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Abstract

By establishing some differential geometry theory on the 1-lightlike surfaces, we show several geometric
properties of the 1-lightlike surfaces which are completely different from non-lightlike surfaces. Based on
these theories, we consider the singularities of the 1-lightlike surfaces in semi- Euclidean 4-space with index
two as an application of the theory of Legendrian singularities. We characterize the singularities of the
1-lightlike focal hypersurfaces and describe the contacts between the 1-lightlike surface and the anti de
Sitter 3-sphere at singular points by employing Montaldi’s theory. In addition, we also discuss the detailed
differential geometric properties of the 1-lightlike focal hypersurfaces in semi-Euclidean 4-space with index
2. Finally, an example will be proposed to explain our findings. (©)2016 All rights reserved.
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1. Introduction

During the last four decades singularity theory has enjoyed rapid development. French mathematician
R. Thom, who is a Fields medalist, first put forward the philosophical idea to apply singularity theory
to the study of differential geometry. The natural connection between Geometry and Singularity relies on
the basic fact that the contacts of a submanifold with the models (invariant under the action of a suitable
transformation group) of the ambient space can be described by means of the analysis of the singularities of
appropriate families of contact functions, or equivalently, of their associated Lagrangian and/or Legendrian
maps [I 6]. Porteous carries the thoughts of Thom into the study of Euclidean geometry [8]. On this basis,
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Bruce and Giblin have systematically discussed classification of singularities, singularities stability and the
relationship between the singularities and the geometry invariants of submanifolds in Euclidean space and
obtained a number of good results [2]. It is well known that there exist spacelike submanifolds, timelike
submanifolds and lightlike submanifolds in semi- Euclidean space. The singularities of spacelike and timelike
submanifolds in Minkowski space have been studied extensively in [13]. However, to the best of the authors’
knowledge, there are fewer literatures regarding the singularities of lightlike submanifolds, aside from the
second author’s studies in semi-Riemannian space [9, 10} 1T, 12, [14]. Some methods used in non-degenerate
submanifolds cannot be extended to general lightlike submanifold because of the degeneracy of the lightlike
submanifolds. As the extension of our previous work [9, 10, 11, 12 14], the current study concerned with the
1-lightlike surfaces in semi-Euclidean space with index two. The properties of singularities of a submanifold
M are closely related to a geometry invariant. In general, the geometry invariants are the Gauss-Kronecker
curvatures for the submanifolds in Euclidean space. In addition, there exist some generalized forms of Gauss-
Kronecker curvature in the study of the singularities of non-degenerate submanifolds in semi-Euclidean space.
They are defined as the determinant of the shape operator from tangent space of M at any point to itself, or
equivalently, defined in the way: Gauss-keronecker curvature K is the Jacobian determinant of Gauss map
of M. When M is a non-lightlike surface, we get the usual notion of Gaussian curvature. It is also given by
K= <(V2V1_dzt1§2)el’eg>, where V; = V,, is the covariant derivative and g is the metric tensor. But it is not
an ineffective way in defining Gaussian curvature of the 1-lightlike surfaces because of det g = 0. How to
obtain a geometric invariant related closely to the singularities of the 1-lightlike surfaces? This is the problem
people always care about, and the urgent question we must settle in the process of studying the singularities
of 1-lightlike surfaces. Based on the differential geometry theory of lightlike submanifolds by Duggal et al.
[3, 4], we successfully solved the problem by defining a linear operator from tangent space of M at any point
to its corrected tangent space, which is significant of reference for obtaining the geometric invariants of other
lightlike submanifolds, we define the determinant of the linear operator as the 1-lightlike Gauss curvature, a
key geometric invariant related closely to the singularities of the 1-lightlike surfaces. It is quite different from
the definition of the Gauss-Kronecker curvature adapted for non-degenerated submanifolds, this approach
can also be extended to the study of more general lightlike submanifolds. With these ingredients at hand, we
apply the theory of Legendrian singularities to investigate the differential geometry of the 1-lightlike surfaces
in semi-Euclidean 4-space. We introduce the notion of the 1-lightlike focal hypersurface of a 1-lightlike surface
by using a timelike unit normal vector field. The definition of the 1-lightlike Gauss curvature also induces the
definitions of the 1-lightlike (A, T)-umbilic point and the I-lightlike (X, T)-flat point for a 1-lightlike surface.
We call the singular points of a 1-lightlike focal hypersurface the 1-lightlike (A, T)-parabolic points, and a
1-lightlike surface is tangent to an anti de Sitter 3-sphere at the 1-lightlike (A, 7)-parabolic point. We will
use Montaldi’s characterization of submanifold contacts in terms of K-equivalent functions, which provides a
technique linkage to the modern theory of Legendrian singularity. If we assume a hypothesis of Theorem [5.5

then the contact type of the anti de Sitter 3-sphere and the 1-lightlike surface corresponds to a singular type
of the 1-lightlike focal hypersurface. As a consequence, the singularity of the 1-lightlike focal hypersurface
can clearly describe the contact of the 1-lightlike surface with the anti de Sitter 3-sphere.

The remainder of this paper is organized as follows: We begin in Section [2] with the differential ge-
ometry of semi-Euclidean space with index two. In Section [3, we consider general 1-lightlike surfaces in
semi-Euclidean space with index two and study their basic properties. We define the I-lightlike distance-
squared functions (family) on a 1-lightlike surface and show that the discriminant set is a 1-lightlike focal
hypersurface. In Section [4, we show further that the 1-lightlike distance-squared function of a 1-lightlike
surface is a Morse family. Therefore, the 1-lightlike focal hypersurface of a 1-lightlike surface is the wave
front set of a Legendrian submanifold. In Section [5] we study the contact of a 1-lightlike surface with an
anti de Sitter 3-sphere as an application of the theory of Legendrian singularities and discuss the geometric
properties of the singularities of the 1-lightlike focal hypersurfaces. We consider the generic properties of
1-lightlike surfaces in Section [6} Finally, an example will be proposed to explain our findings in Section [7}
Throughout the paper, all maps and manifolds are C'>° unless stated otherwise; similarly, submanifolds of
semi-Euclidean spaces are always assumed to be semi-Riemannian.
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2. Preliminaries

Let R3 denotes the 4-dimensional semi-Euclidean space with index 2, that is to say, the manifold R* with
a flat semi-Euclidean metric (, ), such that, for any two vectors * = (z1,z2,23,24) and y = (y1, Y2, Y3, Y4)
in R*, (x,y) = —w1y1 — T2y + 23y3 + 24ys. We define the pseudo-vector product the of x, y, and z by

—€e] —€y e3 €4

X X X X
TAYAz= 1 2 3 4 ’

Y1 Y2 Yz Y4

21 g2 R34

where & = (21, 22,73, 74), Y = (Y1,%2,y3,y4) and z = (21, 22, 23, z4) in R and {eq, ez, €3, €4} is the canonical
basis of R. We say that a vector & € R3\{0} is spacelike, null(lightlike) or timelike if (x, ) is positive, zero
or negative, respectively.

We introduce a typical semi-Riemannian manifold, we put

AdS3(a) = {m ERY: (x—a,x—a)= —1}.

It is well known that AdS? is a complete semi-Riemannian manifold with constant sectional curvature —1.
We call AdS?® the anti de Sitter 3—sphere with vertex a.
In addition, we define a 3-dimensional (open) nullcone with vertex a by

A3 = {x = (21,20, 23,24) €ER} : (x — @,z —a) = O}\{a}.

When a = 0, we simply denote A by A™. Let X : U — R} be a regular surface of R( i.e. an embedding),
where U C R? is an open subset. We identify M = X (U) with U through the embedding X.

If (,) is degenerate on the tangent bundle TM of M we say that M is a lightlike submanifold of Rj.
Next, we introduce some basic notions about lightlike submanifolds (see [3] [4]).

Denote by F(M) the algebra of smooth functions on M and by I'(E) the F(M) module of smooth
sections of a vector bundle E (same notation for any other vector bundle) over M.

For a degenerate tensor field (,) on M, there exists locally a vector field £ € T'(T'M) such that (£, X) =0
for any X € I'(TM). Then, for each tangent space T, M, we have T,M* = {u € T,R} : (u,v) = 0,Vv €
T, M}, which is a degenerate 2-dimensional subspace of T,R3. The radical subspace of T,M (denoted by
RadT, M) is defined by RadT,M = {&, € T,M : (§,,X) = 0 VX € T,M}. The dimension of RadT,M =
T,MNT,M L depends on p € M. The submanifold M of R} is said to be a 1-lightlike surface if the mapping

RadT'M : M — TM,p +— RadT, M

defines a smooth distribution of rank 1 on M. RadT M is called the radical distribution.

In this paper, we study the lightlike surface M of R3. Consider a complementary distribution S(T'M) of
RadTM in TM. Clearly, S(T'M) is orthogonal to RadT M and non-degenerate with respect to (,). Let a
complementary vector subbundle to RadTM in T M~ be denoted by S(TM~L). We call S(TM) and S(T M)
a screen distribution and a screen transversal vector bundle of M, respectively. We suppose S(TM*) is
of constant index 1 on M. Similarly, let ¢rT'M and [trT'M be complementary (but not orthogonal) vector
bundles to TM in TR3|5; and to RadT M in S(TM*)* respectively. We call trTM and ltrTM a transversal
vector bundle and a lightlike transversal vector bundle of M, respectively. For 1-lightlike surfaceM of R3,
we have the facts that there exists a unique vector subbundle [trTM of S(TM*)+ of rank 1 such that for
any & € T'(RadT M), €& # 0 on M, there exists a unique n € (ItrTM) of S(T M=) satisfying (see [4])

(§,m) =1,(n,n) =0.
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We obtain

trTM = ltrTM 1 S(TM*4Y),
TR3|y = TM @ trTM (2.1)
= S(TM) L S(TM*) L (RadTM @ ltrTM).

Consider the following local field of frames of R3 along M:

{Xu, Xupm,m}, (2:2)

where X, = 0X/0u;, {X,, = &} is a lightlike basis of I'(RadTM), {X,,} a spacelike basis of I'(S(TM)),
{n} alightlike basis of I'(ltrT'M) and {w} a timelike basis of I'(S(T'M~)), respectively.
The local field of frames satisfies

<17,77> = <77,n> = <777Xu2> = <Xu2’n> =0, <n,n> =-1 (23)

<€7£> = <€,’I’L> = <£7Xu2> = 05 <§,77> = 17 <XU2’XU2> > 0. (24)
According to (2.1)) we have the Gauss formulae and the Weingarten formulae for the 1-lightlike surface M
of R3.

v)(y:v)(y"i'he()(vy)—i_hs(xay): (25)

ViV =—A(V,X) 4+ D4V + D3V (2.6)

for any X,Y € I'(TM),V € TL(tr(TM)), where V1Y, A(V,X) belongs to I'(TM),{h%, D%} is the
D(ltr(TM))-value and {h®, D%} is the ['(S(T'M+))-value, respectively.

We now introduce the pseudo-Riemannian metric ds? = > oi=1 gijduiduj on M = X (U), where g;j(u) =

(Xu; (), Xu; (u)) for any u € U. We denote the local lightlike second fundamental forms and the local screen
second fundamental forms of M on U by {h% } and {h$,}, respectively. From (2.5) and (2.6]), we derive

2

vXuz-)(uk = vXuiXUk + hfkn + hfkln’ = Z Q]szU] + hfkﬂ + hfkna (27)
j=1

Vx,,n= 23221 Xy, + 0m + pin, (2.8)

?Xuin = 232:1 O{Xuj +vin + pn, (2.9)

where ht,(Xu,, Xu,) =0 (see []).

Definition 2.1. Let T,M* = RadT,M 1 S(T,M<) be the normal space of M at p = X(u) in R}, we
denote T,M = S(T,M) L itrT,M. We call T,M the corrected tangent space of M at p = X (u).

We arbitrarily choose a normal section w(u) € N,(M). By (2.1), we have w,, (u) € T,M & T,M~*.
Consider the projections
¢ T,M & T,M* — T,M

and
™ T,M © T,M*+ — T,M*.

Let dw,, : T,,U — T:DMGBT],ML be the derivative of w. We define that aleZ = mtodw, and dwiv = N odw,.

Definition 2.2. For any w € T),, M L we call the linear transformation
’ .
She = dwy : Tpo M — Tpo M

the corrected 1-lightlike w-shape operator of M = X(U) at pg = x(up).
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For given a basis {5 } of RadT,,M and {n} of itrT,, M satisfying (§,m) = 1, we define an isomorphic

mapping
Apy : Tpo M — Tpo M

such that for any AX,, + 19 € T,) M,
Apo()\mw +71m) = AX,, + 7.
Definition 2.3. For any w € T),, M L we call the linear operator
LT3 = Apy 0 Spo - Tpo M — Ty M,
the 1-lightlike w-shape operator of M = X (U) at pg = X (up).

We remark that LT3® = Ap, o S : T,,M — T, M does not always have real eigenvalues. If the
eigenvalues are real numbers, we denote it by k7°.

Definition 2.4. We call det(S};) the I-lightlike Gauss curvature with respect to w at pp = X(ug) and
denote it by K’ (po).

It is easy to see that
K’ (po) = det(S},) = det(A o LT3) = det(A,, )det(LT“’) det(LT,) = ki"k3’.

Definition 2.5. We say that a point py = X(uo) is 1-lightlike w-umbilic point if LT;? = k*idr, pm. We
say that M = X (U) is totally 1-lightlike w-umbilic if all points on M are 1-lightlike w-umbilic.

Because any normal vector w can be generated by & and n, therefore we also denote the 1-lightlike Gauss
curvature K;”(po) with respect to w = A§ + mn at pg = X(ug) by Ké’\’ﬂ (po). We also say that a point
po = X(uog) is 1-lightlike (A, 7)-umbilic point if LT3 = ki*(po)idr, v and M = X (U) is totally 1-lightlike
(A, 7)-umbilic if all points on M are 1-lightlike (A, 7)-umbilic.

Considering the hypersurface defined by HP(v,c) () AdS™, we say that HP(v,c) () AdS™ is an elliptic
hyperquadric or a hyperbolic hyperquadric if HP(v, c¢) is a Lorentz hyperplane or a semi-Euclidean hyperplane
with index 2, respectively. We say that H P (v, c) [ AdS™ is a hyperhorosphere if HP(v, ¢) is null hyperplane.

Proposition 2.6. Under the above notations, the 1-lightlike Gauss curvature with respect to any normal
vector w = p€ + wn € T,M~* is given by

s —Thiy(u)
),y —7hi;(u) L
KE (u) = det ( _)‘héz("f)QEThgz(u) ’

922

where p,w are real numbers and
h’é? = <_vXu2Xu2’XU1>7 fk = <_vXuiXuk7n>7g22 = <Xu2vXu2>'
Proof. By the definition of 1-lightlike Gauss curvature, we know
KéA’T)(u) = det ST,

Using (2.7) and (2.9)), we obtain

2
Vi, (A +7n) = (Aol +707)Xu, + (Abf) + Tvi)m + (AR + Tpi)m,
7j=1
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thus

det SM+™ — Jet ( )‘htil + 71 )‘9%1 + TU% > )

)\hgl + T /\931 + TO'%
We can check that

v = (Vx, 7 Xu) o} = ”%(?guln,XuQ
= —(Vx,, Xus, 1) = -1 (Vx, Xu,,n)
< ul 1 ZQQ 1
— _hS _ My
1 922’
vy = <?)_(u2n,Xu1> o3 = 92%1(?{(“2”’)(“”
= *<VXH2XU1,7I> - _§<VXM2 Xuy, M)
= —h3y, S
g22
and ) ,
011 7 g2 <VX“1 Xuys Xus) 921 = 4 <VX7J,2 Xy s Xuy)
922 <vXU1 XU?’X“1> 922 <VXu2 Xum Xu1>
— _h — h22
g22’ g22°

On the other hand, since map X : U — R} is C™, then @XulXu2 = ?XW Xu,, therefore

hli2 = <7Xu1 Xugs Xuy)
= <7Xu2XU1?XU1>
=0
It follows that
—7hs, (u) —Thiy(w)
K()‘v‘r) (u) = det ( 11 P 922
¢ — RS, (w)—Ths )
—7h3;(u) QQ;ZQ)(u) ()
which clearly proves our assertion. O

We let Klg)"T)O(uo) denotes the 1-lightlike Gauss curvature at pg = X (ug) with respect to (A6 + 1)y =
A(up) +71n(ug). We say that p = X (ug) is a 1-lightlike (X, T)-parabolic point of M = X (U) if Ké/\’T)O(uO) =
0. We also say that p = X (uyg) is a I-lightlike (X, 7)-flat point of M = X(U) if p = X (uyp) is a 1-lightlike
(A, 7)-umbilic point and KéA’T)O(uo) =0.

We know that all the lightlike normal vector can be generated by &, that is, any lightlike normal vector
can be represented as the form A&, where A € R, as an application of the above proposition, we consider the
1-lightlike Gauss curvature of 1-lightlike surface with respect to any lightlike normal vector A&, we have the
following corollary,

Corollary 2.7.

e 1-lightlike Gauss curvature (u)=0o0 at any p = w) with respect to A§, that 18, eac
1) The 1-lightlike G KM 0 of M X ith \E, that is, each
point of 1-lightlike surface M is 1-lightlike (X, 0)-parabolic point.
2) p=X(u) is a I-lightlike (X, 0)-flat point o if and only ¢ u) =0.
X lightlike (X, 0)-fl f M if and only if h§2

Proof.
(1). We know from Proposition [2.6| that when 7 = 0,

0 0
Ké’\’o)(u) = det ( 0 My )

g22(u)
=0

for any u € U.
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(2). It is clear from assertion (1) that k:?"o) (u) =0 and k‘g/\’o) (u) = 7;‘2};%3‘), assertion (2) follows from the
definition of 1-lightlike flat point.

O

Let X : U — R} be a regular 1-lightlike surface of R}, where U C R? is an open subset, we define a pair
of hypersurfaces
LFf U xR — R}
by
LFS (u, 1) = X (u) + i€ (w) + n(u),

where u = (u1, u2). Each of these two hypersurfaces is called the 1-lightlike focal hypersurface along M.

3. 1-Lightlike distance-squared function and 1-lightlike focal hypersurface

In this section we define a 1-lightlike focal hypersurface from the 1-lightlike surface in R3 and introduce
the 1-lightlike distance-squared function in order to study the singularities of 1-lightlike focal hypersurfaces.

Let X : U — R} be a I-lightlike surface. We define a family of functions G : U x R; — R by
G(u,v) = (v—X(u),v— X (u)) + 1, where v = (vq,...,v4) € Ry. We call G the 1-lightlike distance-squared
functions on M = X (U). Using the notation g,, = G(u,vg) for any vy € R}, we have the following
proposition.

Proposition 3.1.

(1) gv(u,v) = 0 if and only if there exist real numbers u, \,7,w € R such that v — X(u) = p&(u) +
AXy, (w) + m(u) + wn(u) and 2ut + N2 — w? = —1.

(2) gv(u,v) = gz: (u,v) =0 if and only if v — X (u) = p&(u) £ n(u) for some p € R.

(3) gv(u,v) = gﬁ: (u,v) = det Hess(gy) = 0 if and only if v = X (u) + p€(u) £ n(u) for some p € R
and Ké“’il) = +hf,, in this case, :F,uhi’lkél’o) + Kéo’l) F hi, = 0, where b, = <?XuiXuk,n>,hfk =

<?X“i Xuk ) £>7 g22 = <Xuz ) Xuz>

Proof.

(1) Consider the following local field of frames of T,R3 along M:

{ X () = €(u), X (w), m(u), n(w) |,
where p = X (u) and there exist real numbers p, A, 7,w such that
v— X(u) = p&(u) + AXy, (u) + ™(u) + wn(u).

Therefore g, (u,v) = 0 if and only if v— X (u) € AdS?, that is, g,(u,v) = 0 if and only if 2uT+A\?—w? =
—1.

(2) Because 22 (u,v) = (—Xu,(u),v — X (u)), we obtain

ou;
T(§(u),n(u)) =7 =0

and
)‘<XU2 (u)a Xuy (u)> =0,

which implies A = 0. Moreover, in combination with the condition 27 4+ A% —w? = 0, we have w = +1,
therefore g, (u,v) = gi’; (u,v) = 0 holds if and only if v = X (u) + p€(u) £ n(u).
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(3) When g,(u,v) = gﬁz (u,v) =0, we compute

82g, _ =
Po(u,v) = (- vx,

-

(3.1)

qu - X> <Xu]7Xul>
X'U‘7,7/'I/£:*:n> <X’le7X'LLi>7
+ (Xuys Xu1> <_?Xu2 Xuy, p€ £ m(u) + (Xu, Xu2> >
+ <XU23XU1> <_vXu2Xu2uUJ£ + TL> + <Xu27Xu2>
— det ( < vXul Xy, p€ £ n <77vXu2XU1’/‘I’€ + ’I’L> )
(- vXul Xugs € £ 1 <_VXu2 Xuy, p€ £ 1) + g2o

— det :Fhfl Fh3,
- —phb, F RS, +
Fhis —phoy F hig + g2o

ulXU17lu’£:l:n

(=Vx
det H v) = det —
¢ 688(9 ) ¢ ( <_VX u27:u£:l:n

N~~~

= Ké”’ )922 T hii1g22

= iﬂh%h% + hi1h3y — h31his F hi1g22,

(1,0)

0,1
= Fpuhiks g2 + Klg ’ )g22 T hi1922,

thus g, (u,v) = gi: (u,v) = det Hess(g,) = 0 if and only if v = X (u)+pué(u)£n(u) and :F,uh‘flkél’o)+

K(O 2 F hi; = 0. This completes the proof.

O

Proposition means that the discriminant set of the 1-lightlike distance-squared function G is given
by

Dg = { X (u) + ug(u) £ n(w)|(u, p) € U x R},
which is the image of the 1-lightlike focal hypersurface along M.

Proposition 3.2. The singular set of LFy; = X (u) + pé(u) + n(u) is given by
+\ . S (170) (071) S —
S(LFy;) = {(ul,uQ,,u) e U xR:Fpuhi(u)ky 7 (u) + K,/ (u) F hi(u) = 0}.

Proof. We calculate

OLFy, ¢
on
OLFE h$
WlM = (po1, £of +1) ;j Xu, + phiim F hiym,
OLFy; —phly F h3

Fus = (poy £ 03)&+( + 1) X, + ph3m F h3n.

g22

Moreover

OLFY, OLFy, OLF;; h3 h3 hi
M M M::FM 2002 (¢ A X An) + “212 (6 A X, An)
o Ouy Oug 922 922

s ([ hz q:hs s 1.8
+phll(%+1)(5/\n/\XuQ)$uh11h21(£/\n/\n)

V4 s
—phag F hiy
Fhi(—————=
11( g22
_ ,u( N —phs, q:h22 T1)+ h31his
g22 g22

+1)(EAN A Xy,) F phiths (EADAN)

)(E/\n/\XuQ)
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A Xyo A
g22 922 )(E 2 77)

ph F hj h5,h3
= (P (PR ) £ 2202 (g k),
g22 g22

aLFi OLFE aLFi
therefore M A BUM N =M

KD

. . —uhb,Fhs h3 h$ . 1,0
= 0 if and only if by (T2 4 1) £ #8M2 — o that s, Fpuhi kS0 +
F hi; = 0. This completes the proof. O

Therefore a singular point of the 1-lightlike focal hypersurface is a point

vo = X (ug) + p€(ug) £ n(ug)

0,1
th )¥h11

1,0)

at which =4 11
Ho +hs kT

4. 1-Lightlike focal hypersurfaces as wave fronts

In this section we interpret the 1-lightlike focal hypersurfaces of M in Rj as a wave front set in the
framework of contact geometry.

Proposition 4.1. Let vy € R} and M be a 1-lightlike surface without umbilic points satisfying h3 1 0) #0.
Then M s part of AdS3(vo) if and only if vg is an isolated singular value of the 1-lightlike focal hypersurface
LFy; and LF(U x R) C A3,

Proof. By definition, M C AdS®(vp) if and only if gy, (u) = 0 for vy € U, where gy, (u) = G(u,vq) is the
1-lightlike distance-squared function on M. It follows from Proposition [3.1|that there exists a sooth function
p: U — R such that

X(u) = vo — (p(w)é(w) £ n(w)).
Then
LF3 () = vo — (p(w)é(u) = n(w)) + t€(u) = n(u)
— vy + (= p(w) )€ (u).

Hence we have LF5; (U x R) C A3, . Moreover, we calculate that

I g,
85555 = pur (w)€(u) + (t p(u )€u1
— s (E(w) + (= p(w) ) (ohi€(w) + hiyn(w)),
857?’ = fuy (w)§(u) + (t p(u )éuQ
= (W) + (¢ = pu(w)) (0316 (w) + 031 (1) Xus (w) + iy (w)n(w) ).
By the proof of Proposition [2.6, we know 02, = —Zg = 15" thus

oLFE OLFE  OLFE s 1.(1,0 2
ot N gl N gt = —hllkg )<t—,u(u)) (ﬁ(u) A Xy, (u) /\n(u)).



Q. Wang, Z. Wang, J. Nonlinear Sci. Appl. 9 (2016), 3127-3146 3136

Since &(u), Xy, (u) and n(u) are linearly independent. Therefore

0 7 &(u) A Xy, (u) An(u),

thus

OLFL  OLFL ~ OLFL
ot A ouy A Oua t=0

if and only if t — p(u) = 0 under the assumption that hflk‘é 0 # 0. This means that vy is an isolated
singularity of LFAi/[. The converse assertion is trivial. O

Let 7 : PT*(R3) — R% be the projective cotangent bundles with the canonical contact structures.
Consider the tangent bundle 7 : TPT*(R3) — PT*(R3) and the differential map dr : TPT*(R3) — T(R3)
of m. For any X € TPT*(R}), there exists an element a € T*(R3) such that 7(X) = [a]. For an element
V € T,(R3), the property a(V) = 0 does not depend on the choice of representative of the class [a]. Thus
we can define the canonical contact structure on PT*(R3) by

K= {X e TPT*(RY)|7(X)(dr (X)) = 0}.

On the other hand, we consider a point v = (v1,...,v4) € R3, we adopt the coordinate system (v1, . ..,v4) of
R3. Then we have the trivialization PT*(R3) = R} x PR3, and call ((v1,...,v4),[€1: -+ : £&4]) homogeneous
coordinates of PT*(R3), where [¢1 : -+ : &] are the homogeneous coordinates of the dual projective space

P(R3)*. It is easy to show that X € Ky [g) if and only if Z?:l wi& = 0, where drn(X) = Zle wi(0/0v;).
An immersion i : L — PT*(R3) is said to be a Legendrian immersion if dimL = 3 and dig(T,L) C K;(, for
any ¢ € L. The map 7 o1 is also called the Legendrian map and the image W (i) = image(w o i), the wave
front of i. Moreover, i (or the image of ) is called the Legendrian lift of W (i).

In order to study the 1-lightlike focal hypersurface, we give a brief description of the Legendrian singu-
larity theory developed by Arnold-Zakalyukin [, 16]. Although the general theory has been described for
the general dimension, we only consider the 4-dimensional case for the purpose.

Let F': (R* x R* 0) — (R,0) be a function germ. We say that I is a Morse family if the mapping

A*F = (F OF al) . (R* x R%,0) — (R x R, 0)

» dq1° > Ogg,
is non-singular, where (q,x) = (ql,...,qk,xl, ...,x4) € (R¥ x R* 0). In this case we have a smooth 3-
dimensional submanifold X, (F) = 1(0)
5.(F) = {(a.0) € (& < RLO)IF(g.2) = G (q.0) =+ = 2 (g.0) =0

and a map germ ®p : (X,(F),0) — PT*R* defined by

op(g,x) = (=, |2 (a,2): Pla,2): E(a.2): L (q,)])

is a Legendrian immersion. Then we have the following fundamental proposition of the theory of Legendrian
singularities by Arnold-Zakalyukin [T [16].

Proposition 4.2. All Legendrian submanifold germs in PT*R?* are constructed by the above method.

F' is called a generating family of ®r. The corresponding wave front is

W(op) = {:c € RY| there exists ¢ € RFsuch that F(q,x) = g—(i(q,m) == g—F( x) = 0}

We denote D = W (®p) and call it the discriminant set of F. By proceeding arguments, the 1-lightlike
focal hypersurface LF ]\3} is the discriminant set of the 1-lightlike distance-squared function G.
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Proposition 4.3. The I-lightlike distance-squared function G : U x R} — R is a Morse family.
Proof. Let v = (v1,ve,v3,v4) € R3, X(u) = (Xl(u),Xg(u),Xg(u),X4(u)) and

n= (nl(u),ng(u),ng(u),n4(u)>,
so that
G(u,v) = (v — X(u),v — X(u))
= —(v1 — X1(u))? = (va — Xa(u))? + (v3 — X3(u))? + (v4 — Xy4(u))® + 1.

We now prove that the mapping

oG 0G
A*G = (G, iy 7>
6U1 GUQ
is non-singular at any point (u,v) € ¥4(G). The Jacobian matrix of A*G is given as follows:
gTCi(u> v)j=12 aaTC;,(U, V)ji=1,2,3,4
JA*G(u,v) = 92G 92G
( ) (8u18u3 (’U/, 'U)) 1=1,2 (81141-/811]-/ (U, U)> i/=l,2
Jj=12 j'=1,2,34
We denote
55_’, (u,v)j=1234
B= 82G
<8ui/8vj/ (u’ U)) i'=1,2
§'=1,2,3,4
—2(v1 — Xi(u)) —2(v2 — Xo(u)) 2(vs — X3(u)) 2(ve — Xa(u))
= 2X 14, (u) 2 X0y, (u) —2X3,, (u) —2X 4y, (u)
2X1u2 (u) 2X2u2 (u) —2)(3u2 (u) —2X4u2 (u)
—(1 X1, (w) + n1 () —(pXou, (u) +n2(w))  pXsu, (u) +n3(w)  pXay, (u) +n4(u)
=2 Xlul (u) X2U1 (u) _X3u1 (u) _X4u1 (u) ’
le (u) XQW (u) _X3U2 (u) _X4U2 (u)
where Xj,, ?dffji (i,j =1,2). Let

It is clear that

(€ + n(u), i€ + n(u)) = (ué + n(u), € + n(u)) = —1,
(X (w), Xy (u)) = (X, (), Xo, () =0,
(X (1), Xy (1)) = (X, (1), Xup (w)) > 0.

T
By using the elementary transformations, matrix (,u{ + n(u),Xul(u),XW(u)) becomes matrix
— — e T T
(uf + n(u), Xy, (), Xy, (u)) . It follows the rank of matrix (uﬁ + n(u), Xy, (u), Xy, (u)) is equal to

— —— — T
the rank of matrix (u{ +n(u), Xy, (u), Xy, (u)) . Since n(u), Xy, (u) and X,,(u) are linearly indepen-

dent for all (u,v) € X.(G), therefore u@l,)/(u\l(u) and )/(U\Q(u) are also linearly independent, thus we
have rankB = 3.
O
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We observe that G is a generating family of the Legendrian immersion whose wave front set is the image
of LF.
M

5. Contact with anti de Sitter 3-sphere

In this section we describe the contacts between the 1-lightlike surface and the anti de Sitter 3-sphere
by applying Montaldi’s theory [6].

Let X; and Y;(i = 1,2) be submanifolds of R" with dimX; = dimXs,dimY; = dimY, and y; € X;(Y;
for ¢+ = 1,2. We say that the contact of X; and Y; at y; is the same type as the contact of X5 and
Yy at yo if there is a diffeomorphism germ @ : (R",y;) — (R™,yz) such that ® : ((X1,y1)) = (X2, y2)
and @ : ((Y1,y1)) = (Y2,y2). In this case we write K(X1,Y1;9y1) = K(X2,Y2;y2). Two function germs
91,92 : (R",a;) — (R,0)(i = 1, 2) are K-equivalent if there are a diffeomorphism germ ® : (R",a;) — (R", a2)
and a function germ A : (R™,a1) — R with A(a1) # 0 such that f; = A (g2 0 ®). In [6] Montaldi has shown
the following theorem.

Theorem 5.1 ([6]). Let X;,Y;(i = 1,2) be submanifolds of R™ with dimX, = dimXs and dimY, = dimY;.
Let g; : (X;,x;) — (R™,y;) be immersion germs and f; : (R, y;) — (RP,0) be submersion germs with
(Yi,yi) = (fi_l(O),yi). Then K(X1,Y1;y1) = K(X2,Y2;y2) if and only if fiog1 and fyoge are K-equivalent.

We now consider the function G : R x R — R defined by G(X,v) = (v— X,v — X) + 1. Given vy € Rj,
we denote go,(u) = G(X,vp), so that we have g, !(0) = AdS?(vg). Let X : U — R} be an embedding of
codimension 2. For any ug € U, we consider vector v = X (ug) + po€(uo) & n(ug) € RS, then it follows
from Proposition (1) that

8,4 © X(uo) = G o (X x idgy)(uo,vy) = Gluo,vg) =0,

where :F,ughfl(uo)k:él’o) (up) —|—Ké0’1)(u0) Fhi;(uo) = 0. It also follows from Proposition |3.1{(2) that we have
0g,+0X oG
Vo _ 7 =+ _
aui (UO) auz (UO7 Y0 ) 0

for i = 1,2. Hence, anti de Sitter sphere g;il (0) = AdS?(vF) is tangent to M = X (U) at p = X (ug). In this
0

case, we call each of AdS3(vY) the tangent anti de Sitter spheres of M = X (U) at po = X (uo).

For any map f : N — P, we denote by X(f) the set of singular points of f and D(f) = f(2(f)).
In this case one calls fl|sp) @ B(f) — D(f) the critical part of the mapping f. For any Morse family F' :
(RF xR*,0) — (R,0), (F~1(0),0) is a smooth hypersurface. A smooth map germ 7z : (F~1(0),0) — (R*,0)
is defined by 7r(q,x) = @. It is easy to show that X, (F') is equal to X(mp). Therefore, the corresponding
Legendrian map 7 o @ is the critical part of mp.

We briefly review some results on generating family of Legendrian map germs [16] [17].

Let i : (L,p) C (PT*R",p) and ¢ : (L',p’) C (PT*R",p') be Legendrian immersion germs. Then we
say that i and ¢ are Legendrian equivalent if there exists a contact diffeomorphism germ H : (PT*R", p) —
(PT*R",p’) such that H preserves fibres of = and that H(L) = L’. A Legendrian immersion germ into
PT*R"™ at a point is said to be Legendrian stable if for every map with the given germ there is a neighborhood
in the space of Legendre immersions (in the Whitney C'*°-topology) and a neighborhood of the original point
such that each Legendrian immersion belonging to the first neighborhood has in the second neighborhood
a point at which its germ is Legendrian equivalent to the original germ.

Because the Legendrian lift ¢ : (L,p) C (PT*R", p) is uniquely determined on the regular part of the
wave front W (i), we have the following simple but significant property of Legendrian immersion germs holds.

Theorem 5.2 ([I7]). Let i : (L,p) C (PT*R*,p) and i’ : (L',p') C (PT*R*p’) be Legendrian immersion
germs such that reqular sets of mwoi and woi' are dense, respectively. Then i and i’ are Legendrian equivalents
if and only if their wave front sets W (i) and W (i) are diffeomorphic as set germs.
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The assumption in the above theorem is a generic condition for ¢ and ¢’. In particular, if ¢ and 7' are
Legendrian stable, then they satisfy the assumption.

We can interpret the Legendrian equivalence by using the notion of generating families. We denote &,
the local ring of function germs (R",0) — R with the unique maximal ideal 9,, = {h € &, : h(0) = 0}.
Let F,G : (R* x R",0) — (R,0) be function germs. We say that F' and G are P — K-equivalent if there
exists a diffeomorphism germ ¥ : (RF x R",0) — (R* x R",0) of the form ¥(z,u) = (¥1(q,z),2(x)) for
(¢,z) € (RF x R",0) such that U*((F)e,,,) = (G)e¢,.,.. Here ¥* : &1, — Exyy is the pull back R-algebra
isomorphism defined by ¥*(h) = ho .

Let F : (RFxR™,0) — (R,0) be a function germ. We say that F is an infinitesimal KC-versal deformation
of f = Flgryg if

oF
* Oz,

&k = TLR)(f) + (4=

REx {0} ka{o}>R’

where
0 0
Te(K)(f) = <37qflv ey 87(1];>5k’

see [B]. The main result in the theory of Legendrian singularities is the following.

Theorem 5.3 ([I6]). Let F,G : (R¥ x R* 0) — (R,0) be two Morse families (i = 1,2). Then the following
results hold.

(1) ®F and P are Legendrian equivalent if and only if F,G are stably P — K-equivalent.
(2) @ is Legendrian stable if and only if F' is an infinitesimal K-versal deformation of F|ka{0}.

By the uniqueness result of the infinitesimal K-versal deformation of a function germ, Theorem and
Theorem [5.3] we have the following classification result of Legendrian stable germs. For any map germ
f:(R",0) — (RP,0), we define the local ring of f by Q(f) = &,/ f*(IM,)En.

Proposition 5.4 ([16]). Let F,G : (RF x R",0) — (R,0) be two Morse families such that the corresponding
b and ®g are Legendrian stable. Then the following conditions are equivalent.

(1) (W(®r),0) and (W(Pg),0) are diffeomorphic as germs;
(2) ®F and P are Legendrian equivalent;
(3) Q(f) and Q(g) are isomorphic as R-algebras, where f = Flgk, 01,9 = Glrrxo}-

We have the tools for study of the contact of 1-lightlike surfaces with anti de Sitter 3-sphere. Let
LF AJZ (U, ) — (RS, vF), (i = 1,2), be two 1-lightlike focal hypersurface germs of 1-lightlike surface germs
X 2 (U,u;) — (RS, p;)(i = 1,2). We say that LF ]\i/h and LF ]\i/lz are A— equivalent if there exist diffeomorphism
germs. ¢ : (Ni,u1) — (Na,uz) and ) : (Py,v{) — (P2, v5) such that ¢ o LFjE1 = LF]\j/E[2 o ¢.

If both of the regular sets LF@ are dense in (U x R, (w;, p;)), for i = 1,2, it follows from Theorem
that LF J\jZ and LF Ai@ are A-equivalent if and only if the corresponding Legendrian immersion germs
are Legendrian equivalent. This condition is also equivalent to the condition that two generating families
G1 and Gy are P — K-equivalent by Theorem Here, G; : (U x R3, (uz,v;t)) — R is the 1-lightlike
distance-squared function germ of X;.

On the other hand, if we denote that g, +(u) = Gi(u,v), then we have g; o+ (u) = g = o X;(u). By
Theorem [5.1 - - '

K(Xl(U),AdS3(v1i),vli) - K(Xg(U),Ang(vzi),vsz)

if and only if g, v and g, vi are K-equivalent. Therefore, we can apply Proposition H to our situation.
Let Q* (X, up) be the local ring of the function germ Gt (U,up) — R defined by

Q*(X,u0) = Cog (U) /{g,2) ez ),
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where vg = LF ]ﬁ(uo, po) and C52(U) is the local ring of function germs at up with the unique maximal ideal
My, (U).

Theorem 5.5. Let X; : (U,u;) — (R, X;(w;)), (i = 1,2), be 1-lightlike surface germs. If the Legendrian
immersion germs of LF]\iL_ are Legendrian stable. Then the following conditions are equivalent.

(1) 1-lightlike focal hypersurface germs LF ]\jfll and LF ]\2 are A-equivalent;
(2) Gy and G2 are P — K-equivalent;

(3) 91,0% and GouE OTE K-equivalent;
(4) K(X1(U), Ad$* (vF); o) = K (Xa(U), AdS3 (v5); 05 );

(5) QF(X1,u1) and QT (Xa,us) are isomorphic as R-algebras.

Proof. The previous arguments has been shown that conditions (3) and (4) are equivalent. The other
assertions follow from Proposition O

For a 1-lightlike surface germ

X : (U, ug) — (RS, X (ug)),

we call (X -1 (AdS?’('vat)),uo) the tangent anti de Sitter indicatriz germ (briefly, tangent AdS indicatrix
germ) of X (see Figure , where vF = X (ug) + pé(uo) £ n(uo).

M=X(U)
U AdS*(v§)

(X(4dS*03)) uo)

Figure 1: Tangent anti de Sitter indicatrix germ.

As a corollary of Theorem we have the following.

Corollary 5.6. Let X; : (U,u;) — (R}, X;(u;)), (i = 1,2), be 1-lightlike surface germs. If 1-lightlike focal
hypersurface germs LF ﬁl and LF ]\2 are A-equivalent, then

K(X1(), 448 (07 ); v ) = K (X5(U), 4dS° (03 )); 07 ).
In this case, (Xfl (AdS?’('vli)),ul) and (X;1 (AdS?’('vzi)),uQ) are diffeomorphic as set germs.
Proof. We know from Theorem that g, v and g, vt are K-equivalent. By Theorem we have
K<X1(U),Ad53(v1i);vf[) - K(XQ(U),AdS3(U§E);U§E).

On the other hand, we have (X[l(AdS?’('vii)),ui) = g,,+(0). It follows that (Xfl(AdSS(’vf)),ul) and

(X; L(Ads? (’U;E)),'UQ) are diffeomorphic as set germs because the K-equivalence preserves the zero level
sets. O
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6. Classifications of singularities of 1-lightlike focal hypersurface

In this section we give the generic classification of singularities of 1-lightlike focal hypersurface. Let U be
an open subset of R? and Emb(U, R3) be the space of embeddings X : U — R} equipped with Whitney C°°-
topology. We define a function G : R x R§ — R by G(X,v) = (v — X,v — X), and denote g,(X) = G(X,v).
Then g, is a submersion for any v € R}. For any X € Emb(U,R3), we have G = Go (X x R3). We also have
the /—jet extension

JiG U xRy — JY(U,R)
defined by j{G(u,v) = j’g,(u), where G(u,v) = g,(u). We consider the trivialisation J*(U,R) = U x R x
J(2,1). For any submanifold Q C J(2,1), we denote that Q = U x {0} x Q. we have the following proposition
as a corollary of Lemma 6 in Wassermann [I5] (see also Montaldi [7]).

Proposition 6.1. Let Q be a submanifold of J(2,1). Then the set
Ty = {X € Emb(U,R3)|jLG is transversal to @}

is a residual subset of Emb(U,R3). If Q is a closed subset, then Tg is open.

On the other hand, we already have the canonical stratification A§(U,R) of J*(R% R) \ W*(R?,R). By
the above Proposition [6.1] and arguments in Section [§] we have the following theorem.

Theorem 6.2. There exists an open dense subset O € Emb(U,R3) such that for any X € O, the germ of
the Legendre lift of the 1-lightlike focal hypersurface LFAJ/[[ at each point LFJ\i/[(uo, o) € U x R is Legendrian
stable.

We can borrow some basic invariants from the singularity theory on function germs. We need K-invariants
for function germ. The local ring of a function germ is a complete K-invariant for generic function germ.
It is, however, not a numerical invariant. The K-codimension (or, Tyurina number) of a function germ is a
numerical K-invariant of function germ [§]. For open subset U C R? and 1-lightlike surface X : U — R3, we
denote

G—ord* (X, u) = dimCyo(U) /(g,= (uo), 89, (10) /Ui ) 1w (111
0 0 CuO(U)

Usually G—ordi(X ,ug) is called the K-codimension of Gt However, we call it the order of contact with
the tangent anti de Sitter sphere at X (ug). We also have the notion of corank of function germs.

G—corank™® (X, ug) = 2 — rank Hess (gvgt (up)).

We say a function germ f : (R""!,a) — R has Aj-type singularity if f is K-equivalent to the germ

2 2 k+1
FTui k- kup_o+w, .

Corollary 6.3. Let Emb(U,R3}) be the set of 1-lightlike surfaces. We have open dense subset O € Emb(U,R3)
such that for X € (’),vgE = LF]\i/[(u(],uo), we have the following:

(1) ’vgt s an singular value of LFJ\i/[ if and only if G—corank™ (X, ug) =1 or 2.

(2) If G—corank™(X,ug) = 1, then there are distinct principal curvatures k%uo’ﬂ),kgﬂo’ﬂ) such that
k%“o’il)kguo’ﬂ) = ih‘{l,:Fuoh‘{l(uo)kzél’o)(uo) + Kéo’l)(uo) F hi1(ug) = 0. and LF}; has the Ag-type
singularity (k= 2,3,4) at (ug, juo). In this case we have G—ord™® (X, ug) = k.

(3) If G—corank™ (X, ug) = 2, then wug is a 1-lightlike (ju, £1)-parabolic point for any p € R. In this case,
LF]\j/E[ has the DI—type or Dy -type singularity at (ug, p). Moreover we have G—ord* (X, up) =4, where
Ak,Df—type map germ f: (R3,0) — (R*,0) are give by the following list (see Figure fFigure @
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(Ag-type) f(ui,u2,uz) = (u1,uz,us,0) (Embedding);

(As-type) f(u1,ug,u3) = (2u3, —3u?, ug, u3) (Cuspidal edge);

(Ag-type) f(u1,u2,u3) = (3uf + ugu?, —4u$ — 2uqug, uz, u3) (Swallowtail);

(As-type) f(u1,u2,u3) = (4ud + 2ugu3 4+ uzu?, —5u} — 3ugu? — 2uquz, uz,us3) (Butterfly);

(As-type) f(u1,u2,uz) = (2(u + u3) + uyugus, —3u? — ugus, —3u3 — ujus,uz) (Purse);

(Ar-type) f(u1,u2,u3) = (2(ud —uiu3) +2(u? +u3)us, us — 3u? — 2uyus, 2(uiug —ugus), us) (Pyramid).

Figure 2: Cuspidal edge. Figure 3: Swallowtail

Figure 4: Butterfly Figure 5: Purse Figure 6: Pyramid

Proof. By Proposition if 'voi is singular value, then G—corank®(X,ug) < 2. By Theorem there
exists an open subset O € Emb(U,R}) such that for any X € O, corresponding 1-lightlike distance-squared
function G is a versal deformation of it By Thom’s classification of function germs, 9t is K-equivalent
to Ag-type germ (k = 2,3,4) or Df—type function germ, so that we have G—corank™ (X, ug) > 1, therefore
(1) holds.

If G—corank® (X, ug) = 1, then we know from the proof of Proposition

Fhiy Fh3, )
Thiy —phby F hy + goo
— Ké#vil)

det Hess(g,+) = det (

922 F hi1922
kglhil)kélhil)

g22 + hf1922

= :F,uhflkzél’o)gm + Kéo’l)gm F hi1922

=0,

implies kYto’il)kéﬂo’ﬂ) = ihﬁ,%Uohﬁ(UO)kéLo)(UO) + Kéovl)(uo) F ii(uo) = 0. The 9, has Ap-type

singularity at ug and is generic. In this case, it is K-equivalent to f(u1,uz) = ui+ub™ and G—ord® (X, ug) =
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k. Since the corresponding 1-lightlike focal hypersurface LF ]\j/E[ is the discriminant set of the 1-lightlike
distance-squared function G, therefore (2) holds.
If G—corank™® (X, ug) = 2, then matrix

( Fhiy , Fhs, >
Fhiy  —phay F hiy + g22
is a null matrix, h{; = hy; = hiy = —uhb, F hy + goz = 0, therefore

h$ Fhs 0 0
KD — det( o 21 ) - det( ) — 0.
¢ Thiy —phby T hiy 0 —ga2

Thus k:g“’ﬂ) = 07k§“’i1) = —go2 # 0, that is, ug is a 1-lightlike (u,+1)-parabolic point for any pu € R. If
9ot has D7 -type singularity, then it is K-equivalent to f(uy,us) = u$ + uju} and G—ord* (X, ug) = 4. This
completes the proof. O
Theorem 6.4. There exists an open dense subset O € Emb(U,R3) such that for any X € O, the tangent

anti de Sitter indicatriz germ at any point (u1, ug, v(j)[) € U x R} is diffeomorphic to one of the germs in the
following list:

(1) {(ul,ug) € (R%,0)|uf + u3 = 0} (Ordinary cusp) (see Figure H);

(2) {(ul,ug) € (R%,0)|uf £ u3 = 0} (Tachnode or point) (see Figure H);
(3) {(ul,ug) € (R%,0)|uf + u3 = 0} (Rhamphoid cusp) (see Figure H);
(4) {(ul,uQ) € (R%,0)|uf + u3 = 0} (Line);

(5) {(ul,ug) € (R%,0)|uf — uyu = O} (Three lines).

Figure 7: Ordinary cusp (the solid line) and rhamphoid

cusp (the dashed line) Figure 8: Tachnode and point

Proof. By Theorems[5.2]and m the 1-lightlike distance-squared function G is a K-versal deformation of 9ot

at each point (ug, up) € U x R. Therefore we can apply the generic classification of K-versal deformations
of function germs to 4-parameters. The normal forms are given by

G(uy,ug,v) = u]f'H + u% 4+ vy +vou + -+ vkulf_l(l <k <4),
G (1, un,v) = uS + us + v1 + voug + v3ug + vaugus,
G(ui,u2,v) = u:{’ — ulu% + v1 + vouy + v3ug + U4(u% + u%)

By Corollary[6.3] the corresponding tangent anti de Sitter indicatrix germs are diffeomorphic to the zero-level
set Gr2x (o} of the function germ G(u1,ug,v). O
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7. Example

In this section we give an example of 1-lightlike surfaces and draw their pictures by using Maple software.
Suppose M is a surface in R} given by

X:U =Ry, u=(up,up) — (x(u1,u2),y(u1,UQ),Z(Ul,UQ),t(Ul,UQ)),

where U = {u = (Ul,UQ)’Ul #0,—1 <wuy < 1} and

w(ui,ug) = \/71{7;’ y(u1,u2) = coshuy,

z(up,ug) = sinhwuy, t(u1,us) = \}‘% (7.1)
2

We derive T,M = Span{é(u),XM(u)}, where

&(u) = (\/Il_T%,sinhul,coshul,\/fiﬁ%),

Xu2(u) — (M 070’ ul

e 0 oy

and

TpMJ- — Span{g(u),n(u) = (O,coshul,sinhul,O) },

where &(u), Xy,(u) and n(u) are lightlike, spacelike and timelike vectors, respectively, for each u =
(ur,uz) € U. It follows that Radl,M = Span{&(u)} = T,M N T,M~*, that is, M is a 1-lightlike sur-
face of R3. We obtain the lightlike transversal space at p = X (u)

ltr(TpM) = Span{'rl(u) = %( — \/ll_Tg,Sinhu1,COShu1, _\/373) }

We give the vector parametric equation of the 1-lightlike focal hypersurface LE3: (u, j1) = X () +pé(u)+
n(u)

(\/1“;2, wsinhuy + coshuy, g coshuy =+ sinh uq, ’iuz 2>.
U3 )

We calculate B B
hiy = <vXu1Xu1’n> =—1,h3 = <vXu2Xu27n> =0,

hiq2 = <?Xu1XU2’ n> =0, hgl = <?Xu2 Xu17n> =0,

_ 2
héQ = <vXu2Xu2ﬂXu1> = _(1}%7922 - <X1L27Xu2> = (l_u,i%)z-

KV (wFhi, (u)
+hs, (w)k$? (u)
LFj}(ul,u% w) is given by

Therefore, we have = —uj. The singular set of the 1-lightlike focal hypersurface

LFE (ug,ug, —uq) = [ — =" 4y sinhuy = cosh uy, —uy coshuy + sinh uy, — %442
{ M( 1, W2, 1) \/@7 1 1 1 1 1 1 m )

where (u1,uz, —u1) € R3. We denote

Ul

y(uy,uz) = —uq sinhuy & cosh uy,

2
z(u1,u2) = —uj coshuy £ sinhuy, t(ui,ug) = —\}‘11“722. (7.2)
2

w(ur,uz) = ——H=,
2

This structure of the 1-lightlike surface is not easily imagined but it is possible to project the 1-lightlike
surface into three-dimensional spaces. We can draw the figures of the projections of the singular points of

the 1-lightlike focal hypersurface LF;;(u, ) to 3-spaces (Figures @
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N

Figure 9: Projection of the singular points of 1-lightlike Figure 10: Projection of the singular points of 1-lightlike
focal hypersurface on 3D space t = 0. focal hypersurface on 3D space z = 0.

Figure 11: Projection of the singular points of 1-lightlike Figure 12: Projection of the singular points of 1-lightlike
focal hypersurface on 3D space y = 0. focal hypersurface on 3D space x = 0.
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