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Abstract

A posteriori error estimates for the generalized overlapping domain decomposition method with Dirichlet
boundary conditions on the boundaries for the discrete solutions on subdomains of evolutionary HJB equa-
tion with nonlinear source terms are established using the semi-implicit time scheme combined with a finite
element spatial approximation. Also the techniques of the residual a posteriori error analysis are used. More-
over, using Benssoussan—Lions’ algorithm, an asymptotic behavior in Hi-norm is deduced. Furthermore,
the results of some numerical experiments are presented to support the theory. (©2016 All rights reserved.
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1. Introduction

The paper deals with a posteriori error estimates in H'-norm for the generalized overlapping domain
decomposition method for the following evolutionary HJB problem:

find u (t,z) € (L?(0,T,D ()N C % (0, T, H ' (2)))" such that
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ou’ i i -
o + g, (A= S 0) =0 s "

u'=0inT, v’ (x,0) =uf in Q,

where Q is a bounded smooth domain in R?, with sufficiently smooth boundary I and ¥ is a set in R x R?
defined as ¥ = [0, T] x Q with T' < +oo. A, (i = 1,..., M) are the elliptic operator defined by

Al = A + a}) (1.2)

and the functions af € (L*(0,T,L> (Q))NC °(0,T, L>* (Q)))M ;i =1,..., M are sufficiently smooth and
satisfy '
ag(t,z) > >0, B is a constant, (1.3)

and where f1(.), f2(.),..., f™ () are nonlinear and Lipschitz functions (with Lipschitz constant ¢ < j3)
satisfying
fie (L2(0,T, L2 () nc (0,1, H- ()",
(1.4)

f* > 0 and increasing.

K is an implicit convex set defined by

(u' u?, . up) € L2 (0,7, Hy (2)) nC 2 (0, T,H 1 (), v (z) <1+u",
K = (1.5)
u'=0in T, v’ (x,0) = u} in Q.

The symbol (.,.),, stands for the inner product in L?(2).

The Schwarz alternating method can be used to solve elliptic boundary value problems on domains
which consist of two or more overlapping subdomains. It was invented by Herman Amandus Schwarz in
1890. This method has been used for solving the stationary or evolutionary boundary value problems on
domains which consist of two or more overlapping subdomains (see [I]-[5], [6], [9], [15]-[17], [18], [19]-[21]).
The solution to these qualitative problems is approximated by an infinite sequence of functions resulting
from solving a sequence of stationary or evolutionary boundary value problems in each of the subdomains.
An extensive analysis of Schwarz alternating method for nonlinear elliptic boundary value problems can
be found in [10]-[12], [I3], [19]. Also the effectiveness of Schwarz methods for these problems, especially
those in fluid mechanics, has been demonstrated in many papers. See the proceedings of the annual domain
decomposition conference [14] and [20]-[22], [23]-[24], [26]. Moreover, a priori estimates of the errors for
stationary problems is given in several papers; see for instance [21], [22] where a variational formulation
of the classical Schwarz method is derived. In [20], geometry-related convergence results are obtained. In
[13, 15, [16], an accelerated version of the GODDM has been treated. In addition, in [I3], convergence
for simple rectangular or circular geometries has been studied. However, a criterion to stop the iterative
process has not been given. All these results can also be found in the recent books on domain decomposition
methods [6], [18]. Recently in [15], [16], an improved version of the Schwarz method for highly heterogeneous
media has been presented. The method uses new optimized boundary conditions specially designed to take
into account the heterogeneity between the subdomains on the boundaries. A recent overview of the current
state of the art on domain decomposition methods can be found in [I], [26].

In general, the a priori estimate for stationary problems is not suitable for assessing the quality of the
approximate solutions on subdomains, since it depends mainly on the exact solution itself, which is unknown.
An alternative approach is to use an approximate solution itself in order to find such an estimate. This
approach, known as a posteriori estimate, became very popular in the 1990s with finite element methods;
see the monographs [I], [28]. In [2§], an algorithm for a nonoverlapping domain decomposition has been
given. An a posteriori error analysis for the elliptic case has also been used by [I] to determine an optimal
value of the penalty parameter for penalty domain decomposition methods for constructing fast solvers.
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Quite a few works on maximum norm error analysis of overlapping nonmatching grids methods for elliptic
problems are known in the literature (cf., e.g., [12]-[14]). To prove the main result of this paper, we proceed
as in [2]. More precisely, we develop an approach which combines a geometrical convergence result, due to
[9], and a lemma which consists of an error estimation in the maximum norm between the continuous and
discrete Schwarz iterate.

In [2], the authors derived a posteriori error estimates for the generalized overlapping domain decomposi-
tion method (GODDM) with Robin boundary conditions on the boundaries for second order boundary value
problems; they have shown that the error estimate in the continuous case depends on the differences of the
traces of the subdomain solutions on the boundaries after a discretization of the domain by finite elements
method. Also they used the techniques of the residual a posteriori error analysis to get an a posteriori error
estimate for the discrete solutions on subdomains.

A numerical study of stationary and evolutionary free boundary problems of the finite element, combined
with a finite difference, methods has been achieved in [2], [9]-[16], [25] and using the domain decomposition
method combined with finite element method, has been treated in [6, O [7, [I8]. Moreover, in a recent
research [3], we have treated the overlapping domain decomposition method combined with a finite element
approximation for elliptic quasi-variational inequalities related to impulse control problem with respect to
the mixed boundary conditions for Laplace operator A, where a maximum norm analysis of an overlapping
Schwarz method on nonmatching grids has been used. Then, in [6] we have extended the last result to
the parabolic quasi variational inequalities with the similar conditions, and using the theta time scheme
combined with a finite element spatial approximation, we have proved that the discretization on every
subdomain converges in uniform norm. Furthermore, a result of asymptotic behavior in uniform norm has
been given.

Moreover, in [9], we have been concerned with the system of parabolic quasi-variational inequalities
(PQVIs) related to HJB equation with nonlinear source terms. Our goal is to show that evolutionary
HJB equations can be properly approximated by Euler time scheme combined with a finite element spatial
method, which turns out to be quasi-optimally accurate in uniform norm. Also we want to establish an
asymptotic behavior in uniform norm similar to that in [I0], where the stationary HJB equation with linear
source terms have been investigated. So, we give the following estimate:

|UF U]l = max P =i < |n oghl® + L ke )" (1.6)
h o < <Ml b o 1+ kB ’ '
where C* is a constant independent of both h and k, U}’ = (u}ll, . ,uZ) is the discrete solution calculated
at the moment-end 1" = pAt for an index of the time discretization k = 1,...,p, and U is the asymptotic

continuous solution with respect to the right-hand side condition.

We prove an a posteriori error estimates for the generalized overlapping domain decomposition method
with Dirichlet boundary conditions on the boundaries for the discrete solutions on subdomains of evolution-
ary HJB equation with nonlinear source terms using the Euler time scheme combined with a finite element
spatial approximation, similar to that in [2], which investigated Laplace equation. Moreover, an asymptotic
behavior in H}-norm is deduced using Benssoussan-Lions’ algorithms. Furthermore, the results of some
numerical experiments are presented to support the theory.

The outline of the paper is as follows: In Section [2| we introduce some necessary notations and give
a variational formulation of our model. In Section [3|, an a posteriori error estimate is proposed for the
convergence of the discrete solution using the semi-implicit time scheme combined with a finite element
method on subdomains. In Section |4l we associate with the introduced discrete problem a fixed point
mapping and use that in proving the existence of a unique discrete solution. Then in Section [5, an H& (Q)-
asymptotic behavior estimate for each subdomain is derived. Finally, in the same section the results of some
numerical experiments are presented to support the theory.

2. Semi-continuous system of parabolic quasi-variational inequalities

Problem (1.1)) can be stated using a system of continuous parabolic inequalities in the following way



S. Boulaaras, J. Nonlinear Sci.

Appl. 9 (2016), 736-756

739

find v’ € (L*(0,7,D (2))NC 2 (0,7, H* (Q)))M that is a solution to

{ %l; + Au' + af(t,z)u’ < f ' (u') in X,

ut < U4 uth WM =gl i =1,... M,

o’ i, i (i i i _
(m A g (u)> (wi = (1 + 1)) =0,

u' (0,7) = uf in Q,

u'=01in T,

which is similar to that in [I0] where stationary Hamilton—Jacobi-Bellman equations have been investigated.

2.1. The time discretization

We discretize problem (2.1)) with respect to time by using the Euler scheme. Therefore, we search a
sequence of elements u"* € (H& (Q))M7 for k = 1,...,n which approach u’(z,t), t; = kAt, with initial

data 0 = ué. Thus, we have
k ik—1
ub® —yb . . . . .
ik ik ik kY 3
Az +Autt fagut < f (u )mE,
ubk < [t thE ) MALE — g Lk =1 M,

\

w0 (z) = uf in Q, u* =0 on 99,

wt=0inT.

First, we define the following mapping

T (H ()Y — (HE (@)Y
W — TW = {i,k — (ﬁl’k,§2’k, . ,fM’k) =0 (Fz,k (wz) ,l + w,i+1) ,
where ¢% 4 =1,..., M are solutions to the following problem
fi’k o gi,k—l

A + Agi,k +agk§i,k <fi (gzk) in ¥,

€k < 4wtk =1, M,

Mi1k _ 1k
3 =&H".

2.2. Iterative semi-discrete algorithm

We choose 40 = uf) to be

a solution of the following stationary equation:

0.4 _ 4,0
AVt = gvv,

where ¢*? is an M-regular function. Now we give the following semi-discrete algorithm:

Ul =1U* ' k=1,...,n,

where U¥F = (ul’k, . ,uM’k) is a solution of problem (2.2]).

(2.2)

(2.4)
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Remark 2.1. We denote

(g:{w/euﬁ(QnM,thumtogvvg(ﬂ}, (2.7)
where U? = Uy = (u(l),...,uéw). Since f%* (.) > 0, and ui;o = uﬁlo > 0, combining comparison results
in variational inequalities with a simple induction, we obtain u** > 0, i.e., U¥ > 0, Yk = 1,..., M and

TW > 0.

Furthermore, by (2.6, (2.7)), we have
Ul =10’ <U".

As in the previous works [7], [10], the mapping 7" is a monotone increasing for the stationary HJB equation
with nonlinear source term. Then it can be easily verified that

U?=1U'<1U =U"' < U,

thus, inductively
UMl =1UF <UF< ... <U° Vk=1,...,n

and it can be seen also that the sequence (uk) . stays in Q.

According to assumption (T.4]), we have that f¢(.) is increasing, and using the remark above, we have

fork=1,...,n
fi (uzk> <fi (ui,k;—l)‘
Then we can rewrite (2.2 as

Yk ikl A -
i, ik, i (k1Y
=~ — AutF +agtut < f U (u ) in X%,
ubk < |4t MALE = g kG =1 T (2.8)
u'=0inT.

\

Problem (12.8)) can be reformulated via the following coercive discrete system of elliptic quasi-variational
inequalities (EQVIs):

bt (ui’k, vt — ui’k) > (F (uk_l’mH) ,vi — u;;k) , in X,

Wik < | itk MALE — Lk T (2.9)
u’ =0 on 09,
where o S o
( b (uz,k’vz _ uz,kz) =\ (uZJC’ vt — uz,k) +a (Uz’k,’UZ _ uz,k’) ,
_ e i k—1
P4 = ] () + | 210)

1 1 T

- == k=1,
Atk n’ el

and a' (.,.) are the following bilinear forms that we associate to A* defined in (1.2))

2
i nt [ 0’ i
a (., ) = dlélt 'kZIW + Qg (t,$) dx. (211)
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2.8. The semi-continuous generalized overlapping domain decomposition

Let Q be a bounded domain in R? with a piecewise C! boundary 9€2. We split the domain € into two
overlapping subdomains €2 and €2 such that

Q1 N Qo = N0, 6QsﬁQt =Ty, s;«étand s,t=1,2.

We need the spaces
Vo =H'(Q)NH (Q) = {veH (%) : vag,ran =0}

and
1
Wy =Hi(T's) ={vr,, veVy andv=0o0n 0Q\I's}, (2.12)

which is a subspace of
H3(T,) = {4 € LX(Ty) : ¢ = or, for p € Vi, s = 1,2}

equipped with the norm

lellw, = inf lvlle- (2.13)

vEVsv=p on

We define continuous counterparts of the continuous Schwarz sequences defined in (2.9)), respectively by
find ui’k’mﬂ € (Hé (Q))M, m=20,1,2,..., to be solutions of

bi (uzl,lc,m—l—l7 Ui . uzl,k,m—i-l) > (F (uzl,k—l,m—l—l) 71}1' N uzl,k,m—i-l) ’
= o,

ui’k’mﬂ =0, on 0 NI =00 — T, (2.14)

. k 1 aui,k},m . k
vhkmtl 72 S8 on Ty

i,k;m~+1
om

om

and ué’k’mH € (H} (Q))M, to be solutions of

( ) ) . . _ . y
b (u%’k’mﬂ, b — uzQ,k,m+1> > (F <u12k 1,m+1) ot — ugk,m-&-l)ﬂ , m=0,1,2,...,
2
.7k7 +1
ug " =10, on Qs NON = 9Ny — Iy, (2.15)
i k1 i,k,m
aul’ ) . au, ’ ;
9 + azu;,n-i—l,m-i-l _ "1 + azull’k’m, on Fz,
\ on O

where 7, is the exterior normal to 25 and «; is a real parameter, s = 1, 2.

In the next section, our main interest will be to obtain an a posteriori error estimate. We need to stop
the iterative process as soon as the required global precision is reached. Namely, by applying Green formula
in with the new boundary conditions of generalized Schwarz alternating method, we get

(ot =gt = (T (o) - )

Ql Ql

i7k7m+1 l,k‘,erl
ou i idmel Ouy i idkmel
—| —F V1 — Uy + — QU] — Uy
om om
8917F1 T

i,k,m+1
ikyml i ikmel Ouy i ikt
= (Vuy"" ", V(v —uy™ — | —— v — "™ .
Q1 8771 r
1
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Thus we can deduce

i,k 1 4 ik 1 i,k 1 i i,k 1
(80 ) = (T ()

Q1 Q1

i,k,m~+1 i,k,m+1
Ouy i ikl Ouy i ikl
e e Tk + | 22— v} —uy
om om
o0 —-TI" r

= (Vulfkmﬂ, \V4 (vi — Ml’k’”m—’_l))Q
1

au’i,k,m
2 i,k,m i,km+1 4 i,k,m+1
— o + a1y — QU , U — Uy

I'1

i kym1 ; i kymt1 ikl i kym 1
= (Vuzl mil oy (vi —uy mt ))Q + (oqull’ i —uf mt )F
1 1

(vuzl,k,m—i-l’ v (vfi B uzl,lf:,m—i—l))Q + (aluzl,k,m—i—l’vi . uzl,k,m—i-l)
1

Iy
aui,k,m
47k7 ] '7k7 +]‘
- 32 + ajug " v —upt™ .
m
I
So, problem ([2.14)) is equivalent to:
find u?*" ! e (V)M such that
i/ i,km4+1 4 i,k,m+1 iw,n+lm+1 4 i,k,m+1
b*(u, ;UL — Uy )+<a 1 UL~ Uy )
Iy
i,k,m
ik—1y i _ o ikmt] Ou ikom i dkmA
> (F(u” ), vh — ko ) S e e B Yoy € Vi (2.16)
9] m
I
for (2.15) and u;’k’erl € Va, we want
] '7k7 1 ] '7k7 1 .7k7 1 ) 47k7 1
b’ (ul2 vy — gyt ) + (ozguz2 R T )F
2
; ; i k,m+1 oyt ik ; i k,m+1
> (F(ul’k_l),vé —uy™mt ) + Lt apul®™ b — T . (2.17)
Qo 8772 r
2

3. A posteriori error estimate in the continuous case

Since it is numerically easier to compare the subdomain solutions on the boundaries I'1 and I's rather
than on the overlap 212, we need to introduce two auxiliary problems defined on nonoverlapping subdomains
of Q. This idea allows us to obtain an a posteriori error estimate by following the steps of Otto and Lube
[24]. These auxiliary problems are needed for an analysis and not for the computation, to get the estimate.

To define these auxiliary problems we need to split the domain §2 into two sets of disjoint subdomains:

(Q1,93) and (22, £4) such that
Q=0UQ3, withQ1NQ3=a Q=0 Uy, with RNy =02.

Let (u?™™ ub®™) be a solution of problems (2.14) and (2.15). We define the couple (u}"™ us™) over
(©1,€3) to be the solution to the following nonoverlapping problems:
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¢ ui,k,erl ui,kfl,erl X ik
1 — Uq i,k,m+1 i,k 1,k,m+1 i im+1,k—1Y :
~ — Auj + ag"u] > [ (u ) in Qy,
phmtl_ 0 on 00, N AN, k=1 i=1,...,M
Uy =0, ond” NI, k=1,...,n, i=1,..., (3.1)
i,k,m+1 i,k,m
au + i,km+1 au + i,k,m r
81’]1 Oél'LLl 877]1 (651 'LL2 ,on il
and
ubFmEl L ik—1me1 — ik o
3 A _ Aué’ ,m—+ + aé, ué: ,m—+ > f 7 (uz,m—l—l,k—l) in 937
i JeymA4-1
uSPLZ 0, on 993N 09, (3.2)
i,k,m+1 i,k,m
(9’[1,3 i,k m+1 au i,k,m
on + azug an +azuy T, on I'y.
3 3
wn+lm _  intlm i,n+1,m . .
One can take €; = Uy — Us on I'y, the difference between the overlapping and the nonover-

lapping solutions u LrtLmoand u ’ LT () problems (2.14)—(2.15) and (3.1 (B-1)—(3.2)), respectively) in Qg Both
the overlapping and the nonoverlapplng problems converge see [24] that is, u2’k’ and u phm tond to ub (resp.

uf). Then eil’k’m should tend to zero when m tends to infinity in V5.

By taking
i,k,m 8’“1 o i,k,m
AV = +ajuy .
om
A'L,k,m _ + as u’L m
! 3"73 ! (3.3)
3.3
) 8’[1,1 kom aei,k,m )
g,k,m 3,,71 + aluék’m + 81771 + Ozlﬁzl’k’m.
) o i,k,m
Azl,k,m _ Uq +a uzlk m
on3

and using the Green formula, (3.1) and (3.2)) can be transformed into the following systems of elliptic
variational inequalities

i,kym+1 4 i,k,m+1 i,kom+1 4 i,k,m~+1
by (ul , V] — Uy ) + (awl , V] — Uy )F
1
o L ] - . A ,
> (PRt of =P g (AFE ] - gt e e ()Y (3.4)
Ql I
and

7 i,kym+1 4 i,k,m—+1 i,kom+1 4 z km+1
b3 (U3 ,U3 — U3 ) + (04311/3 7'1}3 — 3 )1"
1

> (Fz (ui,m+1,k71> - ugkmﬂ)m n (Ai’k’m,vé _ ugk,wA)F Vol € Vi (3.5)
1
On the other hand by taking
i,k,m 862 o i,k,m
07" = +age”, (3.6)

om



S. Boulaaras, J. Nonlinear Sci. Appl. 9 (2016), 736-756 744

we get

i km P (ui,k,m . ui,k,m)
i,k,m 8“ i,k,m 2 3
8771 om

+a1< ”“m—ug’“m) (3.7)

9 i,k,m o i,k,m

__ Oug i,k,m €1 i,k,m

= + arug + —— t 1€y
om

8 i,k,m
Ug +auzkm_’_‘91km
3

Using [10], we have

i,k;m+1
au i,k,m+1

i,k,erl
A + aqug

i,k,m+1

B +0;
m

Jk,m—~+1
8’U,Z 1 ; 1
=138 g ugkm+ + Gi’k’m—F
Ins3
pmi1 QU™ Jeomel
— agué mtl 2 ozgul’ o ul mt
I3

— (051 + ag)ugk,erl _ Alfk,m + Hi’k’erl (3‘8)

+ 02,]6,1’)1—‘—1
1

and by the last equation in (3.7]), we have

i k,m—+1
out™
1 i,k,m+1
= ——F— +aguy

i,k,m+1
Ay 5
m

P i,k,m
o t,kym+1 Ug i,k,m i,k,m+1
= oquy — — a1l 1

om

= (o + ag)ulPmTt _ ABRm L gikmt (3.9)

From (3.9), we can write the next algorithm and two lemmas which will be needed for obtaining an a
posteriori error estimate for the problems (3.4)), (3.5).

3.1. Semi-discrete algorithm

iw,km  ikm

The sequences (uy™"",ug" """ )men, solutions of (3.4), (3.5) verify the following algorithm:
Step 1: k£ =0.

Step 2: Let A" ¢ W7 be an initial value, s = 1,3 (W7 is the dual of W7).
Step 3; Given Af’m € W* solve for s,t =1,3,s #t : Find uimtl ¢ Vs solution of

i/ i,km+l i i,k,m+1 i,kom+1 4
bs(us yUs — Ug ) + (a ug Us)l"s

> (Fi(ui,k—l,m-&-l)’vi)ﬂ i <Ai’k’m+1,vi) Vo, €V,
s I's

Step 4: Compute
862 Jkym+1

Hi,k,m—‘rl i,k,m~+1
1 .

+ 1€y
om !

Step 5: Compute new data A?H’m € W* solve for s,t = 1,3, from
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(Agbm, sﬁ)r_ = ((as+ at)U?k’m“,vs>Fs — (AP, @)F + (o, w)n Y € Wy # 1.

k3

Step 6: Set m =m + 1 go to Step 3.

Step 7: Set Kk =k + 1 go to Step 2.
Lemma 3.1. Let ué’k = ué’zlz, ei’k’erl = ui’k’mﬂ - ui’k and ni’k’mﬂ = Ai’k’mﬂ — Ai’k. Then for
s, t=1,3,s #t, we have

bi (e?kmﬂ»l’z}é _ eé,k,m+1) I (Oései’k’erl,"U; _ eé,k,m+1>rs _ (Ui’k’mwi _ e?k,erl) Nvi c Vsi (3.10)

and

(n;',k,erl’@)F _ ((as + at)ei’k’mﬂwi)r _ <77z’k’m790>r 4 (QZ,k,mH,w)FS Vo e Wh. (3.11)

Proof. 1. We have

( 14 km+1 4 i,k,m+1 i,kom+1 4 i,k,m+1
b, (us , U — Ug ) + <a3us , U — Ug )F ,
S

i/ i,k—1m+1 ; k,m+1
Z <F2(u8 )9'0‘2 — Us >Q ’
S

i,k i k 1 i
+ (Af; ™yl et ) i €V,
s
and

[ . . . .
1 ik i ik ik ik
b, (us , UL — Ug ) + (asus , Vs — Ug )F
s

S

i t,k—1 ; ik
Z (F’L(u; )7UZ_UZS )Q 9
S

+ (Ai’k, vl — u§k>r Vol € V.

\

Since b’ (.,.) is a coercive bilinear form, we can deduce

S S S

b (u’s’k’mH — u’s’kﬂ, U;) + (ocsu”k’m+1 — u’s’kH, UZ)F > (Ai o A’S’k,v’)F Vol € Vg
and so

) i,km+1 4 i,k,m~+1 i,km+1 4 i,k,m~+1 i,k,m i i,k,m~+1 )
by (es , Vg — €4 )—i—(ases , Vg — €4 )F > (175 ,U] — €, )F , Vo, € V.

El

2. We have lim ezl’kﬂ’m = lim Hi’lﬁl’m = 0. Then
m——+0o0 m—r+00

AR = (o + az)ub® — AD".

Therefore
i,kom+1 _ Adkm+1 i,k
Ns - As - As
j 1 '7k7 ‘?k7 +1 .7k '7k
= (o1 + ag)ulPm T — APE™ L gpP T (g 4 ag)ul” + A}
i,k,m+1 ik i,k,m ik i,k,m+1
= (a1 +a3)(u; —ug") — (A A7)+ 0, .
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Lemma 3.2. By letting C' be a generic constant which has different values at different places, one gets for
s, t=1,3,s#t

hme1 ” . ” .
(e astna), el ol o
and . . . . .
(ozsw; + Gi’k’mﬂ, e;’k’mﬂ)r < C" e;’k’mﬂul o lele . (3.13)
1 )i és

Proof. Using Lemma and the fact of the inverse of the trace mapping T'r; L. Wy — V4 is continuous,
we have for s,t =1,3,s # ¢

(n;’k’mfl — ase?k’m,w’>r = bé(e;’k’m,Trflw’) = (Veé’k’m, VTrfle)
S

i

+ (aei’k’m,Tr_lwi) + A (ei’k’m,Tr_lwi)

Q; Q;
<leitm| el gl | T g,
Mt T,
<C ei”“’mHmi (K
For the second estimate, we have
(aswi + Qi’k’mﬂ, ei’k’mﬂ)rs = (asws + Qi’k’mﬂ, ei,’k’m“)rs
S ‘ QsWs + 037k7m+1“0,n et Ho,m
< (o, + o ) e,
< max <|045| ; ‘ ezi’k’mHHO’n) HwiHO,Fl ei’k’mHHQFl
<o utllyr, < e ot
Thus, it can be deduced that
sl sl + 635 < max (\as\ , ei”“m“HO,n) el - =

Proposition 3.3. For the sequences <u§’k’m,ué’k’m) . solutions of (3.4)), (3.5)), we have the following a
me

posteriori error estimation

’ Hl,Ql
Proof. From (3.9), (3.11) and by taking v} = vi — u¥*™+1 in ([3.4)), we have
i (ikomAl i ([ ik '
b} (ezl’ et ,v’l) + b3 (eé’ ’m,v§>
i,k,m i,k,m+1 4 i,k,m—1 i,km g
= (773 a6 a%)r + (771 — Q33 ﬂ’é)F
1 1

i,k+1,m i,k+1,m+1 4 i,k+1,m—1 ik+1m 4
= (713 — ey U1>F + (771 — 03€3 7U3>
1

i,k,m k‘

ik 1 i,k
,k,m+ _ uzv + HU/B’ _ ug

Uy 1

<C Hull’k’mﬂ — ugka )
3,023 Wh

)

i,k,m—1 i,k+1m 4 i,k+1,m—1 i,k+1,m 4
(A~ ane I of) | — (P g, of)

1N

Fl‘
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Thus, we have

bzl (ez'l,k,m—H z) —|—bz ( i,k,m ’Ué)

i,n+1,m i,k+1,m+1 i,k+1,m—1 ik+1m 4
= <n3 —aqey +m — azes 7"”1)F (3.14)
1
i,k+1,m—1 i,k+1,m 4 i
+ (771 — Qég U3 — Ul)
Iy
i,k+1,m i,k+1,m i,k+1,m-+1 i,k+1m 4
= <(a1 + a3)eg +6; — e — aszeg 71}1)1“
1
i,k+1,m—1 i,k+1,m 4 i
+ (771 — Qszeg ;U3 — Ul)
I
i,k+1,m i,k+1,m+1 i,k+1,m i,k+1,m—1 i,k+1m 4 i
= <a1(e3 — e )+ 67 Ul)F + (771 — aszeg , Vg — vi)r . (3.15)
1 1

. - ) 1
Taking vi = "1™t and o} = ey KALm iy (3.15)), then using 5 —(a+0b) < a®+b? and Lemma we get

2
1 i k1 i k1 k 1

g (et =t e = o

2 1,0 393

. 1 .
< ‘ uzl,k,m-i- - uzl,kH + H i,k,m ugk
1,91 3,03
< eil,k,m—i-lH + ‘ zka
1,91 3,03

)
(vezkmanrlm) +<a‘elkm ezkm>
0 0%3 3 Q4
k 1 k 1 Kk, 1 ik 1
<vz m+ Ve m+ )Q +Ha0H <z m+, 11, m+ >Q
1

(Vezkm Ve zkm)ﬂ + Ha’OH ( zkm7eé,k,m>Q3

< (V ik,m+1 Ve zkm-‘rl)ﬂ n (aéezlkm-i-l ezl,k,m-‘rl)Q
1 3

Then

A(

< max (1,

2
i 1 ; 1 1
uzl,k,m-i- - uzl,k—I— H + H i,k,m ugk-ﬁ- H
I,Ql 3,Q3

OO) (bz ( ikm+1 ezi,k,m-i—l) +bz ( zkm,eék,m»

i k, i kem+1 ke i fe,m+1 i ke;m—1 k, k, i kem+1
:max(l,”aé”oo) (al(eg et )—{—92 Mgk )F1+<77§ m —ageé meg m_ ikm )Fl

1

< Cl ezl,k:,erl H egk mo ei’k’erl H + C ‘ i,k,m H 1 Jkomo ezl,k:,m+1 H
1,91 Wy
< Cl zlk ;m—+1 H + ezg,k,mH ‘ e;k,m B ezl,k,m+1 H 7
1,0 3,03 \4%%
thus
’ ezl,k+17m+1H I ’ i,k+1, mH ezl,k:-i-l,m-i-l _ egk—i—l,mH
1,01 3 Q3

Therefore

k41 1 k+1,
s g, o -t

n+1m+1 n+1m
. A

1,0 3,03

O

In a similar way, we define another nonoverlapping auxiliary problem over ({22, €4), and we get the same
result.
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i,km ikm

Proposition 3.4. For the sequences (uy ", uy """ )men, we have the following a posteriori error estimation
i,k,m+1 ik ‘ ‘ i,k,m ik H ‘ i,k,m+1 i,k,m”
U —u + ||u —u <Clu —u . 3.16
| I i e i (3.16)
Proof. The proof is very similar to the proof of Proposition O

Theorem 3.5. Let ut* = uQ For the sequences (uzlkm ugkm)meN, solutions of problems (3.1, (3.2), we
have
|

i,k,m i,k

i,k,m~+1 i,k
1 Ug " = Uy

—uy
<0 ([l &)
2

Proof. We use two nonoverlapping auxiliary problems over (21,3) and over (Qg,€y), respectively. From
the previous two propositions, we have

|

Hl,Ql ‘2792

Uy

i,k,m+1 i,k,m
SR

i,k,m i,k,m—1
-t ]

zka ’

. 1 . .
‘ uzl,k,m—‘r - uzl,k + ‘ i,k,m uzQ,k ’
2792
. 1 ) .
< }ui,k,m—k . uzl,k: ’ + ’ i,km ug,kH
3,03
i,km zk+1 i,k,m—1 i,k+1
+ s [y, e =
292 4794
< C‘uzl,k,m—l—l zk—l—lmH —|—C’ zkm_uik,m—lH
Wa
< C (‘ U'Ll,k:,m+1 zkm+€1k+1 mH ‘u;,k,m _uzl,k,m 1 + 'L2k:m 1” > )
Wa
Then
‘ uzl,k:,m—i-l _ uz,kH + ‘ u;,k,m 121:
1,0 2,Q9
] 1 ] 1 1
gc ’uzl,k,m-l— zkm+ 1ka ’ zkm_uzl,k,m + ;km H + zka _1_‘ i,k,m— H )
WQ W2

O

4. A posteriori error estimate in the discrete case

4.1. The space discretization

Let 2 be decomposed into triangles and 75, denote the set of all those elements where h > 0 is the mesh
size. We assume that the family 7, is regular and quasi-uniform. We consider the usual basis of affine
functions ¢; i = {1,...,m (h)} defined by ¢; (M;) = &;j, where M; is a vertex of the considered triangle.

We discretize in space, i.e., we approach the space Ho by a ﬁmte dimensional space V" C Ho- In the
second step, we discretize the problem with respect to time using the semi-implicit scheme. Therefore, we
search a sequence of elements uj € VP which approaches wuy, (tn,.), t, = nAt, k = 1,...,n, with initial
data uh = Uoh,-

Let uz kmtl o V3, be a solution of the discrete problem associated with (3.1] . um+1 = u%ﬂ We construct

the sequences (ul’;mﬂ)meN,uZ’;mH € K, (s = 1,2) solutions of the discrete problems associated with

., where K}, is the set given by
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M
(up,...,upl) € (L*(0,T,Hy (2)) N C (0,T, Hy (),
K=l (@) < (1 ut), (1)
ub, =0in T, u} (to) = uﬁl’o in €,
where 7, is the usual interpolation operator defined by
m(h)
rRU = Zv (M;) i () . (4.2)
i=1

In a manner similar to that of the previous section, we introduce two auxiliary problems.

(Q1,€3) the following full-discrete problems:

; 1
find u’llszr € K, such that

; i,kom+1 ~ i,k,m+1 i,kom+1 ~ i,k,m+1

bi (“1,h s ULh = Uy ) + (al,h“uz s ULh = Ugp )r
1
i,k—1m+1y ~ i,k,m+1 ~

Z (F(ul,h )avl,h - uLh >Ql ) vl,h S Kh7

ik 1
uy ,{m+ =0, on 90 NN,

i,k;m~+1
8u1’h

om

i,k,m
8u2’h

om

i,k,m+1 i,k,m
= + arug ), on I.

+ alul,h

By taking the trial function 0y 5 = Ui,h - ui’fﬁ;mﬂ in (4.2)), we get
( 14 i,km+1 i,kom+1 4
by (“1,h v”i,h) + (O‘LhuLh v”i,h)r
1
ik—lmtly i i
< (F(“1,h )7vl,h>Q1 » Vip € K,

uil’];;’mﬂ =0, on 90 NN,

i,k,m+1 i,k,m
ouyy, ikomtl dugy ik,m r
8’171 + O[lul’h = Tnl + Oéluz’h ,onlj.

Similarly, we get
(14 i,km+1 4 i,km+1 4 i/ ik—1,m+1 ;
by <u3h ;U] h) + <a37hu3h ;U] h) < (Fl(ush ), v h) ;
b 9 9 b Fl ) Qg
i k,m+-1
uy h’m+ =0, on 03N 9N,

i k
n ikmtl ouy™™
azug y =5

13

'7k7
+ agullvhm, onI.

We define for

(4.3)

(4.4)

(4.5)
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For (Q2,84), we have
4 . . . .
i i,km+1 4 i,km+1 4 i/ t,k—1,m+1 i
by ( U2,h) + (a2 hUg p) ’UQ,h> I < (F (ugy, )7v2,h> a,’

u;’;mﬂ =0, on 99 NI,

z k ;m+1 i,k,m
Ou + i,kom+1 aul h + i,k,m r
8772 O[2U2h = TTD (%) Ul h , only
and
i,km+1 4 i,k,m+1 4 i,k—1 i
bt (U4h ,Ui’h)—k <a4hu4h ,U;h)n < (Fl(u4h )’v}l,h)m’
n+1,m-+1
Uy p, =0, on J1 NI, (4.6)
n+1,m+1 n+1,m
uy ntlmi1 Ol n+1,m r
T+O¢u4h —T—I—aﬂ@h , on 1ag.
4 4

Theorem 4.1 ([8]). The solution of the system of QVI (4.3)), {4.4), and (4.5)) is the mazimum element of

the discrete subsolutions set.

We can obtain discrete counterparts of Propositions [3.3] and [3.4] by almost the same analysis as in the
section above (i.e., passing from continuous spaces to dlscrete subspaces and from continuous sequences to
discrete ones). Therefore,

) ui,k,m—l-l . uzl,kH + ’ ug,k:,m ug,kH <C ) ui,k,m-l-l - ugkva (47)
1,0 1,93
and
. 1 . 1
’ uz2,k,m+ _ugk ’ + ’ i,k,m quH C‘ i,k,m—+ Zk,m” ) (48)
LQZ 1,Q4 Wa

As in the proof of Theorem we get the following discrete estimates:

i,k,m+1 i,k i,k,m i,k
)ul,h _“1,hH +‘ _UQhH
1,9
i,km+1  dkm i,k,m i,k,m—1 i,k+1,m i,k+1,m—1
< lunt =k, o =k e e )
Wh Wa
k,m+1 ..
Next we will obtain an error estimate between the approximated solution uls hm+ and the semidiscrete
solution u"*. We introduce some necessary notations.
We denote

en={Fe€T:Tem,and E ¢ 00}
and for every T € 7, and E € ¢}, we define
wT:{TIGTh:T’ﬂT;éQ}, wE:{TIGTh:T’OE#Q}.

The right-hand side f of ([2.1)) is not necessarily a continuous function across two neighboring elements of
75, having E as a common side, [f] denotes the jump of f across F and ng the normal vector of E.
We have the following theorem which gives an a posteriori error estimate for the discrete GODDM.

Theorem 4.2. Let v = u¥ |q, and the sequences (ullzm—Irl ug’lz’m> N be solutions of problems (3.4) and
’ me
(3.1). Then there exists a constant C' independent of h such that

2
i,k,m+1 ik i,k,m i,k T
’ Uy )y — Uy Hlﬂ <C{ sum(ni)+nrs},
38 L2 -

u’ b _u’ H + ‘
Lh Ullia,

TerT
=1 h
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where

i,k ,* ik, x—1
Ups —Upy

= | |
Fs Wh,s

and

o=

A I O R N (R ) Kl

6u’i,k,*
h,s
] [y
Ecey, anE
where C' is Lipschitz constant of the right-hand side and the symbol x corresponds to m + 1 when s =1 and

to m when s = 2.

0.E

Proof. The proof is based on the technique of the residual a posteriori estimation see [24] and on Theorem
We give the main steps. By the triangle inequality, we have

ubk Zk* —uhs (4.9)

U
hs Hle

1,Q

The second term on the right-hand side of (4.8 is bounded, so
2 2 2
ik *
S0 it — ], <O
s=1

s=1i=1
To bound the first term on the right-hand side of (4.8]), we use the residual equation and apply the technique
of the residual a posteriori error estimation [I], and we get for v; € K},

(b (ué’k - uzlz, vl) = b’( — uzks,vs — vl S)
< ng dz’j@t ( (uh s) + “;Lks Ly )\Auﬁfs — (1 + )\a%) u%i) <vf9 - 0278) ds

- > dint [aauzks] (vé - vﬁ,s> ds— > dngt 6;2’“5 <v§ - v%,s) ds'

EcQ, E Mg ECT, Mg
ik
+ 3 dint ( F? ) — F (b)) (vi - )da + Ouin,s vl — vl
T S h,s S 877 s Vs h7s .
ECQsq s Is

Since F* (u%i) is an approximation of F* (uék), we have

2
;bz (ut® = w0t < Z% |7 () + i+ Anuph = (14 2ap) wilh I [
Zk . . 2 i,k . .
33 [ ] ot~ bl + 303 |25 ot et
s=1 ECQs 0,E s=1ECT, e OE
+Z > c o 105 = Vhsllo.r +Z > o5 = vhsllg -
s=1TCQs s=1TCQs 0,T

(4.10)

Using the fact
bt (uik — uhs, vl + chT)
< sup

1,82 vieK ||fU?§ + Chs ||179i

)
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we get
2 2
Zbi (ué’ —uhs,?.l —|—chT) SZ (Zns> ZHU ngg. (4.11)
s=1 s=1 \TCQs
Finally, by combining , , and the required result follows. O

5. An asymptotic behavior for the problem

5.1. A fixed point mapping associated with discrete problem
We define for ¢ = 1,2, 3,4 the following mapping

Th : Kh — H& (QS)

Wy — TW, = &0 = 0y, (F (wy)), o
where 52 . 1is the solution to the following problem
Bk =€) (o™ e ) 2 (Pl v - €57
R =0, on 090, NN, (5.2)
‘%gﬁ ngmﬂ ;‘r{;?+as§§}?, onlg, s=1,...,4, t=1,2.

5.2. An iterative discrete algorithm

Choosing uz(?g =u},, € (Hy (2s)NC (QS))M , i =1,..., M, we get a solution of the following discrete
equation
1,0 ;.0 0
Au;z st aOu;L s g;L ) (53)

where ¢ is a regular function. Now we give the following discrete algorithm

i,k,m~+1 zk 1,m+1 .
ugy = Thug k=1,....0n,t1=1,..., M,s=1,...,4

where u%f is a solution to problem ([5.2)).

Proposition 5.1. Let fZ’f be a solution to problem (5.2) with the right-hand side F* (w’) and the boundary

S

i,k,m+1 ~(c,m+1
condition % Zfl ok, m“, fz’kthe solution for F* (u?i,) and o ka mrlThe mapping Ty, is
7 (2

a contraction in Kp with the rate of contraction

coincides with the solution to problem ((5.2)).

ii Therefore, Ty, admits a unique fized point which

Proof. We note that
Wil = W1

Set
¢ = EESY |F (wy) = F (@3)]], -
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Then, 52 kmtl 4 s a solution of

b(ika&_+¢ o «+¢)<<(wa6—+af¢'ﬂ <+¢>
h,s ’ Yh,s — s 077> Yh,s ’

&R =0, on 00, N 09,

é-z Jk,m+1

gzkm
a sgzkm—i-l h,t i,k,m 4’ t:1,2.
\ Ns

an sfhs ,only, s=1,..,
S

From an assumption in [I8], we have

F(w;')éF(wéHHF( Y- (”’)Hl
SF(W) 5 )\ F(w;)Hl
< F (@) + apo

We know by [§] that if F'(wl) = F' (@!), then 51 Komil > ghkmtl Thus

But the roles of w’ and w! are symmetric, thus we have a similar proof, i.e.,

i k,m+1 i k,m1
grhbmtl o ghhmtl 4 g

S

yields
4 » 1 . y
1T (wl) =T (@) o < g, I (wh) = F (@),
1 C »
— o ) ()
A —l— c -
O
Proposition 5.2. Under the previous hypotheses and notations, we have the following estimate:
; ; L+c(A)N\" | 4 -
bl k) +]‘ bl k) +1 2 ) +1
e R )l K UL
where uzoso "t s an asymptotic continuous solution and u}'m is a solution of (5.3)).

Proof. The proof is similar to that in [7] which has treated an evolutionary HJB equation with nonlinear
source terms. O

Theorem 5.3. Under the previous hypotheses and notations, we have

> |

Proof. Using Theorem [4.2] n and Proposition n we get . O

2 n

i,n,m+1 i,oo T 1+ C(At)

' | <c ET; (nd +mr.) + <1+ﬁ(m> . (5.5)
5= Th
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6. Numerical example

In this section we give a simple numerical example. We consider the following evolutionary HJB equation:

u’ Qi i) — ) 3
1<mia}<<2<8t + A'u —f>—0, in Q x [0,7],

u(0,t) in Q =0,
where Q =10,1[, w(0,z) =0, T'=1 and
0%u 0u
1 2 1 2 1, 42
Alu= 2 AU_@+U, S (u) = f? (u) = max (A'u, A%u) .

The exact solution to the problem is
u(z,t) = (2* — 2°) sin (10z) cos (20mt) .

For the finite element approximation, we take uniform partition and linear conforming element. For the
domain decomposition, we use the following decomposition
Q1 =10, 0.55[, Q9 =1]0.45, 1].

We compute the bilinear Euler scheme combined with Galerkin solution in €2 and we apply the generalized
overlapping domain decomposition method to compute the bilinear sequences uzks’mﬂ, (s = 1,2) to be able

to look the behavior of the constant C', where the space steps are h = i, 1 and ——, and the steps of
) ) 10" 100 1000’
the time discretization are At = 10’ 5o 2™ nd 100" We denote
Es = ’ lka and 71 = ’uzklmﬂ kale
and k i,k 1
=i - g

The generalized overlapping domain decomposition method with oy = ae = 0.55 converges. The iterations
stop when the relative error between two subsequent iterates is less than 107, and we get

At = &
10
h 1/10 1/100 1/1000
Ey 0.5081043 (—4) 0.264825 (—6) 0.4725905 (—6)
E 0.6265874 (—4) 03852017 (—6) 0.3837247 (—6)
T 0.9650827 (—4) 0.573981 (—6) 0.1286211 (—6)
T 0.892843 (—4) 0.6418371 (—6) 0.9430526 (—6)
Iterations 8 14 20
1
At = 20
h 1/10 1/100 1/1000
FEy 0.4759595 (—3)  0.8496273 (—4)  0.9482601 (—4)
E; 0.5083649 (—3)  0.7892758 (—4)  0.8542894 (—4)
Ty 0.7592478 (—3) 0.927307 (—4) 0.9785809 (—4)
Ts 0.8584208 (—3) 0.855012 (—4) 0.9438526 (—4)
Iterations 8 14 20
At = 1/40
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h 1/10 1/100 1/1000

E 0.9276183 (—2) 0.2937842 (—3) 0.8297682 (—4)

Ey 0.8524725 (—2) 0.2572064 (—3)  0.87085497 (—4)

T 0.9793482 (—2) 0.6079027 (—3) 0.5433127 (—4)

Ty 0.7582921 (—2) 0.51975802 (—3) 0.517528 (—4)
Iterations 8 14 20

Finally, we can deduce the asymptotic behavior

2
AS:;’

| for At =1/1000 fe., n = 1000
) 1

as the following result

h 1/10 1/100 1/1000
As 0.5218747 (—3) 0.2519226 (—4) 0.1500514 (—4)
Iterations 8 14 20

In the tables above we also see that the iteration number is roughly related to h and At, and the order of
convergence is in a good agreement with our estimates (5.5)). Using adequate assumption, we can prove that

2
ui,oo S UZ}SOOO,m+1 + Z Z (773 + 771“3) + 1’
S=1T€Th

where ¢ = 8 = 1 without the discrete maximum principle assumption [12].

Conclusion

In this paper, a posteriori error estimates for the generalized overlapping domain decomposition method
with Dirichlet boundary conditions on the boundaries for the discrete solutions on subdomains of evolution-
ary HJB equation with nonlinear source terms are proved using Euler time scheme combined with a finite
element spatial approximation. Also the techniques of the residual a posteriori error analysis are used. Then
a result of asymptotic behavior in Sobolev space is deduced using Benssoussan—Lions’ algorithm. Further-
more the results of some numerical experiments are presented to support the theory. In the second part an
optimal error estimate with an asymptotic behavior will be given for an evolutionary HJB equation with
linear source terms and respect to the same proposed boundary conditions, using the discontinuous Galerkin
methods coupled with a theta time discretization scheme and the numerical example will be shown to prove
that the new presented scheme is efficient.
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