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Abstract

The aim of the present paper, by using the Borwein-Preiss variational principle, we prove existence results
for countable systems of equilibrium problems. We establish some sufficient conditions which can guarantee
two existence theorems for countable systems of equilibrium problems on closed subsets of complete metric
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1. Introduction

The Ekeland variational principle (for short, EVP) was discovered by Ekeland in 1974 (see in [9] and
[10]). The principle has received a great deal of attention and found many applications in different fields in
analysis. It is a potent and flexible tool in analysis and in optimization problems for lower semicontinuous
function on a complete metric space. Moreover, this Ekeland variational principle is equivalent to the
Caristi’s fixed point theorem, the Daneš drop property, and the Petal flower theorem (see in [11], [14], and
[17]). In 1987, for the application to differentiability problems of convex functions, Borwein and Preiss [7]
revised this principle in the Banach spaces. The generalization of the Borwein-Preiss variational principle

∗Corresponding author
Email addresses: Somyotp@nu.ac.th (Somyot Plubtieng), seangwattana_t@hotmail.com (Thidaporn Seangwattana)

Received 2015-12-11



S. Plubtieng, T. Seangwattana, J. Nonlinear Sci. Appl. 9 (2016), 2224–2232 2225

on a complete metric space appeared in 2005 (see in [8]).
One of the most important problems in nonlinear analysis is the so-called equilibrium problem considered

by Takahashi [19] (see also in [6]). Let A be a nonempty set and φ : A×A→ R a bifunction. The problem
consists of finding an element a∗ ∈ A such that

φ(a∗, a) ≥ 0, ∀ a ∈ A. (EP)

Furthermore, equilibrium problems have been extensively studied (e.g. [5], [12], [15] and the references
therein). The reason of studies of equilibrium problems is that it was applied among its particular cases,
variational inequalities (monotone or otherwise), Nash equilibrium problems, optimization problems, and
saddlepoint (minimax) problems (see [12] for a survey). Recently, Ansari, Schaible, and Yao [3] introduced
a system of equilibrium problems and established existence results of the problems (see also in [13], [16] and
[18]).

In 2005, Bianchi, Kassay and Pini [5] studied existence results of equilibrium problems and a system of
equilibrium problems via the Ekeland variational principle (see also in [2] and [4]). Very recently, Alleche and
Rǎdulescu [1] studied the Ekeland variational principle for equilibrium problems and a system of equilibrium
problems under real Banach spaces. They also proved a result to guarantee for an existence of solutions for
countable systems of equilibrium problems in the non weakly compact case which is a generalization of ([2],
Theorem 15).

In this paper, by using the Borwein-Preiss variational principle, we prove existence results for countable
systems of equilibrium problems. We establish some sufficient conditions which can guarantee for existence
theorems of countable systems of equilibrium problems on closed subsets of complete metric spaces and on
weakly compact subsets of real Banach spaces, respectively.

2. Preliminaries

The purpose of this section, we will introduce the significant definitions, theorems and corollary for
using in the following section.

Definition 2.1 ([8]). Let (X, d) be a metric space. We say that a continuous function ρ : X ×X → [0,∞]
is a gauge-type function on a complete metric space (X, d) provided that

(i) ρ(x, x) = 0 for all x ∈ X,

(ii) for any ε > 0 there exists δ > 0 such that for all y, z ∈ X we have ρ(y, z) ≤ δ implies that d(y, z) < ε.

The following theorem, it is well-known that the Borwein-Preiss variational principle on a complete
metric space.

Theorem 2.2 ([8]). Let (X, d) be a complete metric space and let f : X → R ∪ {+∞} be a lower semicon-
tinuous function bounded from below. Suppose that ρ is a gauge-type function and {δi}∞i=0 is a sequence of
positive numbers, and suppose that ε > 0 and z ∈ X satisfy

f(z) ≤ inf
x∈X

f(x) + ε.

Then, there exist y and a sequence {xi} ⊂ X such that

(ā.) ρ(z, y) ≤ ε
δ0
, ρ(xi, y) ≤ ε

2iδ0
,

(b̄.) f(y) +
∑∞

i=0 δiρ(y, xi) ≤ f(z), and

(c̄.) f(x) +
∑∞

i=0 δiρ(x, xi) > f(y) +
∑∞

i=0 δiρ(y, xi), for all x ∈ X \ {y}.
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Corollary 2.3. Let (X, d) be a complete metric space and let f : X → R∪{+∞} be a lower semicontinuous
function bounded from below. Suppose that ρ is a gauge-type function and {δi}∞i=0 is a sequence of positive
numbers. Then for any ε > 0, there exist y and a sequence {xi} ⊂ X satisfying the following two conditions:

(1) f(y) +
∑∞

i=0 δiρ(y, xi) ≤ infx∈X f(x) + ε;

(2) f(w) +
∑∞

i=0 δiρ(w, xi) ≥ f(y) +
∑∞

i=0 δiρ(y, xi) for all w ∈ X.

Proof. It is obvious from Theorem 2.2.

Definition 2.4 ([1]). The function f is said to be sequentially upper (resp. sequentially lower) semicontin-
uous on a subset A of X if it is sequentially upper (resp. sequentially lower) semicontinuous at every point
of A.

Definition 2.5 ([1]). Let X be a Banach space (more generally it may be a Hausdorff topological space),
x ∈ X and f : X → R a function. the function f is said to be

(1) sequentially upper semicontinuous at x if for every sequence {xn}n → x ∈ X,
we have

f(x) ≥ lim
n→+∞

sup f(xn),

where lim supn→+∞ f(xn) = infn supk≥n f(xk);
(2) sequentially lower semicontinuous at x if −f is sequentially upper semicontinuous at x.

Hausdorff topological space is called sequentially compact if every sequence has a converging subsequence.
A subset A of a Hausdorff topological space is called sequentially compact if it is sequentially compact as a
topological subspace.

3. Main theorem

Let I be a countable index set. Assume that Ai is a closed subset of a complete metric space (Xi, di)
and ρi is a gauge-type function on (Xi, di), for every i ∈ I. The system of equilibrium problems is a problem
of finding x∗ = {x∗i }i∈I such that

φi(x
∗, yi) ≥ 0, ∀ i ∈ I and yi ∈ Ai, (SEP)

where φi : A × Ai → R, A =
∏
i∈I Ai with Ai some given sets. Without loss of generality, we may assume

that di and ρi are bounded by 1 for all i ∈ I. An element of the set Ai =
∏
j∈I Aj with j 6= i will be

represented by xi. Therefore, x̄ ∈ A can be written as x̄ = (xi, xi) ∈ Ai × Ai. The space X =
∏
i∈I Xi will

be endowed by the product topology. The distance d and gauge-type function ρ on X defined by

d(x, y) =
∑
i∈I

1

2i
di(xi, yi) , ∀x = {xi}i∈I , y = {yi}i∈I ∈ X,

and

ρ(x, y) =
∑
i∈I

1

2i
ρi(xi, yi) ,∀x = {xi}i∈I , y = {yi}i∈I ∈ X

respectively. Therefore, the space (X, d) is a complete metric space.
The following theorem is the Borwein-Preiss variational principle for nonconvex countable systems of

equilibrium problems defined on complete metric spaces.
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Theorem 3.1. Let Ai be a nonempty closed subset of a complete metric space (Xi, di) and φi : A×Ai → R,
for every i ∈ I. Assume that, for every i ∈ I, the following conditions hold:

(1) φi(ā, ai) = 0, for every ā = (ai, ai) ∈ A;

(2) φi(ā, bi) ≤ φi(ā, ci) + φi(c̄, bi) for every bi, ci ∈ Ai, and ā, c̄ ∈ A such that c̄ = (ci, ci);

(3) φi is lower bounded and lower semicontinuous in its second variable.

Suppose that {δn}∞n=0 is a sequence of positive numbers and ρi is a gauge-type function and suppose that
ε > 0 and z̄ = {zi}i∈I ∈ A, there exists mi ∈ Ai with

φi(z̄,mi) ≤ inf
xi∈Ai

φi(z̄, xi) + ε,

for all i ∈ I. Then, for every z̄ = {zi}i∈I ∈ A, there exist ȳ = {yi}i∈I ∈ A and a sequence {x̄n}∞n=0 =
{(xni )i∈I}∞n=0 ∈ A such that, for all i ∈ I,

(i) φi(z̄, yi) +
∑∞

n=0 δ
nρi(yi, x̄n) ≤ 0;

(ii) φi(ȳ, xi) +
∑∞

n=0 δ
n(ρi(xi, x̄n)− ρi(yi, x̄n)) > 0, ∀xi ∈ Ai and xi 6= yi.

Proof. We define sequences {xni } and Fni for all i ∈ I inductively. Let x0 := z̄ ∈ A and for all i ∈ I

F 0
i := {xi ∈ Ai|φi(x0, xi) + δ0ρi(xi, x

0
i ) ≤ 0}. (3.1)

From the condition (1), we obtain that x0i ∈ F 0
i . Hence, by the condition (3), F 0

i is nonempty and closed
set. For all i ∈ I and xi ∈ F 0

i , we note that

δ0ρi(xi, x
0
i ) ≤ −φi(x0, xi) ≤ φi(x0, x0i )− φi(x0, xi)
≤ φi(x0, x0i )− inf

xi∈Ai

φi(x
0, xi) ≤ ε.

For all i ∈ I, we choose x1i ∈ F 0
i such that

φi(x
0, x1i ) + δ0ρi(x

1
i , x

0
i ) ≤ inf

xi∈F 0
i

[
φi(x

0, xi) + δ0ρi(xi, x
0
i )

]
+
δ1ε

2δ0

≤ φi(x0, x1i ) + inf
xi∈F 0

i

[
φi(x

1, xi) + δ0ρi(xi, x
0
i )

]
+
δ1ε

2δ0
,

and hence

δ0ρi(x
1
i , x

0
i ) ≤ inf

xi∈F 0
i

[
φi(x

1, xi) + δ0ρi(xi, x
0
i )

]
+
δ1ε

2δ0
.

For any fixed i ∈ I, we define

F 1
i :=

{
xi ∈ F 0

i |φi(x1, xi) +

1∑
k=0

δkρi(xi, x
k
i ) ≤ δ0ρi(x1i , x0i )

}
.

Similarly, for all i ∈ I, we take x2i ∈ F 1
i such that

1∑
k=0

δkρi(x
2
i , x

k
i ) ≤ inf

xi∈F 1
i

[
φi(x

2, xi) +

1∑
k=0

δkρi(xi, x
k
i )

]
+
δ2ε

2δ0

and define
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F 2
i :=

{
xi ∈ F 1

i |φi(x2, xi) +
2∑

k=0

δkρi(xi, x
k
i ) ≤

1∑
k=0

δkρi(x
2
i , x

k
i )

}
.

In general, for all i ∈ I and for j = 0, 1, . . . , n− 1, suppose that we have defined xji , F
j
i satisfying

j−1∑
k=0

δkρi(x
j
i , x

k
i ) ≤ inf

xi∈F j−1
i

[
φi(x

j , xi) +

j−1∑
k=0

δkρi(xi, x
k
i )

]
+
δjε

2δ0

and

F ji :=

{
xi ∈ F j−1i |φi(xj , xi) +

j∑
k=0

δkρi(xi, x
k
i ) ≤

j−1∑
k=0

δkρi(x
j
i , x

k
i )

}
, ∀ i ∈ I.

For all i ∈ I, we choose xni ∈ F
n−1
i such that

n−1∑
k=0

δkρi(x
n
i , x

k
i ) ≤ inf

xi∈Fn−1
i

[
φi(x

n, xi) +
n−1∑
k=0

δkρi(xi, x
k
i )

]
+
δnε

2δ0
(3.2)

and define

Fni :=

{
xi ∈ Fn−1i |φi(xn, xi) +

n∑
k=0

δkρi(xi, x
k
i ) ≤

n−1∑
k=0

δkρi(x
n
i , x

k
i )

}
. (3.3)

Thus, we see that, for every n = 1, 2, . . . , Fni is nonempty and closed set. It follows from (3.2) and (3.3)
that, for all i ∈ I, n = 1, 2, . . . , and xi ∈ Fni

δnρi(xi, x
n
i ) ≤

n−1∑
k=0

δkρi(x
n
i , x

k
i )− (φi(x

n, xi) +
n−1∑
k=0

δkρi(xi, x
k
i ))

≤
n−1∑
k=0

δkρi(x
n
i , x

k
i )− inf

xi∈Fn−1
i

[
φi(x

n, xi) +
n−1∑
k=0

δkρi(xi, x
k
i )

]
≤ δnε

2δ0
.

Thus, we see that there exists δ := ε
2δ0

such that ρi(xi, x
n
i ) ≤ δ for all i ∈ I, n = 1, 2, . . . , and xi ∈ Fni . Since

ρi is a gauge-type function, it follows that di(xi, x
n
i ) → 0 as n → ∞ uniformly. Hence diam(Fni ) → 0 and

therefore, by Cantor’s intersection theorem, there exists a unique yi ∈ ∩∞n=0F
n
i for all i ∈ I. This implies

that xni → yi as n→∞. For any i ∈ I, if xi 6= yi, we can conclude that xi 6∈ ∩∞n=0F
n
i . Therefore for some j,

j∑
k=0

δkρi(xi, x
k
i ) >

j−1∑
k=0

δkρi(x
j
i , x

k
i )− φi(xj , xi). (3.4)

This implies that

φi(x
j , xi) +

∞∑
k=0

δkρi(xi, x
k
i ) ≥ φi(xj , xi) +

j∑
k=0

δkρi(xi, x
k
i )

> φi(x
j , xi) +

j−1∑
k=0

δkρi(x
j
i , x

k
i )− φi(xj , xi)

=

j−1∑
k=0

δkρi(x
j
i , x

k
i ).

(3.5)
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On the other hand, it follows from (3.1), (3.3), and yi ∈ ∩∞n=0F
n
i that, for all q ≥ j,

−φi(x0, xji ) ≥
j−1∑
k=0

δkρi(x
j
i , x

k
i )

≥
q−1∑
k=0

δkρi(x
q
i , x

k
i ) + φi(x

j , xqi )

≥ φi(xj , xqi ) + φi(x
q, yi) +

q∑
k=0

δkρi(yi, x
k
i )

≥ φi(xj , yi) +

q∑
k=0

δkρi(yi, x
k
i ).

(3.6)

From (3.6), we obtain that, for any q ≥ j and i ∈ I,

0 ≥ φi(x0, yi) +

q∑
k=0

δkρi(yi, x
k
i ). (3.7)

Combining (3.5) and (3.6) yields for any q ≥ j and i ∈ I,

φi(x
j , xi)− φi(xj , yi) +

∞∑
k=0

δkρi(xi, x
k
i ) >

q∑
k=0

δkρi(yi, x
k
i ).

Since φi(x
j , xi)− φi(xj , yi) ≤ φi(ȳ, xi), we have

φi(ȳ, xi) +
∞∑
k=0

δkρi(xi, x
k
i ) >

q∑
k=0

δkρi(yi, x
k
i ). (3.8)

By taking limits in (3.7) and (3.8) as q →∞, we have

0 ≥ φi(z̄, yi) +
∞∑
k=0

δkρi(yi, x
k
i )

and

φi(ȳ, xi) +
∞∑
k=0

δkρi(xi, x
k
i ) >

∞∑
k=0

δkρi(yi, x
k
i )

for all i ∈ I. This completes the proof.

Example 3.2. Let Ai be a nonempty closed subset of a usual metric space (R, d) with the gauge-type
function ρi = d, for every i ∈ I, and A =

∏
i∈I Ai. Suppose that φi : A× Ai → R is a real valued function

defined by

φi(ā, bi) =
1

ai
− 1

bi
, ∀ ā = {ai}i∈I ∈ A, bi ∈ Ai.

It is easy to see that both functions (ρi and φi) satisfy the conditions in Theorem 3.1. Suppose that {δn}∞n=0

is a sequence of positive numbers and suppose that ε > 0 and z̄ = {zi}i∈I ∈ A. Then, by Theorem 3.1, there
exist ȳ = {yi}i∈I with yi = zi

zi+1 ∈ Ai and a sequence {xn}∞n=0 = {(xni )i∈I}∞n=0 with xni = zi
zi+1 + 1

δn2kn
∈ Ai,

where {kn} is a subsequence of a sequence of natural numbers, such that
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φi(z̄, yi) +

∞∑
n=0

δnρi(yi, x̄n) =
1

zi
− 1

yi
+

∞∑
n=0

δnρi(yi, x
n
i )

≤ 1

zi
− zi + 1

zi
+ 1 = 0

for all i ∈ I. Furthermore, for every xi 6= yi, we have

φi(ȳ, xi) +
∞∑
n=0

δnρi(xi, x̄n)−
∞∑
n=0

δnρi(yi, x̄n) ≥ 1

yi
− 1

xi
+
∞∑
n=0

δnρi(xi, x
n
i )− 1 > 0.

Putting I = {1}, X1 = X and A1 = A in Theorem 3.1, we have the following result.

Corollary 3.3. Let A be a nonempty closed subset of a complete metric space (X, d) and φ : A×A→ R be
a bifunction. Assume that the following conditions hold:

(1) φ(a, a) = 0, for every a ∈ A;

(2) φ(a, b) ≤ φ(a, c) + φ(c, b) for every a, b, c ∈ A;

(3) φ is lower bounded and lower semicontinuous in its second variable.

Suppose that {δn}∞n=0 is a sequence of positive numbers and ρ is a gauge-type function and suppose that
ε > 0 and z ∈ A. There exists m ∈ A with

φ(z,m) ≤ inf
x∈A

φ(z, x) + ε.

There exist y and a sequence {xn}∞n=0 ⊂ A such that

(i) φ(z, y) +
∑∞

n=0 δ
nρ(y, xn) ≤ 0;

(ii) φ(y, x) +
∑∞

n=0 δ
n(ρ(x, xn)− ρ(y, xn)) > 0, ∀x ∈ A and x 6= y.

In the final of this section, we will prove existence theorems for solutions of countable systems of equi-
librium problems in the weakly compact case and non weakly compact case, respectively. Here, the space
Xi is replaced by a real Banach space Ei, for every i ∈ I (Denoted by ‖ · ‖i).

The following proposition can guarantee the existence of solutions to countable systems of equilibrium
problems in the weakly compact case.

Proposition 3.4. Let Ai be a nonempty weakly closed subset of a real Banach space Ei and φi : A×Ai → R,
for every i ∈ I. Assume that the following conditions hold:

(1) φi(ā, ai) = 0, for every i ∈ I and ā = (ai, ai) ∈ A;

(2) φi(ā, bi) ≤ φi(ā, ci) + φi(c̄, bi) for every i ∈ I, bi, ci ∈ Ai, and ā, c̄ ∈ A such that c̄ = (ci, ci);

(3) φi is lower bounded and lower semicontinuous in its second variable, for every i ∈ I.

(4) φi is weakly sequentially upper semicontinuous in its first variable, for every i ∈ I.

(5) A is sequentially compact subset of E =
∏
i∈I Ei with respect to the topology σ.

Then, the system of equilibrium problems (SEP) has a solution.

Proof. For every n ∈ N, we choose a sequence {z̄n} = {(zni )i∈I} ⊆ A and εn = 1
n . By Theorem 3.1, there

exists {x̄n} = {(xni )i∈I} ⊆ A which is a solution of the system of equilibrium problems (SEP) such that

φi(x̄n, yi) ≥ −
1

n
‖zni − yi‖i, ∀ yi ∈ Ai.
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Since A is a sequentially compact subset of E with respect to the topology σ, the sequence {x̄n}n has a
converging subsequence {x̄nk

}k to some x̄ = {x̄i}i∈I ∈ A with respect to the topology σ. By the sequentially
upper semicontinuity of a function φi , we see that, for every i ∈ I,

φi(x̄, yi) ≥ lim
k→∞

supφi(x̄
nk
i , yi)

≥ lim
k→∞

sup

(
− 1

nk
‖znk
i − yi‖i)

)
= 0 , ∀yi ∈ Ai.

Therefore x̄ is a solution to the system of equilibrium problems (SEP).

The ensuing theorem can guarantee the existence of solutions to countable systems of equilibrium prob-
lems in the non weakly compact case.

Theorem 3.5. Let Ai be a nonempty weakly closed subset of a real reflexive Banach space Ei and
φi : A×Ai → R, for every i ∈ I. Assume that the following conditions hold:

(1) φi(ā, ai) = 0, for every i ∈ I and ā = (ai, ai) ∈ A;

(2) φi(ā, bi) ≤ φi(ā, ci) + φi(c̄, bi) for every i ∈ I, bi, ci ∈ Ai, and ā, c̄ ∈ A such that c̄ = (ci, ci);

(3) there exists a nonempty closed subset Ki of Ai for every i ∈ I such that for every x̄ = (xi, xj) ∈ A

with xj 6∈ Kj for some j ∈ I,

∃yj ∈ Aj , ‖yj‖ < ‖xj‖, φj(x, yj) ≤ 0;

(4) φi is sequentially lower semicontinuous in its second variable on Ki for every i ∈ I;

(5) the restriction of φi on (
∏
i∈I Ki)×Ki is lower bounded in its second variable for every i ∈ I;

(6) the restriction of φi on (
∏
i∈I Ki)×Ki is weakly sequentially upper semicontinuous in its first

variable, for every i ∈ I;

(7) The subset
∏
i∈I Ki is sequentially compact subset of E with respect to the topology σ.

Then, the system of equilibrium problems (SEP) has a solution.

Proof. It follows the proof of Theorem 4.3 in [1].

Putting I = {1}, E1 = E and A1 = A in Theorem 3.5, we have the following result.

Corollary 3.6. Let A be a nonempty weakly closed subset of a real reflexive Banach space E and φ : A×A→
R be a bifunction. Suppose that the following conditions hold:

(1) φ(a, a) = 0, for every a ∈ A;

(2) φ(a, b) ≤ φ(a, c) + φ(c, b), for every x, y, z ∈ A;

(3) there exists a nonempty weakly compact subset K of A such that

∀x ∈ A \K,∃y ∈ A, ‖y‖ < ‖x‖, φ(x, y) ≤ 0;

(4) φ is sequentially lower semicontinuous in its second variable on K;

(5) the restriction of φ on K ×K is lower bounded in its second variable;

(6) the restriction of φ on K ×K is weakly sequentially upper semicontinuous in its first variable.

Then, the equilibrium problem (EP) has a solution.
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