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Abstract

In this paper, we introduce the concept of generalized α-η-ψ-ϕ-F -contraction type mappings where ψ is
the altering distance function and ϕ is the ultra altering distance function. The unique fixed point theorems
for such mappings in the setting of α-η-complete metric spaces are proven. We also assure the fixed point
theorems in partially ordered metric spaces. Moreover, the solution of the integral equation is obtained
using our main result. c©2016 All rights reserved.
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1. Introduction and Preliminaries

The Banach contraction principle introduced by Banach [3] is one of the most important results in fixed
point theory. Many authors extended and generalized the Banach contraction principle in several directions
(see [2, 4, 5, 7–17] and references contained therein). In 2014, Ansari [1] introduced the concept of C-class
functions and proved the unique fixed point theorems for certain contractive mappings with respect to the
C-class functions.
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In this paper, we introduce the definition of generalized α-η-ψ-ϕ-F -contraction type mappings where
ψ is the altering distance function and ϕ is the ultra altering distance function. The unique fixed point
theorems for such mappings in the setting of α-η-complete metric spaces are proven. We also assure the
fixed point theorems in partially ordered metric spaces. Moreover, the solution of the integral equation is
obtained using our main result.

Samet et al. [17] introduced the notion of α-admissible mappings as the following.

Definition 1.1 ([17]). Let T : X → X and α : X ×X → [0,∞). Then T is α-admissible if

α(x, y) ≥ 1 implies α(Tx, Ty) ≥ 1.

Karapinar et al. [12] introduced the concept of triangular α-admissible mappings.

Definition 1.2 ([12]). Let α : X ×X → [0,∞). A mapping T : X → X is triangular α-admissible if

(a) T is α-admissible;

(b) α(x, z) ≥ 1 and α(z, y) ≥ 1 imply α(x, y) ≥ 1.

In 2014, Popescu [16] gave the definitions of α-orbital admissible mappings and triangular α-orbital
admissible mappings.

Definition 1.3 ([16]). Let T : X → X and α : X ×X → [0,∞). Then T is α-orbital admissible if

α(x, Tx) ≥ 1 implies α(Tx, T 2x) ≥ 1.

Definition 1.4 ([16]). Let T : X → X and α : X ×X → [0,∞). Then T is triangular α-orbital admissible
if

(a) T is α-orbital admissible;

(b) α(x, y) ≥ 1 and α(y, Ty) ≥ 1 imply α(x, Ty) ≥ 1.

Recently, Chuadchawna et al. [6] introduced the notions of α-orbital admissible mappings with respect
to η and triangular α-orbital admissible mappings with respect to η.

Definition 1.5 ([6]). Let T : X → X and α, η : X × X → [0,∞). Then T is α-orbital admissible with
respect to η if

α(x, Tx) ≥ η(x, Tx) implies α(Tx, T 2x) ≥ η(Tx, T 2x).

Definition 1.6 ([6]). Let T : X → X and α, η : X ×X → [0,∞). Then T is triangular α-orbital admissible
with respect to η if

(a) T is α-orbital admissible with respect to η;

(b) α(x, y) ≥ η(x, y) and α(y, Ty) ≥ η(y, Ty) imply α(x, Ty) ≥ η(x, Ty).

The following lemma will be used for proving our main results.

Lemma 1.7 ([6]). Let T : X → X be a triangular α-orbital admissible with respect to η. Assume that
there exists x1 ∈ X such that α(x1, Tx1) ≥ η(x1, Tx1). Define a sequence {xn} by xn+1 = Txn. Then
α(xn, xm) ≥ η(xn, xm) for all m,n ∈ N with n < m.

Recently, Karapinar [11] introduced the concept of α-ψ-Geraghty contraction type mappings in complete
metric spaces.

Let Ψ denote the class of the functions ψ : [0,∞)→ [0,∞) satisfying the following conditions:

(a) ψ is nondecreasing;

(b) ψ is continuous;
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(c) ψ(t) = 0 if and only if t = 0;

(d) ψ is subadditive, that is, ψ(s+ t) ≤ ψ(s) + ψ(t).

Let F be the family of all functions β : [0,∞)→ [0, 1) satisfying the condition:

lim
n→∞

β(tn) = 1 implies lim
n→∞

tn = 0.

Definition 1.8 ([11]). Let (X, d) be a metric space and α : X × X → [0,∞). A mapping T : X → X is
said to be a generalized α-ψ-Geraghty contraction type mapping if there exists β ∈ F such that

α(x, y)ψ(d(Tx, Ty)) ≤ β(ψ(M(x, y)))ψ(M(x, y)) for all x, y ∈ X,

where
M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)} and ψ ∈ Ψ.

Remark 1.9. We now present some properties of elements in F .

1. There exists a continuous function which is not in F . Indeed, if we let β(t) = t
1+t for all t ∈ [0,∞)

and tn = n for all n ∈ N, then we have lim
n→∞

tn
1 + tn

= 1 but lim
n→∞

tn 6= 0. Therefore β 6∈ F .

2. There exists a function in F which is not continuous. Indeed, if we define a function β : [0,∞)→ [0, 1)
by

β(t) =

{
1

1+t , t > 0;

0 , t = 0,

then β ∈ F but it is not continuous from the right at x = 0.

Theorem 1.10 ([11]). Let (X, d) be a complete metric space, α : X×X → [0,∞) and T : X → X. Assume
that the following conditions are satisfied:

(i) T is a generalized α-ψ-Geraghty contraction type mapping;

(ii) T is a triangular α-admissible mapping;

(iii) there exists x1 ∈ X such that α(x1, Tx1) ≥ 1;

(iv) T is a continuous mapping.

Then, T has a fixed point x∗ ∈ X and {Tnx1} converges to x∗.

Ansari [1] considered the concept of C-class functions as the following:

Definition 1.11 ([1]). A mapping F : [0,∞)2 → R is called a C-class function if it is continuous and for
all s, t ∈ [0,∞),

(a) F (s, t) ≤ s;
(b) F (s, t) = s implies that either s = 0 or t = 0.

We denote C as the family of all C-class functions.

Example 1.12. The following functions F : [0,∞)2 → R are elements in C.

(1) F (s, t) = s− t for all s, t ∈ [0,∞);

(2) F (s, t) = ms for all s, t ∈ [0,∞) where 0<m<1;

(3) F (s, t) = s
(1+t)r for all s, t ∈ [0,∞) where r ∈ (0,∞);

(4) F (s, t) = (s+ l)(1/(1+t)
r) − l for all s, t ∈ [0,∞) where l > 1, r ∈ (0,∞);

(5) F (s, t) = s logt+a a for all s, t ∈ [0,∞) where a > 1;
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(6) F (s, t) = s− (1+s2+s)(
t

1+t) for all s, t ∈ [0,∞);

(7) F (s, t) = sβ(s) for all s, t ∈ [0,∞) where β : [0,∞)→ [0, 1) and is continuous;

(8) F (s, t) = s − ϕ(s) for all s, t ∈ [0,∞) where ϕ : [0,∞) → [0,∞) is a continuous function such that
ϕ(t) = 0 if and only if t = 0;

(9) F (s, t) = sh(s, t) for all s, t ∈ [0,∞) where h : [0,∞)× [0,∞) → [0,∞) is a continuous function such
that h(t, s) < 1 for all s, t ∈ [0,∞);

(10) F (s, t) = s− (2+t1+t)t for all s, t ∈ [0,∞);

(11) F (s, t) = n
√

ln(1 + sn) for all s, t ∈ [0,∞).

We now drop the subadditivity of ψ ∈ Ψ by considering the following definition.

Definition 1.13 ([13]). A function ψ : [0,∞)→ [0,∞) is called an altering distance function if the following
properties are satisfied:

(a) ψ is nondecreasing and continuous;

(b) ψ (t) = 0 if and only if t = 0.

The family of all altering distance functions is denoted by Φ.

Definition 1.14. A function ϕ : [0,∞)→ [0,∞) is called an ultra altering distance function if the following
properties are satisfied:

(a) ϕ is continuous;

(b) ϕ(t) > 0 for all t > 0.

We denote Φu the family of all ultra altering distance functions.

Lemma 1.15 ([6]). Suppose that (X, d) is a metric space and {xn} is a sequence in Xsuch that d(xn, xn+1)→
0 as n→∞. If {xn} is not a Cauchy sequence then there exist an ε > 0 and sequences of positive integers
{m(k)} and {n(k)} with m(k) > n(k) > k such that d(xm(k), xn(k)) ≥ ε, d(xm(k)−1, xn(k)) < ε and

(i) limk→∞ d(xm(k), xn(k)) = ε;

(ii) limk→∞ d(xm(k)−1, xn(k)) = ε;

(iii) limk→∞ d(xm(k), xn(k)−1) = ε.

On the other hand, Hussain et al. [9] introduced the concepts of α-η-complete metric spaces and α-η-
continuous functions.

Definition 1.16 ([9]). Let (X, d) be a metric space and α, η : X × X → [0,+∞). Then, X is said to be
α-η-complete if every Cauchy sequence {xn} in X with α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N converges
in X.

Example 1.17 ([6]). Let X = (0,∞) and define a metric on X by d(x, y) = |x − y| for all x, y ∈ X.
Therefore X is not complete. Let Y be a closed subset of X. Define α, η : X ×X → [0,+∞) by

α(x, y) =

{
(x+ y)3, if x, y ∈ Y
0, otherwise,

η(x, y) = 3x2y.

We obtain that (X, d) is an α-η-complete metric space.
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Definition 1.18 ([9]). Let (X, d) be a metric space and α, η : X ×X → [0,+∞). A mapping T : X → X is
said to be an α-η-continuous mapping if each sequence {xn} in X with xn → x as n→∞ and α(xn, xn+1) ≥
η(xn, xn+1) for all n ∈ N implies Txn → Tx as n→∞.

Example 1.19 ([6]). Let X = [0,∞) and define a metric on X by d(x, y) = |x−y| for all x, y ∈ X. Assume
that T : X → X and α, η : X ×X → [0,+∞) are defined by

Tx =

{
x4 if x ∈ [0, 1]

cosπx+ 3 if x ∈ (1,∞),

α(x, y) =

{
x3 + y3 + 1 if x, y ∈ [0, 1]

0 otherwise,

η(x, y) = x3.

Therefore T is an α-η-continuous mapping but T is not continuous.

2. Main results

We now introduce the concept of generalized α-η-ψ-ϕ-F -contraction type mappings and prove the fixed
point theorems for such mappings.

Definition 2.1. Let (X, d) be a metric space and α, η : X ×X → [0,∞). A mapping T : X → X is said
to be a generalized α-η-ψ-ϕ-F -contraction type mapping if α(x, y) ≥ η(x, y) implies

ψ(d(Tx, Ty)) ≤ F (ψ(M(x, y)), ϕ(M(x, y))), (2.1)

where
M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}, ψ ∈ Φ, ϕ ∈ Φu and F ∈ C.

Remark 2.2. In Definition 2.1, if we define F (s, t) = sβ(s) where β : [0,∞) → [0, 1) is continuous, then,
(2.1) reduces to the contraction

ψ(d(Tx, Ty)) ≤ β(ψ(M(x, y)))ψ(M(x, y))

if α(x, y) ≥ η(x, y).

We now assure the fixed point theorems for generalized α-η-ψ-ϕ-F -contraction type mappings in the
setting of α-η-complete metric spaces.

Theorem 2.3. Let (X, d) be a metric space. Assume that α, η : X ×X → [0,∞) and T : X → X. Suppose
that the following conditions are satisfied:

(i) (X, d) is an α-η-complete metric space;

(ii) T is a generalized α-η-ψ-ϕ-F -contraction type mapping;

(iii) T is a triangular α-orbital admissible mapping with respect to η;

(iv) there exists x1 ∈ X such that α(x1, Tx1) ≥ η(x1, Tx1);

(v) T is an α-η-continuous mapping.

Then T has a fixed point x∗ ∈ X and {Tnx1} converges to x∗.

Proof. Define a sequence {xn} in X by xn+1 = Txn for all n ∈ N. If xn0 = xn0+1 for some n0 ∈ N, then T
has a fixed point. Suppose that xn 6= xn+1 for all n ∈ N. By Lemma 1.7, we have α(xn, xn+1) ≥ η(xn, xn+1)
for all n ∈ N. Since T is a generalized α-η-ψ-ϕ-F -contraction type mapping, we have



A. H. Ansari, A. Kaewcharoen, J. Nonlinear Sci. Appl. 9 (2016), 4177–4190 4182

ψ(d(xn+1, xn+2)) = ψ(d(Txn, Txn+1))

≤ F (ψ(M(xn, xn+1)), ϕ(M(xn, xn+1))) (2.2)

< ψ(M(xn, xn+1))

for all n ∈ N where

M(xn, xn+1) = max{d(xn, xn+1), d(xn, Txn), d(xn+1, Txn+1)}
= max{d(xn, xn+1), d(xn, xn+1), d(xn+1, xn+2)}
= max{d(xn, xn+1), d(xn+1, xn+2)}.

If max{d(xn, xn+1), d(xn+1, xn+2)} = d(xn+1, xn+2), then

ψ(d(xn+1, xn+2)) ≤ F (ψ(M(xn, xn+1)), ϕ(M(xn, xn+1)))

< ψ(M(xn, xn+1))

= ψ(d(xn+1, xn+2)),

which is a contradiction. Thus we conclude that

max{d(xn, xn+1), d(xn+1, xn+2)} = d(xn, xn+1).

By (2.2), we get that ψ(d(xn+1, xn+2)) < ψ(d(xn, xn+1)) for all n ∈ N. Since ψ is nondecreasing, we
have d(xn+1, xn+2) ≤ d(xn, xn+1) for all n ∈ N. It follows that the sequence {d(xn, xn+1)} is nonincreasing.
Therefore, there exists r ≥ 0 such that limn→∞ d(xn, xn+1) = r. We claim that r = 0. Using (2.2), we have

ψ(d(xn+1, xn+2)) ≤ F (ψ(d(xn, xn+1)), ϕ(d(xn, xn+1))).

Taking n→∞, we obtain that
ψ(r) ≤ F (ψ(r), ϕ(r)).

This implies that ψ(r) = 0 or ϕ(r) = 0 which yields

lim
n→∞

d(xn, xn+1) = r = 0. (2.3)

We now prove that {xn} is a Cauchy sequence. Suppose that {xn} is not a Cauchy sequence. By Lemma
1.15, there exist an ε > 0 and two subsequences

{
xm(k)

}
and

{
xn(k)

}
of {xn} with m(k) > n(k) > k such

that d(xm(k), xn(k)) ≥ ε, d(xm(k)−1, xn(k)) < ε and

lim
k→∞

d
(
xn(k), xm(k)

)
= lim

k→∞
d
(
xn(k)−1, xm(k)

)
= lim

k→∞
d
(
xm(k)−1, xn(k)

)
= ε. (2.4)

By Lemma 1.7, we have α(xn(k)−1, xm(k)−1) ≥ η(xn(k)−1, xm(k)−1). Thus we have

ψ(d(xn(k), xm(k))) = ψ(d(Txn(k)−1, Txm(k)−1)) (2.5)

≤ F (ψ(M(xn(k)−1, xm(k)−1)), ϕ(M(xn(k)−1, xm(k)−1))),

where

M(xn(k)−1, xm(k)−1) = max{d(xn(k)−1, xm(k)−1), d(xn(k)−1, Txn(k)−1), d(xm(k)−1, Txm(k)−1)}
= max{d(xn(k)−1, xm(k)−1), d(xn(k)−1, xn(k)), d(xm(k)−1, xm(k))}.

Therefore,
lim
k→∞

M(xn(k)−1, xm(k)−1) = ε. (2.6)
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By (2.5) and (2.6), we have
ψ(ε) ≤ F (ψ(ε), ϕ(ε)).

It follows that ψ(ε) = 0 or ϕ(ε) = 0. This implies that ε = 0 which is a contradiction. Thus {xn} is a
Cauchy sequence. Since X is an α-η-complete metric space and α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N,
there is x∗ ∈ X such that limn→∞ xn = x∗. Since T is α-η-continuous, we get limn→∞ Txn = Tx∗ and so
x∗ = Tx∗. Hence T has a fixed point.

In the following theorem, we replace the continuity of T in Theorem 2.3 by some suitable conditions.

Theorem 2.4. Let (X, d) be a metric space. Assume that α, η : X ×X → [0,∞) and T : X → X. Suppose
that the following conditions are satisfied:

(i) (X, d) is an α-η-complete metric space;

(ii) T is a generalized α-η-ψ-ϕ-F -contraction type mapping;

(iii) T is a triangular α-orbital admissible mapping with respect to η;

(iv) there exists x1 ∈ X such that α(x1, Tx1) ≥ η(x1, Tx1);

(v) if {xn} is a sequence in X such that α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N and xn → x∗ ∈ X as
n → ∞, then there exists a subsequence {xn(k)} of {xn} such that α(xn(k), x

∗) ≥ η(xn(k), x
∗) for all

k ∈ N.

Then T has a fixed point x∗ ∈ X and {Tnx1} converges to x∗.

Proof. By the analogous proof as in Theorem 2.3, we can construct the sequence {xn} defined by xn+1 = Txn
for all n ∈ N converging to x∗ ∈ X and α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N. By (v), there exists a
subsequence {xn(k)} of {xn} such that α(xn(k), x

∗) ≥ η(xn(k), x
∗) for all k ∈ N. Therefore

ψ(d(xn(k)+1, Tx
∗)) = ψ(d(Txn(k), Tx

∗)) (2.7)

≤ F (ψ(M(xn(k), x
∗)), ϕ(M(xn(k), x

∗))),

where

M(xn(k), x
∗) = max{d(xn(k), x

∗), d(xn(k), Txn(k)), d(x∗, Tx∗)}
= max{d(xn(k), x

∗), d(xn(k), xn(k)+1), d(x∗, Tx∗)}.

It follows that
lim
k→∞

M(xn(k), x
∗) = d(x∗, Tx∗).

From (2.7), letting k →∞ in the above inequality, we have

ψ(d(x∗, Tx∗)) ≤ F (ψ(d(x∗, Tx∗)), ϕ(d(x∗, Tx∗))).

We obtain that ψ(d(x∗, Tx∗)) = 0 or ϕ(d(x∗, Tx∗)) = 0. This implies that d(x∗, Tx∗) = 0. It follows
that Tx∗ = x∗.

For the uniqueness of a fixed point of a generalized α-η-ψ-ϕ-F -contraction type mapping, we assume the
suitable condition introduced by Popescu [16].

Theorem 2.5. Suppose all assumptions of Theorem 2.3 (respectively Theorem 2.4) hold. Assume that for
all x 6= y ∈ X, there exists v ∈ X such that α(x, v) ≥ η(x, v), α(y, v) ≥ η(y, v) and α(v, Tv) ≥ η(v, Tv).
Then T has a unique fixed point.
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Proof. Suppose that x∗ and y∗ are two fixed points of T such that x∗ 6= y∗. Then by assumption, there exists
v ∈ X such that α(x∗, v) ≥ η(x∗, v), α(y∗, v) ≥ η(y∗, v), and α(v, Tv) ≥ η(v, Tv). Since T is triangular
α-orbital admissible with respect to η, we have

α(x∗, Tnv) ≥ η(x∗, Tnv) and α(y∗, Tnv) ≥ η(y∗, Tnv),

for all n ∈ N. This implies that

ψ(d(x∗, Tn+1v)) = ψ(d(Tx∗, TTnv))

≤ F (ψ(M(x∗, Tnv)), ϕ(M(x∗, Tnv))), (2.8)

for all n ∈ N where

M(x∗, Tnv) = max{d(x∗, Tnv), d(x∗, Tx∗), d(Tnv, Tn+1v)}
= max{d(x∗, Tnv), d(Tnv, Tn+1v)}.

By Theorem 2.3, we deduce that {Tnv} converges to a fixed point z∗ of T . This implies that

lim
n→∞

MT (x∗, Tnv) = d(x∗, z∗).

Taking n→∞ in (2.8), we have

ψ(d(x∗, z∗)) ≤ F (ψ(d(x∗, z∗)), ϕ(d(x∗, z∗))).

It follows that ψ(d(x∗, z∗)) = 0 or ϕ(d(x∗, z∗)) = 0. Therefore d(x∗, z∗) = 0. Hence x∗ = z∗. Similarly,
we can prove that y∗ = z∗. Hence T has a unique fixed point.

In Theorem 2.3 and Theorem 2.4, if we put F (s, t) = sβ(s) where β : [0,∞) → [0, 1) is continuous,
η(x, y) = 1 and ϕ(t) = t, then we obtain the following result.

Corollary 2.6. Let (X, d) be a complete metric space, α : X ×X → [0,∞) and T : X → X. Suppose that
the following conditions are satisfied:

(i) for all x, y ∈ X, α(x, y)ψ(d(Tx, Ty)) ≤ β(ψ(M(x, y)))ψ(M(x, y)) where M(x, y) = max{d(x, y),
d(x, Tx), d(y, Ty)}, ψ ∈ Φ and β : [0,∞)→ [0, 1) is continuous;

(ii) T is a triangular α-orbital admissible mapping;

(iii) there exists x1 ∈ X such that α(x1, Tx1) ≥ 1;

(iv) T is a continuous mapping or if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n ∈ N and
xn → x∗ ∈ X as n → ∞, then there exists a subsequence {xn(k)} of {xn} such that α(xn(k), x

∗) ≥ 1
for all k ∈ N.

Then T has a fixed point x∗ ∈ X and {Tnx1} converges to x∗.

Using Example 1.12 (3), Theorem 2.3, and Theorem 2.4, we immediately obtain the following corollary.

Corollary 2.7. Let (X, d) be a complete metric space, α : X ×X → [0,∞) and T : X → X. Suppose that
the following conditions are satisfied:

(i) for all x, y ∈ X, α(x, y)ψ(d(Tx, Ty))≤ ψ(M(x,y))
(1+ϕ(M(x,y))r where M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)},

ψ ∈ Φ, ϕ ∈ Φu and r ∈ (0,∞);

(ii) T is a triangular α-orbital admissible mapping;

(iii) there exists x1 ∈ X such that α(x1, Tx1) ≥ 1;

(iv) T is a continuous mapping or if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n ∈ N and
xn → x∗ ∈ X as n → ∞, then there exists a subsequence {xn(k)} of {xn} such that α(xn(k), x

∗) ≥ 1
for all k ∈ N.

Then T has a fixed point x∗ ∈ X and {Tnx1} converges to x∗.
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3. Consequences

Definition 3.1. Let (X, d) be a metric space and α, η : X ×X → [0,∞). A mapping T : X → X is said
to be an α-η-ψ-ϕ-F -contraction type mapping if α(x, y) ≥ η(x, y) implies

ψ(d(Tx, Ty)) ≤ F (ψ(d(x, y)), ϕ((d(x, y))),

where ψ ∈ Φ, ϕ ∈ Φu, and F ∈ C.

Theorem 3.2. Let (X, d) be a metric space. Assume that α, η : X ×X → [0,∞) and T : X → X. Suppose
that the following conditions are satisfied:

(i) (X, d) is an α-η-complete metric space;

(ii) T is an α-η-ψ-ϕ-F -contraction type mapping;

(iii) T is a triangular α-orbital admissible mapping with respect to η;

(iv) there exists x1 ∈ X such that α(x1, Tx1) ≥ η(x1, Tx1);

(v) T is an α-η-continuous mapping.

Then T has a fixed point x∗ ∈ X and {Tnx1} converges to x∗.

Proof. As in the proof of Theorem 2.3, we can construct the sequence {xn} defined by xn+1 = Txn for all
n ∈ N converging to some x∗ ∈ X and α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N. Since T is α-η-continuous,
we have

xn+1 = Txn → Tx∗ as n→∞.

Hence T has a fixed point .

Theorem 3.3. Let (X, d) be a metric space. Assume that α, η : X ×X → [0,∞) and T : X → X. Suppose
that the following conditions are satisfied:

(i) (X, d) is an α-η-complete metric space;

(ii) T is an α-η-ψ-ϕ-F -contraction type mapping;

(iii) T is a triangular α-orbital admissible mapping with respect to η;

(iv) there exists x1 ∈ X such that α(x1, Tx1) ≥ η(x1, Tx1);

(v) if {xn} is a sequence in X such that α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N and xn → x∗ ∈ X as
n → ∞, then there exists a subsequence {xn(k)} of {xn} such that α(xn(k), x

∗) ≥ η(xn(k), x
∗) for all

k ∈ N.

Then T has a fixed point x∗ ∈ X and {Tnx1} converges to x∗.

Proof. As in the proof of Theorem 2.3, we can construct the sequence {xn} defined by xn+1 = Txn for all
n ∈ N converging to some x∗ ∈ X and α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N. By (v), there exists a
subsequence {xn(k)} of {xn} such that α(xn(k), x

∗) ≥ η(xn(k), x
∗) for all k ∈ N. It follows that

ψ(d(xn(k)+1, Tx
∗)) = ψ(d(Txn(k), Tx

∗))

≤ F (ψ(d(xn(k), x
∗)), ϕ(d(xn(k), x

∗)))

≤ ψ(d(xn(k), x
∗)).

Letting k →∞ in above inequality, we obtain that

ψ(d(x∗, Tx∗)) ≤ ψ(0) = 0.

Thus ψ(d(x∗, Tx∗)) = 0. This implies that d(x∗, Tx∗) = 0. Hence x∗ = Tx∗.
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Theorem 3.4. Suppose all assumptions of Theorem 3.2 (respectively Theorem 3.3) hold. Assume that for
all x 6= y ∈ X, there exists v ∈ X such that α(x, v) ≥ η(x, v), α(y, v) ≥ η(y, v) and α(v, Tv) ≥ η(v, Tv).
Then, T has a unique fixed point.

Proof. Suppose that x∗ and y∗ are two fixed points of T such that x∗ 6= y∗. Then by assumption, there
exists v ∈ X such that α(x∗, v) ≥ η(x∗, v), α(y∗, v) ≥ η(y∗, v) and α(v, Tv) ≥ η(v, Tv). Since T is
triangular α-orbital admissible with respect to η, we have

α(x∗, Tnv) ≥ η(x∗, Tnv) and α(y∗, Tnv) ≥ η(y∗, Tnv)

for all n ∈ N. It follows that

ψ(d(x∗, Tn+1v)) = ψ(d(Tx∗, TTnv)) (3.1)

≤ F (ψ(d(x∗, Tnv)), ϕ(d(x∗, Tnv)))

for all n ∈ N. Since α(v, Tv) ≥ η(v, Tv), we obtain that {Tnv} converges to a fixed point z∗ of T . By (3.1)
letting limit n→∞, we have

ψ(d(x∗, z∗)) ≤ F (ψ(d(x∗, z∗)), ϕ(d(x∗, z∗))).

This implies that so ψ(d(x∗, z∗)) = 0 or ϕ(d(x∗, z∗)) = 0. Therefore, x∗ = z∗. Similarly, we can prove
that y∗ = z∗. Hence x∗ = y∗.

Corollary 3.5. Let (X,�) be a partially ordered set and suppose that there exists a metric d on X such
that (X, d) is a complete metric space. Suppose that T : X → X and assume that the following conditions
are satisfied:

(i) there exists F ∈ C such that

ψ(d(Tx, Ty)) ≤ F (ψ(d(x, y)), ϕ(d(x, y)))

for all x, y ∈ X with x � y where ψ ∈ Φ and ϕ ∈ Φu;

(ii) there exists x1 ∈ X such that x1 � Tx1;

(iii) T is nondecreasing with respect to �;

(iv) either T is continuous or if {xn} is a nondecreasing sequence with xn → x as n→∞, then there exists
a subsequence {xn(k)} of {xn} such that xn(k) � x for all k ∈ N.

Then T has a fixed point x∗ ∈ X and {Tnx1} converges to x∗. Further if for all x 6= y ∈ X, there exists
v ∈ X such that x � v, y � v and v � Tv, then T has a unique fixed point.

Proof. Define functions α, η : X ×X → [0,∞) by

α(x, y) =

{
1, if x � y
1
4 , otherwise ,

and

η(x, y) =

{
1
2 , if x � y
2, otherwise.

Let x, y ∈ X with α(x, y) ≥ η(x, y). By (i), we have

ψ(d(Tx, Ty)) ≤ F (ψ(d(x, y)), ϕ(d(x, y))).

This implies that T is an α-η-ψ-ϕ-F -contraction type mapping. Since X is a complete metric space, we
have X is an α-η-complete metric space. By (ii), there exists x1 ∈ X such that α(x1, Tx1) ≥ η(x1, Tx1).
Let α(x, Tx) ≥ η(x, Tx), we have x � Tx. Since T is nondecreasing, we obtain that Tx � T (Tx). Then
α(Tx, T 2x) ≥ η(Tx, T 2x). Let α(x, y) ≥ η(x, y) and α(y, Ty) ≥ η(y, Ty), so we have x � y and y � Ty. It
follows that x � Ty. Then α(x, Ty) ≥ η(x, Ty). Thus, all conditions of Theorem 3.2 and Theorem 3.3 are
satisfied. Hence, T has a fixed point.
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We now give an example for supporting Theorem 3.2.

Example 3.6. Let X = [0,∞) and d(x, y) = |x− y| for all x, y ∈ X. Let F (s, t) = s
1+2s for all s, t ∈ [0,∞).

Let ψ(t) = t
4 , ϕ(t) = t2 and a mapping T : X → X be defined by

Tx =

{
1
2x, if 0 ≤ x ≤ 1

3x, if x > 1.

Define functions α, η : X ×X → [0,∞) by

α(x, y) =

{
1, if 0 ≤ x, y ≤ 1

0, otherwise,

and

η(x, y) =

{
1
5 , if 0 ≤ x, y ≤ 1

3, otherwise.

First, we will prove that (X, d) is an α-η-complete metric space. If {xn} is a Cauchy sequence such that
α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N, then {xn} ⊆ [0, 1]. Since ([0, 1], d) is a complete metric space, then
the sequence {xn} converges in [0, 1] ⊆ X. Let α(x, Tx) ≥ η(x, Tx). Thus, x ∈ [0, 1] and Tx ∈ [0, 1] and
so T 2x = T (Tx) ∈ [0, 1]. Then, α(Tx, T 2x) ≥ η(Tx, T 2x). Thus, T is α-orbital admissible with respect to
η. Let α(x, y) ≥ η(x, y) and α(y, Ty) ≥ η(y, Ty). We have x, y, Ty ∈ [0, 1]. This implies that α(x, Ty) ≥
η(x, Ty). Hence, T is triangular α-orbital admissible with respect to η. Let {xn} be a sequence such that
xn → x as n → ∞ and α(xn, xn+1) ≥ η(xn, xn+1), for all n ∈ N. Then, {xn} ⊆ [0, 1] for all n ∈ N. This
implies that limn→∞ Txn = limn→∞

1
2xn = 1

2x = Tx. That is T is α-η-continuous. It is clear that condition
(iv) of Theorem 3.2 is satisfied with x1 = 1 since α(1, T (1)) = α(1, 12) = 1 > 1

5 = η(1, 12) = η(1, T (1)).
Finally, we will prove that T is an α-η-ψ-ϕ-F -contraction type mapping. Let α(x, y) ≥ η(x, y). Therefore,
x, y ∈ [0, 1]. It follows that

F (ψ(d(x, y)), ϕ(d(x, y)))− ψ(d(Tx, Ty)) = ψ(d(x, y)) · 1

1 + 2ψ(d(x, y))
− 1

4
d(Tx, Ty)

=
1

4
|x− y| · 1

1 + 1
2 |x− y|

− 1

4
|1
2
x− 1

2
y|

=
1
4 |x− y|

1 + 1
2 |x− y|

− 1

8
|x− y|

=
|x− y|(4− 2− |x− y|)

8(2 + |x− y|)
≥ 0.

Then, we have ψ(d(Tx, Ty)) ≤ F (ψ(d(x, y)), ϕ((d(x, y))). Thus, all assumptions of Theorem 3.2 are
satisfied. Hence, T has a fixed point x∗ = 0.

4. Applications to ordinary differential equations

The following ordinary differential equation is taken from Karapinar [11] and Chaudchawna et al. [6] :{
−d2x
dt2

= f(t, x(t)), t ∈ [0, 1]
x(0) = x(1) = 0,

(4.1)

where f : [0, 1]× R→ R is continuous. The Green function associated to (4.1) is defined by

G(t, s) =

{
t(1− s), 0 ≤ t ≤ s ≤ 1

s(1− t), 0 ≤ s ≤ t ≤ 1.
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Assume that C(I) is the set of all continuous functions defined on I where I = [0, 1]. Suppose that
d(x, y) = ‖x− y‖∞ = supt∈I |x(t)− y(t)| for all x, y ∈ C(I). Therefore, (C(I), d) is a complete metric space.

Suppose that the following conditions hold:

(i) there exists a function ξ : R2 → R such that for all a, b ∈ R with ξ(a, b) ≥ 0, we have |f(t, a)−f(t, b)| ≤
8 ln(|a− b|+ 1) for all t ∈ I;

(ii) there exists x1 ∈ C(I) such that for all t ∈ I,

ξ(x1(t),

∫ 1

0
G(t, s)f(s, x1(s))ds) ≥ 0;

(iii) for all t ∈ I and for all x, y, z ∈ C(I),

ξ(x(t), y(t)) ≥ 0 and ξ(y(t), z(t)) ≥ 0 imply ξ(x(t), z(t)) ≥ 0;

(iv) for all t ∈ I and for all x, y ∈ C(I),

ξ(x(t), y(t)) ≥ 0 implies ξ(

∫ 1

0
G(t, s)f(s, x(s))ds,

∫ 1

0
G(t, s)f(s, y(s))ds) ≥ 0;

(v) if {xn} is a sequence in C([0, 1]) such that xn → x ∈ C([0, 1]) and ξ(xn(t), xn+1(t)) ≥ 0 for all n ∈ N
and for all t ∈ I, then, there exists a subsequence {xn(k)} of {xn} such that ξ(xn(k)(t), x(t)) ≥ 0 for
all k ∈ N and for all t ∈ I.

We now prove the existence of a solution of the above second order differential equation.

Theorem 4.1. Suppose that conditions (i)–(v) are satisfied. Then, (4.1) has at least one solution x∗ ∈
C2(I).

Proof. We know that x∗ ∈ C2(I) is a solution of (4.1) if and only if x∗ ∈ C(I) is a solution of the integral
equation (see [11])

x(t) =

∫ 1

0
G(t, s)f(s, x(s))ds for all t ∈ I.

Define a mapping T : C(I)→ C(I) by

Tx(t) =

∫ 1

0
G(t, s)f(s, x(s))ds for all t ∈ I.

Therefore, the problem (4.1) is equivalent to finding x∗ ∈ C(I) that is a fixed point of T . Let x, y ∈ C(I)
such that ξ(x(t), y(t)) ≥ 0 for all t ∈ I. From (i), we obtain that

|Tx(t)− Ty(t)| =
∣∣ ∫ 1

0
G(t, s)[f(s, x(s))− f(s, y(s))]ds

∣∣
≤
∫ 1

0
G(t, s)

∣∣f(s, x(s))− f(s, y(s))
∣∣ds

≤ 8

∫ 1

0
G(t, s) ln(|x(s)− y(s)|+ 1)ds

≤ 8

∫ 1

0
G(t, s) ln(d(x, y) + 1)ds

≤ 8 ln(d(x, y) + 1)
(

sup
t∈I

∫ 1

0
G(t, s)ds

)
.

Since
∫ 1
0 G(t, s)ds = −(t2/2) + t/2 for all t ∈ I, we have supt∈I

∫ 1
0 G(t, s)ds = 1

8 . This implies that

d(Tx, Ty) ≤ ln(d(x, y) + 1).
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Therefore,
ln(d(Tx, Ty) + 1) ≤ ln(ln(d(x, y) + 1) + 1). (4.2)

Define mappings ψ : [0,∞)→ [0,∞) and F : [0,∞)2 → R by

ψ(x) = ln(x+ 1) and F (x, y) = ψ(x).

Therefore, ψ : [0,∞) → [0,∞) is continuous, nondecreasing, ψ(t) = 0 if and only if t = 0 and also
ψ(x) < x. If ϕ ∈ Φu, then, by (4.2) we obtain that

ψ(d(Tx, Ty)) ≤ F (ψ(d(x, y)), ϕ(d(x, y)))

for all x, y ∈ C(I) such that ξ(x(t), y(t)) ≥ 0 for all t ∈ I.
Define α, η : C(I)× C(I)→ [0,∞) by

α(x, y) =

{
1, if ξ(x(t), y(t)) ≥ 0, t ∈ I
0, otherwise,

and

η(x, y) =

{
1
2 , ξ(x(t), y(t)) ≥ 0, t ∈ [0, 1]
2, otherwise.

Let x, y ∈ C(I) such that α(x, y) ≥ η(x, y). It follows that ξ(x(t), y(t)) ≥ 0 for all t ∈ I. This yields

ψ(d(Tx, Ty)) ≤ F (ψ(d(x, y)), ϕ(d(x, y))).

Therefore T is an α-η-ψ-ϕ-F -contraction type mapping. Using (iv), for each x ∈ C(I) such that
α(x, Tx) ≥ η(x, Tx), we obtain that ξ(Tx(t), T 2x(t)) ≥ 0. This implies that α(Tx, T 2x) ≥ η(Tx, T 2x).
Let x, y ∈ C(I) such that α(x, y) ≥ η(x, y) and α(y, Ty) ≥ η(y, Ty). Thus,

ξ(x(t), y(t)) ≥ 0 and ξ(y(t), Ty(t)) ≥ 0 for all t ∈ I.

By applying (iii), we obtain that ξ(x(t), T y(t)) ≥ 0 and so α(x, Ty) ≥ η(x, Ty). It follows that T is
triangular α-orbital admissible with respect to η. Using (ii), there exists x1 ∈ C(I) such that α(x1, Tx1) ≥
η(x1, Tx1). Let {xn} be a sequence in C(I) such that xn → x ∈ C(I) and α(xn, xn+1) ≥ η(xn, xn+1) for all
n ∈ N. By (v), there exists a subsequence {xn(k)} of {xn} such that ξ(xn(k)(t), x(t)) ≥ 0. This implies that
α(xn(k), x) ≥ η(xn(k), x). Therefore, all assumptions in Theorem 3.2 are satisfied. Hence, T has a fixed point
in C(I). It follows that there exists x∗ ∈ C(I) such that Tx∗ = x∗ is a solution of (4.1).

Corollary 4.2. Assume that the following conditions hold:

(i) f : [0, 1]× R→ [0,∞) is continuous and nondecreasing;
(ii) for all t ∈ [0, 1], for all a, b ∈ R with a ≤ b, we have

|f(t, a)− f(t, b)| ≤ 8 ln(|a− b|+ 1);

(iii) there exists x1 ∈ C([0, 1]) such that for all t ∈ [0, 1], we have

x1(t) ≤
∫ 1

0
G(t, s)f(s, x1(s))ds.

Then, (4.1) has a solution in C2([0, 1]).

Proof. Define a mapping ξ : R2 → R by

ξ(a, b) = b− a for all a, b ∈ R.

Acknowledgment

The second author would like to express her deep thanks to Naresuan University for supporting this
research.



A. H. Ansari, A. Kaewcharoen, J. Nonlinear Sci. Appl. 9 (2016), 4177–4190 4190

References

[1] A. H. Ansari, Note on ϕ-ψ-contractive type mappings and related fixed point, The 2nd Regional Conf. Math.
Appl., PNU, September (2014), 377–380. 1, 1, 1.11

[2] A. H. Ansari, S. Chandok, C. Ionescu, Fixed point theorems on b-metric spaces for weak contractions with auxiliary
functions, J. Inequal. Appl., 2014 (2014), 17 pages. 1

[3] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equation integrals, Fund. Math.,
3 (1922), 133–181. 1

[4] P. Chaipunya, Y. J. Cho, P. Kumam, Geraghty-type theorems in modular metric spaces with an application to
partial differential equation, Adv. Difference Equ., 2012 (2012), 12 pages. 1

[5] S.-H. Cho, J.-S. Bae, E. Karapinar, Fixed point theorems for α-Geraghty contraction type maps in metric spaces,
Fixed Point Theory Appl., 2013 (2013), 11 pages. 1

[6] P. Chuadchawna, A. Kaewcharoen, S. Plubtieng, Fixed point theorems for generalized α-η-ψ-Geraghty contraction
type mappings in α-η-complete metric spaces, J. Nonlinear Sci. Appl., 9 (2016), 471–485. 1, 1.5, 1.6, 1.7, 1.15,
1.17, 1.19, 4

[7] M. A. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40 (1973), 604–608. 1
[8] M. E. Gordji, M. Ramezami, Y. J. Cho, S. Pirbavafa, A generalization of Geraghty’s theorem in partially ordered

metric spaces and applications to ordinary differential equations, Fixed Point Theory Appl., 2012 (2012), 9 pages.
[9] N. Hussain, M. A. Kutbi, P. Salimi, Fixed Point Theory in α-complete metric spaces with applications, Abstr.

Appl. Anal., 2014 (2014), 11 pages. 1, 1.16, 1.18
[10] Z. Kadelburg, P. Kumam, S. Radenovi′c, W. Sintunavarat, Common coupled fixed point theorems for Geraghty’s

type contraction mappings using monotone property, Fixed Point Theory Appl., 2015 (2015), 14 pages.
[11] E. Karapinar, α-ψ-Geraghty contraction type mappings and some related fixed point results, Filomat, 28 (2014),

37–48. 1, 1.8, 1.10, 4, 4
[12] E. Karapinar, P. Kumam, P. Salimi, On α-ψ-Meir-Keeler contractive mappings, Fixed Point Theory Appl., 2013

(2013), 12 pages. 1, 1.2
[13] M. S. Khan, M. Swaleh, S. Sessa, Fixed point theorems by altering distances between the points, Bull. Aust. Math.

Soc., 30 (1984), 1–9. 1.13
[14] C. Mongkolkeha, Y. J. Cho, P. Kumam, Best proximity points for Geraghty’s proximal contraction mappings,

Fixed Point Theory Appl., 2013 (2013), 17 pages.
[15] C. Mongkolkeha, P. Kumam, Common best proximity points for proximity commuting mapping with Geraghty’s

functions, Carpath. J. Math., 31 (2015), 359–364.
[16] O. Popescu, Some new fixed point theorems for α-Geraghty contraction type maps in metric spaces, Fixed Point

Theory Appl., 2014 (2014), 12 pages. 1, 1.3, 1.4, 2
[17] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for α-ψ-contractive type mappings, Nonlinear Anal., 75 (2012),

2154–2165. 1, 1.1


	1 Introduction and Preliminaries
	2 Main results
	3 Consequences
	4 Applications to ordinary differential equations

