+s(a). By the arbitrariness of a and c, we have Rt �Rs > Rt+s.
(LPR4) Take any a, b ∈ J(LX). Then

b 6 Rt(a)⇐⇒ P(a, b)− P(a, a) > t

⇐⇒ ∀s < t, P(a, b)− P(a, a) > s

⇐⇒ ∀s < t, b 6 Rs(a)

⇐⇒ b 6
∧
s<t

Rs(a).

(LPR5) Take any a, b ∈ J(LX) with a 6 b. Then by Lemma 4.3 and with (LPM4), we have

c 6 Rt(a)⇐⇒ P(a, c)− P(a, a) > t

=⇒ P(b, c)− P(b, b) > t

⇐⇒ c 6 Rt(b).

This shows Rt(a) 6 Rt(b), as desired.

Lemma 4.5. Let P be an L-partial pq-metric on LX and define cP : LX −→ LX by

∀A ∈ LX , cP(A) =
∨a ∈ J(LX) |

∧
c6A

P(a, c) = P(a, a)

 .

Then the following statements hold:
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(1) cP(A) =
∨
{a ∈ J(LX) | ∀t > 0, A 
 Rt(a)},

(2) ∀a ∈ J(LX), a 6 cP(A)⇐⇒ ∀t > 0, A 
 Rt(a).

Proof. (1) Put P =
{
a ∈ J(LX) |

∧
c6A P(a, c) = P(a, a)

}
and Q = {a ∈ J(LX) | ∀t > 0, A 
 Rt(a)}. We

need only prove P = Q.
To check P ⊇ Q, take a 6∈ P , which means that

∧
c6A P(a, c) 6= P(a, a). By (LPM1), it follows that

t ,
∧
c6A(P(a, c) − P(a, a)) > 0. Then for each c 6 A, P(a, c) − P(a, a) > t. By Lemma 4.3, we obtain

c 6 Rt(a) for each c 6 A. By the arbitrariness of c, it follows that A 6 Rt(a). This shows a 6∈ Q.
To check P ⊆ Q, take a 6∈ Q. This means that there exists t > 0 such that A 6 Rt(a). For each c 6 A,

it follows that c 6 Rt(a). By Lemma 4.3, we have P(a, c)−P(a, a) > t. By the arbitrariness of c, we obtain∧
c6A

P(a, c)− P(a, a) =
∧
c6A

(P(a, c)− P(a, a)) > t.

This shows a 6∈ P . As a result, we obtain that P = Q, as desired.
(2) The sufficiency is obvious. Next we prove the necessity. Take any t > 0. With (LPR2), we have∨

b≺a b = a 
 R t
2
(a). Then there exists b ∈ J(LX) such that b ≺ a and b 
 R t

2
(a). Further, it follows

from a 6 cP(A) =
∨
{c ∈ J(LX) | ∀s > 0, A 
 Rs(c)} that there exists e ∈ J(LX) such that b 6 e and

∀s > 0, A 
 Rs(e). Put s = t
2 . By (LPR5), we have A 
 R t

2
(e) > R t

2
(b). Hence, A 
 R t

2
(b) and b 
 R t

2
(a).

It therefore follows that A 
 R t
2
�R t

2
(a) > Rt(a). This proves A 
 Rt(a).

Theorem 4.6. If P is an L-partial pq-metric on LX , then cP is an L-closure operator. Moreover, let ηP
denote the L-cotopology induced by cP .

Proof. (LC1) cP(⊥) =
∨
∅ = ⊥, cP(>) =

∨
{a ∈ J(LX)} = >.

(LC2) A 6 cP(A). Take any a ∈ J(LX) with a 
 cP(A). By Lemma 4.5, it follows that there exists t > 0
such that A 6 Rt(a). Since a 
 Rt(a), we obtain a 
 A. By the arbitrariness of a, we obtain A 6 cP(A).

(LC3) cP(A ∨B) = cP(A) ∨ cP(B). Take any a ∈ J(LX) such a 
 cP(A) ∨ cP(B). Then a 
 cP(A) and
a 
 cP(B). By Lemma 4.5, there exist t, s > 0 such that A 6 Rt(a) and B 6 Rs(a). Let r = min{t, s}.
By (LPR4), it follows that A ∨ B 6 Rt(a) ∨ Rs(a) = Rr(a). This implies that a 
 cP(A ∨ B). By the
arbitrariness of a, we obtain cP(A ∨ B) 6 cP(A) ∨ cP(B). The inverse inequality is obvious. Therefore,
cP(A ∨B) = cP(A) ∨ cP(B).

(LC4) cP(cP(A)) = cP(A). By (LC2), cP(cP(A)) > cP(A). To check cP(cP(A)) 6 cP(A), let a ∈ J(LX)
with a 6 cP(cP(A)), by Lemma 4.5, cP(A) 
 R t

2
(a) for all t > 0. Then there exists b ∈ J(LX) such that

b 6 cP(A) and b 
 R t
2
(a). It follow from b 6 cP(A) that A 
 R t

2
(b). With b 
 R t

2
(a), we conclude that

A 
 R t
2
� R t

2
(a) > Rt(a). By Lemma 4.5, we have a 6 cP(A). This proves that cP(cP(A)) 6 cP(A), as

desired.
As a consequence, cP is an L-closure operator. Its induced L-cotopology, denoted by ηP , has the following

form ηP = {A ∈ LX | A = cP(A)}.

Theorem 4.7. If P is an L-partial pq-metric on LX with the family of R-nbd maps {Rt | t ∈ (0,+∞)},
then for each e ∈ J(LX), {Rt(e) | t ∈ (0,+∞)} is an R-nbd base at e in ηP .

Proof. We first prove {Rt(e) | t ∈ (0,+∞)} ⊆ ηP , i.e., cP(Rt(e)) = Rt(e) for all t > 0. Suppose that
cP(Rt(e)) 
 Rt(e), then there exists a ∈ J(LX) such that a 6 cP(Rt(e)) and a 
 Rt(e). Since Rt(e) =∧
s<tRs(e), there exists s < t such that a 
 Rs(e). Put r = t− s. By Lemma 4.5 and with a 6 cP(Rt(e)),

we have Rt(e) 
 Rr(a). Then it follows from Rt(e) 
 Rr(a) and a 
 Rs(e) that Rt(e) 
 Rr � Rs(e) >
Rr+s(e) = Rt(e), which a contradiction. This implies cP(Rt(e)) 6 Rt(e). The inverse inequality is obvious.
Hence, we obtain cP(Rt(e)) = Rt(e). Further, by (LPR2), e 
 Rt(e) for all t > 0. Therefore, by Definition
2.1, we obtain {Rt(e) | t ∈ (0,+∞)} ⊆ η−P (e) ⊆ ηP(e).

Next we show {Rt(e) | t ∈ (0,+∞)} is an R-nbd base at e in ηP . Take any M ∈ ηP(e). Then there
exists N ∈ η−P (e) such that e 
 N > M . Since N ∈ ηP , we have e 
 N = cP(N). By Lemma 4.5, there
exists s > 0 such that Rs(e) > N >M , as desired.
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By Theorem 4.7, the following result is obvious.

Corollary 4.8. If P is an L-partial pq-metric on LX , then (LX , ηP) is the first countable.

5. Pointwise quasi-uniformities induced by L-partial pq-metrics

In this section, we show that an L-partial pq-metric can induce a pointwise quasi-uniformity. Further, we
show that an L-partial pq-metric and its induced pointwise quasi-uniformity induce the same L-cotopology.

Theorem 5.1. If P is an L-partial pq-metric on LX with the family of R-nbd maps {Rt | t ∈ (0,+∞)}, then
{Rt | t ∈ (0,+∞)} is a base for a pointwise quasi-uniformity, which is said to be induced by the L-partial
pq-metric P.

Proof. Define UP ⊆ D(LX) as follows:

UP = {f ∈ D(LX) | ∃t > 0, s.t. f 6 Rt}.

Next we prove UP is a pointwise quasi-uniformity on LX .
(PU1) If f ∈ UP , g ∈ D(LX) and g 6 f , then there exists s > 0 such that g 6 f 6 Rs. This shows

g ∈ UP .
(PU2) If f ∈ UP and g ∈ UP . Then there exist t1, t2 > 0 such that f 6 Rt1 and g 6 Rt2 . Put

t = min{t1, t2}. By (LPR4), we obtain f ∨ g 6 Rt1 ∨Rt2 = Rt. This means f ∨ g ∈ UP .
(PU3) If f ∈ UP , then there exists s > 0 such that f 6 Rs. Let g = R s

2
. Then g�g = R s

2
�R s

2
> Rs > f .

As a result, UP is a pointwise quasi-uniformity on LX , and {Rt | t ∈ (0,+∞)} is one of its bases.

Corollary 5.2. If P is an L-partial pq-metric on LX , then UP defined by

UP = {f ∈ D(LX) | ∃t > 0, s.t. f 6 Rt},

is a pointwise quasi-uniformity on LX , which is said to be induced by the L-partial pq-metric P.

Lemma 5.3 ([19]). Let (LX ,U ) is a pointwise quasi-uniform space and define cU : LX −→ LX as follows:

cU (A) =
∨
{a ∈ J(LX) | ∀f ∈ U , A 
 f(a)}.

Then the following statements hold:

(1) ∀a ∈ J(LX), a 6 cU (A)⇐⇒ ∀f ∈ U , A 
 f(a),

(2) cU is an L-closure operator. Hence, it may induce an L-cotopology, denoted by ηU .

Theorem 5.4. If P is an L-partial pq-metric on LX , then cUP = cP .

Proof. Take any A ∈ LX and a ∈ J(LX). Then

a 6 cUP (A)⇐⇒ ∀f ∈ UP , A 
 f(a) (by Lemma 5.3)

⇐⇒ If t > 0 and f 6 Rt, then A 
 f(a)

⇐⇒ ∀t > 0, A 
 Rt(a)

⇐⇒ a 6 cP(A). (by Lemma 4.5)

This implies cUP (A) = cP(A) for all A ∈ LX , as desired.

Corollary 5.5. If P is an L-partial pq-metric on LX , then ηUP = ηP .
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6. Conclusions

In this paper, we combine partial metrics and fuzzy set theory, and introduced the concept of L-partial
(pq-,p-) metrics. This new concept generalized partial (pq-,p-) metrics to the fuzzy case in a different way
from fuzzy partial metrics in the sense of Yue and Gu. L-partial pq-metrics also possessed nice topological
properties. Each L-partial pq-metric can induce an L-cotopology and a pointwise quasi-uniformity, and an
L-partial pq-metric and its induced pointwise quasi-uniformity induce the same L-cotopology.

As we all know, L-partial metrics can be considered as the combinations of partial metrics and pointwise
metrics, and fuzzy partial metrics in the sense of Yue and Gu can be considered as the combinations of
partial metrics and KM metrics. While (L,M)-fuzzy metrics in the sense of Shi are generalizations of both
pointwise metrics and KM metrics. This motivates us to generalize partial metrics to the (L,M)-fuzzy case.
In the future, we will consider proposing the concept of (L,M)-fuzzy partial metrics and investigate its
topological properties.
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