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Abstract

In this paper, we define the concepts of the (CLR)-property and the (owc)-property for two single-valued
mappings and two multi-valued mappings in metric spaces and give some new common fixed point results
for these mappings. Also, we give some examples to illustrate the main results in this paper. Our main
results extend and improve some results given by some authors. c©2016 All rights reserved.
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1. Introduction

In 1922, Banach [4] proved a theorem, which is well-known as Banach’s fixed point theorem or Banach’s
contractive principle, that is, Every contractive mapping T from a complete metric space (X, d) into itself has
a unique fixed point z of the mapping T (Tz = z). Further, the sequence {xn} in X defined by xn+1 = Txn
for each n ≥ 1 converges to the fixed point z.

Since Banach’s fixed point theorem, many authors have improved, extended and generalized this theorem
in many different ways. Especially, in 1969, Nadler [27] introduced the notion of a multi-valued (set-valued)
contractive mapping in a complete metric space and also proved Banach’s fixed point theorem for a multi-
valued mapping in a complete metric space. Also, since Nadler’s fixed point theorem, many authors have
studied Banach’s fixed point theorem for multi-valued mappings and hybrid contractive mappings (mixed
contractions with single-valued and multi-valued mappings) in several ways ([5], [13], [14], [17], [26], [28],
[35], [36] and references therein).
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Further, in 1976, Jungck [18] introduced the concept of commuting mappings in metric spaces and
generalized Banach’s fixed point theorem by using commuting mappings in metric spaces, that is, two
mappings f and g from a metric space (X, d) into itself are said to be commuting if fgx = gfx for all x ∈ X.
The concept of commuting mappings has proven very useful for generalizing in the context of metric fixed
point theory (see [6], [7], [11], [12], [15], [16], [18], [19], [25], [32], [37]).

In 1982, Sessa [33] first proved common fixed point theorems for weakly commuting mappings in metric
spaces and, in 1986, Jungck [20] introduced the concept of compatible mappings in order to generalize the
concept of weakly commuting mappings by Sessa [33] and showed that weakly commuting mappings are
compatible, but the converse is not true (for more details on compatible mappings, see [9], [10], [21], [22],
[29], [30]). Again, in 1996, Jungck [23] introduced the concept of weakly compatible mappings in metric
spaces and proved some common fixed point theorems for weakly compatible mappings (for more results,
see [2]).

Afterward, Aamri and Moutawakil [1] introduced the notion of the (E.A)-property, which is a special
case of the tangential property due to Sastry and Murthy [32]. In 2011, Sintunaravat and Kumam [34]
proved that the notion of the (E.A)-property always requires the completeness (or closedness) of underlying
subspaces to show the existence of common fixed points of single-valued mappings and hence they coined
the idea of the common limit in the range (shortly, the (CLR)-property), which relaxes the requirement
of completeness (or closedness) of the underlying subspace. Also, they proved common fixed point results
for single-valued mappings by using this concept in fuzzy metric spaces. For more details on the (CLR)-
property, refer to [8], [31], [37] and therein. In 2009, Aliouche and Popa [3] proved some common fixed
point theorems for occasionally weakly compatible hybrid mappings in symmetric spaces and gave some
applications.

Motivated by the results mentioned above, in this paper, we introduced the notion of occasionally weakly
compatible mappings (shortly, the (owc)-property) and the common limit in the range (shortly, the (CLR)-
property) for four single-valued and multi-valued mappings in metric spaces and prove some coincidence
point and common fixed point theorems for the hybrid contractive mappings with the (owc)-property) and
the (CLR)-property. Also, we give some examples to illustrate the main results in this paper. In fact, our
main results improve, extend and generalize the corresponding results given by some authors.

2. Preliminaries

Throughout this paper, let (X, d) be a metric space and B(X) be the family of all nonempty bounded
subsets of X. We define the functions δ(A,B) and D(A,B) by

δ(A,B) = sup{d(a, b) : a ∈ A, b ∈ B}

and
D(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}

for all A,B ∈ B(X). If A consists of a single point a, then we write δ(A,B) = δ(a,B). If A = {a} and
B = {b}, then we write δ(A,B) = d(a, b). It follows immediately from the definition of δ that

δ(A,B) = δ(B,A) ≥ 0,

δ(A,B) ≤ δ(A,C) + δ(C,B),

δ(A,B) = 0 ⇐⇒ A = B = {a},
δ(A,A) = diamA

for all A,B,C ∈ B(X). Let CB(X) denote the class of all nonempty bounded closed subsets of X and H
be the Hausdorff metric with respect to d, that is,

H(A,B) =
{

sup
x∈A

d(x,B), sup
x∈B

d(x,A)
}
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for all A,B ∈ CB(X), where
d(x,A) := inf{d(x, y) : y ∈ A}.

Forward, we denote by Fix(T ) the set of all fixed points of a multi-valued mapping T , that is,

Fix(T ) = {x ∈ X : x ∈ Tx}.

Definition 2.1 ([19]). Let (X, d) be a metric space. Two mappings f, g : X → X are said to be compatible
(or asymptotically commuting) if

lim
n→∞

d(gfxn, fgxn) = 0

whenever {xn} is a sequence in X such that

lim
n→∞

fxn = lim
n→∞

gxn = t

for some t ∈ X.

In 1989, Kaneko and Sessa [24] introduced the notion of compatible mappings with single-valued and
multi-valued mappings as follows:

Definition 2.2 ([24]). Let (X, d) be a metric space. Two mappings f : X → X and S : X → CB(X) are
said to be compatible if fSx ∈ CB(X) for all x ∈ X and

lim
n→∞

H(Sfxn, fSxn) = 0

whenever {xn} is a sequence in X such that

lim
n→∞

Sxn = A

for some A ∈ CB(X) and
lim
n→∞

fxn = t ∈ A

for some t ∈ X.

Definition 2.3 ([20]). Let (X, d) be a metric space. A single-valued mapping f : X → X and a multi-valued
mapping S : X → CB(X) are said to be weakly compatible if they commute at their coincidence points, i.e.,
if fSx = Sfx whenever fx ∈ Sx.

It is easy to see that compatible mappings are weakly compatible, but the converse is not true.

Definition 2.4 ([34]). Let (X, d) be a metric space. Two mappings f, g : X → X are said to satisfy the
common limit in the range of f with respect to g (shortly, the (CLRf )-property with respect to g) if there
exists a sequence {xn} in X such that

lim
n→∞

fxn = lim
n→∞

gxn = fu

for some u ∈ X.

Example 2.5. Let X = [1,∞) with usual metric. Define two single-valued mappings f, g : X → X by

fx =
x

2
, gx = 2x

for all x ∈ X, respectively. Consider the sequence {xn} in X defined by xn = 1
n for each n ≥ 1. Then we

have
lim
n→∞

fxn = lim
n→∞

gxn = f(0).

Therefore, the mappings f and g satisfy the (CLRf )-property with respect to g.

The following is the definition of (CLRf )–property for a hybrid pairs of single-valued and multi-valued
mappings in metric spaces.
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Definition 2.6. Let (X, d) be a metric space. A single-valued mapping f : X → X and a multi-valued
mapping S : X → CB(X) are said to satisfy the common limit in the range of f with respect to S (shortly,
the (CLRf )-property with respect to S) if there exists a sequence {xn} in X and A ∈ CB(X) such that

lim
n→∞

fxn = f(u) ∈ A = lim
n→∞

Sxn

for some u ∈ X.

Now, we give an example for two mappings with the (CLRf )-property with respect to S.

Example 2.7. Let X = [1,∞) with the usual metric. Define two mappings f : X → X and S : X → CB(X)
by

fx = x+ 2, Sx = [1, x+ 2]

for all x ∈ X, respectively. Consider the sequence {xn} in X defined by xn = 1
n for each n ≥ 1. Clearly, we

have
lim
n→∞

fxn = 2 = f0 ∈ [1, 2] = lim
n→∞

Sxn.

Therefore, two mappings f and S satisfy the (CLRf )-property with respect to S.

Definition 2.8. Let (X, d) be a metric space. Two mappings f, g : X → X are said to be occasionally
weakly compatible (shortly, (owc)-property) if there exists a point u ∈ X such that fu = gu and fgu = gfu.

Definition 2.9 ([2]). A single-valued mapping f : X → X and a multi-valued mapping S : X → CB(X)
is said to be occasionally weakly compatible (shortly, (owc)-property) if fSx ⊂ Sfx for some x ∈ X with
fx ∈ Sx.

Definition 2.10. Let f, g : X → X be single-valued mappings and S, T : X → 2X be multi-valued
mappings.

(1) A point x ∈ X is said to be a coincidence point of f and S if fx ∈ Sx. We denote by C(f, S) the set of
all coincidence points of f and S;

(2) A point x ∈ X is said to be a common fixed point of f, g, S and T if x = fx = gx ∈ Sx and
x = fx = gx ∈ Tx.

3. Common fixed points for mappings with the (owc)-property

Now, we prove the main result in this section.

Theorem 3.1. Let (X, d) be a metric space. Let f, g : X → X be single-valued mappings and S, T : X →
B(X) be multi-valued mappings satisfying the following conditions:

(1) the pairs (S, f) and (T, g) are the (owc)-property;
(2) for all x, y ∈ X,

δp(Sx, Ty) ≤ ϕ
(

max
{
dp(fx, gy),

dp(fx, Sx)dp(gy, Ty)

1 + dp(fx, gy)
,
dp(fx, Ty)dp(gy, Sx)

1 + dp(fx, gy)

})
,

where p ≥ 1 and ϕ : [0,∞)→ [0,∞) is a function such that ϕ(0) = 0 and ϕ(t) < t for all t > 0.
Then f, g, S and T have a unique common fixed point in X.

Proof. Since the pairs (S, f) and (T, g) satisfy the (owc)-property, there exist u, v ∈ X such that

fu ∈ Su, fSu ⊂ Sfu, gv ∈ Tv, gTv ⊂ Tgv,

which implies that ffu ∈ Sfu and ggv ∈ Tgv.
Now, we prove that fu = gv. In fact, if fu 6= gv, then, using the condition (2), we have
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δp(Su, Tv) ≤ ϕ
(

max
{
dp(fu, gv),

dp(fu, Su)dp(gv, Tv)

1 + dp(fu, gv)
,
dp(fu, Tv)dp(gv, Su)

1 + dp(fu, gv)

})
= ϕ

(
max

{
dp(fu, gv),

dp(fu, Tv)dp(gv, Su)

1 + dp(fu, gv)

})
.

Since fu ∈ Su and gv ∈ Tv, we have

dp(fu, Tv)dp(gv, Su)

1 + dp(fu, gv)
≤ dp(fu, gv)dp(gv, fu)

1 + dp(fu, gv)
< dp(fu, gv)

and hence
δp(Su, Tv) ≤ ϕ(dp(fu, gv)).

Thus it follows from the property of ϕ that

dp(fu, gv) ≤ δp(Su, Tv) ≤ ϕ(dp(fu, gv)) < dp(fu, gv),

which is a contradiction and so fu = gv.
Next, we prove that fu is a fixed point of f . Suppose that ffu 6= fu. Then, by using the condition (2),

we have

dp(ffu, fu) = dp(ffu, gv) ≤ δp(Sfu, Tv)

≤ ϕ
(

max
{
dp(ffu, gv),

dp(ffu, Sfu)dp(gv, Tv)

1 + dp(fSu, gv)
,
dp(ffu, Tv)dp(gv, Sfu)

1 + dp(fSu, gv)

})
.

Since ffu ∈ Sfu and gv ∈ Tv, we have

dp(ffu, Tv)dp(gv, Sfu)

1 + dp(fSu, gv)
≤ dp(ffu, Tv) < dp(ffu, gv)

and hence
δp(Sfu, Tv) ≤ ϕ(dp(ffu, gv)).

Thus it follows from the property of ϕ that

dp(ffu, fu) = dp(ffu, gv) ≤ δp(Sfu, Tv) ≤ ϕ(dp(ffu, gv)) < dp(ffu, gv) = dp(ffu, fu),

which is a contradiction and so ffu = fu. Similarly, we can prove fu = gfu = ffu. Thus we have

fu = ffu ∈ Sfu

and
fu = gfu = ggv ∈ Tgv = Tfu.

Therefore, fu is a common fixed point of f, g, S and T . Moreover, by the condition (2), we have

δp(Sfu, Tfu) ≤ ϕ
(

max
{
dp(ffu, gfu),

dp(ffu, Sfu)dp(gfu, Tfu)

1 + dp(ffu, gfu)
,
dp(ffu, Tfu)dp(gfu, Sfu)

1 + dp(ffu, gfu)

})
= ϕ(max{0, 0, 0}) = 0.

Therefore Sfu = Tfu = {fu}.
Next, assume that w 6= z is another common fixed point of f, g, S and T . From the condition (2), we

have

dp(z, w) = δp(Sz, Tw) ≤ ϕ
(

max
{
dp(fz, gw),

dp(fz, Sz)dp(gw, Tw)

1 + dp(fz, gw)
,
dp(fz, Tw)dp(gw, Sz)

1 + dp(fz, gw)

})
= ϕ

(
max

{
dp(z, w), 0,

dp(z, w)dp(w, z)

1 + dp(z, w)

})
= ϕ(dp(z, w)) < dp(z, w),

which is a contradiction. Thus the common fixed point z is unique. This completes the proof.
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If p = 1 in Theorem 3.1, then we have the following:

Corollary 3.2. Let (X, d) be a metric space. Let f, g : X → X be single-valued mappings and S, T : X →
B(X) be multi-valued mappings satisfying the following conditions:

(1) the pairs (S, f) and (T, g) satisfy the (owc)-property;
(2) for all x, y ∈ X,

δ(Sx, Ty) ≤ ϕ
(

max
{
d(fx, gy),

d(fx, Sx)d(gy, Ty)

1 + d(fx, gy)
,
d(fx, Ty)d(gy, Sx)

1 + d(fx, gy)

})
,

where ϕ : [0,∞)→ [0,∞) is a function such that ϕ(0) = 0 and ϕ(t) < t for all t > 0.
Then f, g, S and T have a unique common fixed point in X.

If we take S = T and f = g in Theorem 3.1, then we have the following:

Corollary 3.3. Let (X, d) be a metric space. Let f : X → X be a single-valued mapping and S : X → B(X)
be a multi-valued mapping satisfying the following conditions:

(1) the pair (S, f) satisfies the (owc)-property;
(2) for all x, y ∈ X,

δp(Sx, Sy) ≤ ϕ
(

max
{
dp(fx, fy),

dp(fx, Sx)dp(fy, Sy)

1 + dp(fx, fy)
,
dp(fx, Sy)dp(fy, Sx)

1 + dp(fx, fy)

})
,

where p ≥ 1 and ϕ : [0,∞)→ [0,∞) is a function such that ϕ(0) = 0 and ϕ(t) < t for all t > 0.
Then f and S have a unique common fixed point in X.

If S is a single-valued mapping in Corollary 3.3, then we have the following:

Corollary 3.4. Let (X, d) be a metric space and f, S : X → X be two single-valued mappings satisfying the
following conditions:

(1) the pair (S, f) satisfies the (owc)-property;
(2) for all x, y ∈ X,

dp(Sx, Sy) ≤ ϕ
(

max
{
dp(fx, fy),

dp(fx, Sx)dp(fy, Sy)

1 + dp(fx, fy)
,
dp(fx, Sy)dp(fy, Sx)

1 + dp(fx, fy)

})
,

where p ≥ 1 and ϕ : [0,∞)→ [0,∞) is a function such that ϕ(0) = 0 and ϕ(t) < t for all t > 0.
Then f and S have a unique common fixed point in X.

Example 3.5. Let X = [0,∞) be the set of real numbers with the usual metric d(x, y) = |x − y| for all
x, y ∈ X. Define two single-valued mappings S, f : X → X by

Sx =

{
4, 0 ≤ x < 1,

x4, 1 ≤ x <∞

and

fx =

{
3, 0 ≤ x < 1,

1− 1
x4x, 1 ≤ x <∞.

Then f(1) = S(1) = 1 and fS(1) = 1 = Sf(1) and so the pair (S, f) satisfies the (owc)-property. Also, for
some k ∈ [0, 1), if we define a function ϕ(t) = kt for all t ∈ [0,∞), then all the conditions in Corollary 3.4
are satisfied and, further, the point 1 is a unique common fixed point of S and f .

If both S and T are single-valued mappings in Theorem 3.1, then we have the following:
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Corollary 3.6. Let (X, d) be a metric space and let f, g, S, T : X → X, be four mappings satisfying the
following conditions:

(1) the pairs (S, f) and (T, g) satisfy the (owc)-property;
(2) for all x, y ∈ X,

dp(Sx, Ty) ≤ ϕ
(

max
{
dp(fx, gy),

dp(fx, Sx)dp(gy, Ty)

1 + dp(fx, gy)
,
dp(fx, Ty)dp(gy, Sx)

1 + dp(fx, gy)

})
,

where p ≥ 1 and ϕ : [0,∞) → [0,∞) is a continuous monotone increasing function such that ϕ(0) = 0 and
ϕ(t) < t for all t > 0.
Then f, g, S and T have a unique common fixed point in X.

If we take ϕ = kt for some [0, 1) in Corollary 3.6, then we have the following:

Corollary 3.7. Let (X, d) be a metric space and let f, g, S, T : X → X be four single-valued mappings
satisfying the following conditions:

(1) the pairs (S, f) and (T, g) satisfy the (owc)-property;
(2) for all x, y ∈ X,

dp(Sx, Ty) ≤ kmax
{
dp(fx, gy),

dp(fx, Sx)dp(gy, Ty)

1 + dp(fx, gy)
,
dp(fx, Ty)dp(gy, Sx)

1 + dp(fx, gy)

}
,

for all x, y ∈ X.
Then f, g, S and T have a unique common fixed point in X.

Now, we give an example to illustrate Theorem 3.1.

Example 3.8. Let X = [0, 10] be endowed with the usual metric d(x, y) = |x− y| for all x, y ∈ X and

Sx =

{
{0} if x ∈ [0, 12 ],

[ 1
32 ,

1
16 ] if x ∈ (12 , 10],

fx =

{
0 if x ∈ [0, 12),

10, if x ∈ (12 , 10],

Tx =

{
{0} if x ∈ [0, 12),

[ 1
32

1
18 ] if x ∈ (12 , 10],

gx =

{
0 if x ∈ [0, 12),

5 if x ∈ [12 , 1].

Then the pairs (S, f) and (T, g) satisfy the (owc)-property because

f(0) ∈ S(0), fS(0) ⊆ Sf(0), g(0) ∈ T (0), gT (0) ⊆ Tg(0).

Now, we verify that the mappings f, g, S, T satisfy the condition (2) of Theorem 3.1 with ϕ(t) = 1
2 t. We

have the following cases:
(1) If x, y ∈ (0, 2], it is obvious.
(2) If x ∈ [0, 12) and y ∈ [12 , 10], we obtain

δ(Sx, Ty) =
1

32
<

5

2
≤ 1

2
d(fx, gy)

≤ 1

2
max

{
d(fx, gy),

d(fx, Sx)d(gy, Ty)

1 + d(fx, gy)
,
dp(fx, Ty)dp(gy, Sx)

1 + dp(fx, gy)

}
.

(3) If x, y ∈ [12 , 10], we obtain

δ(Sx, Ty) =
1

16
− 1

32
=

1

32
≤ 8

2

≤ 1

2

d(fx, Sx)d(gy, Ty)

1 + d(fx, gy)

≤ 1

2
max

{
d(fx, gy),

d(fx, Sx)d(gy, Ty)

1 + d(fx, gy)
,
dp(fx, Ty)dp(gy, Sx)

1 + dp(fx, gy)

}
.

Therefore, all the conditions of Theorem 3.1 are satisfied and, further, 0 is the unique common fixed point
of the mappings f, g, S and T .
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4. Common Fixed Points for Mappings with the (CLRf)-Property

In this section, we introduce the notion of (CLRf ) property for four mappings and prove some common
fixed point theorems for the mappings with the (CLRf )-property in metric spaces.

Definition 4.1. Let (X, d) be a metric space. Two single-valued mappings f, g : X → X and two multi-
valued mappings S, T : X → CB(X) are said to satisfy the common limit in the range of f (shortly, the
(CLRf )-property) if there exist two sequences {xn} and {yn} in X and A,B ∈ CB(X) such that

lim
n→∞

Sxn = A, lim
n→∞

Tyn = B

and
lim
n→∞

fxn = lim
n→∞

gyn = fu ∈ A ∩B

for some u ∈ X.

Example 4.2. Let X = [1,∞) with usual metric. Define two single-valued mappings f, g : X → X and
two multi-valued mappings S, T : X → CB(X) by

fx = 2 +
x

3
, gx = 2 +

x

2

and
Sx = [1, 2 + x], Tx = [3, 3 +

x

2
]

for all x ∈ X, respectively. Then the mappings f and T satisfy the (CLRf )-property for the sequences {xn}
and {yn} defined by xn = 3 + 1

n and yn = 2 + 1
n for each n ≥ 1, respectively. Indeed, we have

lim
n→∞

Sxn = [1, 5] = A, lim
n→∞

Tyn = [3, 4] = B

and
lim
n→∞

fxn = lim
n→∞

gyn = 3 = f(3) ∈ A ∩B.

Therefore, the pairs (S, f) and (T, g) satisfy the (CLRf )-property.

Theorem 4.3. Let (X, d) be a metric space. Let f, g : X → X be two single-valued mappings and S, T :
X → CB(X) be two multi-valued mappings satisfying the following conditions:

(a) the pairs (S, f) and (T, g) satisfy the (CLRf )-property;
(b) for all x, y ∈ X,

Hp(Sx, Ty) ≤ ϕ
(

max
{
dp(fx, gy),

dp(fx, Sx)dp(gy, Ty)

1 + dp(fx, gy)
,
dp(fx, Ty)dp(gy, Sx)

1 + dp(fx, gy)

})
,

where p ≥ 1 and ϕ : [0,∞) → [0,∞) is a continuous monotone increasing function such that ϕ(0) = 0 and
ϕ(t) < t for all t > 0.

If f(X) and g(X) are closed subsets of X, then we have the following:

(1) f and S have a coincidence point;

(2) g and T have a coincidence point;

(3) f and S have a common fixed point provided that f and S are weakly compatible at v and ffv = fv for
any v ∈ C(f, S);

(4) g and T have a common fixed point provided that g and T are weakly compatible at v and ggv = gv for
any v ∈ C(g, T );

(5) f, g, S and T have a common point provided that both (3) and (4) are true.
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Proof. (1) Since (S, f) and (T, g) satisfy the (CLRf )-property, then there exist two sequences {xn} and
{yn} in X and A,B ∈ CB(X) such that

lim
n→∞

Sxn = A, lim
n→∞

Tyn = B, lim
n→∞

fxn = lim
n→∞

gyn = fu ∈ A ∩B

for some u ∈ X. Since f(X) and g(X) are closed, we have fu = fv and fu = gw for some v, w ∈ X.
Now, we show that gw ∈ Tw. In fact, suppose that gw /∈ Tw. Then, using the condition (b) with x = xn

and y = w, we have

Hp(Sxn, Tw) ≤ ϕ
(

max
{
dp(fxn, gw),

dp(fxn, Sxn)dp(gw, Tw)

1 + dp(fxn, gw)
,
dp(fxn, Tw)dp(gw, Sxn)

1 + dp(fxn, gw)

})
for all n ∈ N. Taking the limit as n→∞, we obtain

Hp(A, Tw) ≤ ϕ
(

max
{
dp(fv, gw),

dp(fv,A)dp(gw, Tw)

1 + dp(fv, gw)
,
dp(fv, Tw)dp(gw,A)

1 + dp(fv, gw)

})
= ϕ(max{0, 0, 0}) = 0.

Since gw ∈ A, it follows from the definition of Hausdorff metric that

dp(gw, Tw) ≤ Hp(A, Tw) = 0,

which is a contradiction and so gw ∈ Tw. On the other hand, by the condition (b) again, we have

Hp(Sv, Tyn) ≤ ϕ
(

max
{
dp(fv, gyn),

dp(fv, Sv)dp(gyn, Tyn)

1 + dp(fv, gyn)
,
dp(fv, Tyn)dp(gyn, Sv)

1 + dp(fv, gyn)

})
for all n ∈ N. Similarly, by taking the limit as n→∞, we obtain

Hp(Sv,B) ≤ ϕ
(

max
{
dp(fv, gw),

dp(fv, Sv)dp(gw,B)

1 + dp(fv,B)
,
dp(fv, Tw)dp(gw, Sv)

1 + dp(fv, fu)

})
= ϕ(max{0, 0, 0}) = 0.

Since fv ∈ B, it follows from the definition of Hausdorff metric that

dp(fv, Sv) ≤ Hp(B,Sv) = 0,

which is a contradiction and so fv ∈ Sv. Thus the mappings f , S have a coincidence point v and g, T have
a coincidence point w. Furthermore, by virtue of the condition (b), we obtain ffv = fv and ffv ∈ Sfv.
Thus u = fu ∈ Su. This proves (3). A similar argument proves (4). Then (5) holds immediately. This
completes the proof.

If f = g in Theorem 4.3, then we can conclude the following:

Corollary 4.4. Let (X, d) be a metric space. Let f : X → X be a single-valued mapping and S, T : X →
CB(X) be two multi-valued mappings satisfying the following conditions:

(a) the pairs (f, S) and (f, T ) satisfy the (CLRf )-property;
(b) for all x, y ∈ X,

Hp(Sx, Ty) ≤ ϕ
(

max
{
dp(fx, fy),

dp(fx, Sx)dp(fy, Ty)

1 + dp(fx, fy)
,
dp(fx, Ty)dp(fy, Sx)

1 + dp(fx, fy)

})
,

where p ≥ 1 and ϕ : [0,∞) → [0,∞) is a continuous monotone increasing function such that ϕ(0) = 0 and
ϕ(t) < t for all t > 0.

If f(X) is a closed subset of X, then we have the following:
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(1) f, S and T have a coincidence point;

(2) f, S and T have a common fixed point provided that f and S are weakly compatible, g and T are weakly
commuting at v and ffv = fv for any v ∈ C(f, S).

If f = g in Theorem 4.3, then we can conclude the following:

Corollary 4.5. Let (X, d) be a metric space. Let f : X → X be a single-valued mapping and S : X →
CB(X) be a multi-valued mapping satisfying the following conditions:

(a) the pair (f, S) satisfies the (CLRf )-property;
(b) for all x, y ∈ X,

Hp(Sx, Sy) ≤ ϕ
(

max
{
dp(fx, fy),

dp(fx, Sx)dp(fy, Sy)

1 + dp(fx, fy)
,
dp(fx, Sy)dp(fy, Sx)

1 + dp(fx, fy)

})
,

where p ≥ 1 and ϕ : [0,∞) → [0,∞) is a continuous monotone increasing function such that ϕ(0) = 0 and
ϕ(t) < t for all t > 0.

If f(X) is closed subsets of X, then we have the following:

(1) f and S have a coincidence point;

(2) f and S have a common fixed point provided that f and S are weakly compatible at v and ffv = fv for
any v ∈ C(f, S).

Now, we give an example to illustrate Theorem 4.3.

Example 4.6. Let X = [1,∞) with usual metric. Define two single-valued mappings f, g : X → X and
two multi-valued mappings S, T : X → CB(X) by

fx = gx = x2, Sx = Tx = [1, x+ 1]

for all x ∈ X, respectively. Then the pair (S, f) satisfies the (CLRf )-property with respect to S for the
sequence {xn} in X defined by xn = yn = 1 + 1

n for each n ≥ 1. Indeed, we have

lim
n→∞

fxn = lim
n→∞

gyn = lim
n→∞

(
1 +

1

n

)2

= 1 = f(1)

and
f(1) ∈ [1, 2] = lim

n→∞
Sxn = lim

n→∞
Tyn.

Clearly, we know that the pairs f, g, S and T satisfy the condition (b) in Theorem 4.3 with p = 1 and
ϕ(t) = 1

2 t. Thus all the conditions in Theorem 4.3 are satisfied. Then f and S have coincidence points in X.

It is easy to see that f and S have infinitely coincidence points in X. Indeed, C(f, S) =
[
1, 1+

√
5

2

]
. Also,

we can see that f and T are weakly compatible at a point a and ffa = fa for a = 1 ∈ C(f, T ). Therefore,
all the conditions of Theorem 4.3 are satisfied. Therefore, f and T have a common fixed point in X. In this
case, a point 1 is a unique common fixed point of f and T .

If both S and T are single-valued mappings in Theorem 4.3, then we have the following:

Corollary 4.7. Let (X, d) be a metric space and f, g, S, T : X → X be single-valued mappings satisfying
the following conditions:

(a) the pairs (S, f) and (T, g) satisfy the (CLRf )-property;
(b) for all x, y ∈ X,

dp(Sx, Ty) ≤ ϕ
(

max
{
dp(fx, gy),

dp(fx, Sx)dp(gy, Ty)

1 + dp(fx, gy)
,
dp(fx, Ty)dp(gy, Sx)

1 + dp(fx, gy)

})
,

where p ≥ 1 and ϕ : [0,∞) → [0,∞) is a continuous monotone increasing function such that ϕ(0) = 0 and
ϕ(t) < t for all t > 0.

If f(X) and g(X) are closed subsets of X, then we have the following:
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(1) f and S have a coincidence point;

(2) g and T have a coincidence point;

(3) f and S have a common fixed point provided that f and S are weakly compatible at v and ffv = fv for
any v ∈ C(f, S);

(4) g and T have a common fixed point provided that g and T are weakly commuting at v and ggv = gv for
any v ∈ C(g, T );

(5) f, g, S and T have a common point provided that both (3) and (4) are true.
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