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Abstract

The purpose of this article is to investigate generalized mixed equilibrium problems and uniformly L-
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1. Introduction-preliminaries

Throughout this paper, we always assume that H is a real Hilbert space with inner product 〈·, ·〉 and
norm ‖ · ‖. Let C be a nonempty closed convex subset of H. Let ProjC be the metric projection onto C.
From now on, we use ⇀ and → to stand for the weak convergence and strong convergence, respectively.

Let S be a mapping on C. In this paper, we use F (S) to denote the set of fixed points of S. Recall that
S is said to be closed at y if for any sequence {xn} ⊂ C such that xn → x and Sxn → y, then Sx = y.
Recall that S is said to be demiclosed at y if for any sequence {xn} ⊂ C such that xn ⇀ x and Sxn → y,
then Sx = y. Recall that S is said to be nonexpansive iff

‖Sx− Sy‖ ≤ ‖x− y‖, ∀x, y ∈ C.
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S is said to be asymptotically nonexpansive iff there exists a sequence {kn} ⊂ [1,∞) with kn → 1 as
n→∞ such that

‖Snx− Sny‖ ≤ kn‖x− y‖, ∀x, y ∈ C, n ≥ 1.

Asymptotically nonexpansive mapping was introduced by Goebel and Kirk [10] as a generalization of non-
expansive mappings. If C is weakly compact, then F (T ) is not empty.

S is said to be asymptotically nonexpansive in the intermediate sense iff it is continuous and the following
inequality holds:

lim sup
n→∞

sup
x,y∈C

(‖Snx− Sny‖ − ‖x− y‖) ≤ 0. (1.1)

Setting µn = max{0, sup
x,y∈C

(‖Snx− Sny‖ − ‖x− y‖)}, we see that µn → 0 as n→∞. Then (1.1) is reduced

to the following:
‖Snx− Sny‖ ≤ ‖x− y‖+ µn, ∀x, y ∈ C. (1.2)

Asymptotically nonexpansive mappings in the intermediate sense were introduced by Kirk [14] as a gener-
alization of asymptotically nonexpansive mappings; see also [5].

S is said to be strictly pseudocontractive iff there exists a constant κ ∈ [0, 1) such that

‖Sx− Sy‖2 ≤ ‖x− y‖2 + κ‖(I − S)x− (I − S)y‖2, ∀x, y ∈ C.

Strict pseudocontractions is introduced by Brower and Petryshyn [4] as a generalization of the class of
nonexpansive mappings. It is clear that every nonexpansive mapping is 0-strictly pseudocontractive.

S is said to be an asymptotically strict pseudocontraction iff there exist a sequence {kn} ⊂ [1,∞) with
kn → 1 as n→∞ and a constant κ ∈ [0, 1) such that

‖Snx− Sny‖2 ≤ kn‖x− y‖2 + κ‖(I − Sn)x− (I − Sn)y‖2, ∀x, y ∈ C, n ≥ 1.

Asymptotically strict pseudocontractions were introduced by Qihou [17] as a generalization of strict pseu-
docontractions. Note that both asymptotically strict pseudocontractions and strict pseudocontractions are
Lipschitz continuous.

S is said to be an asymptotically strict pseudocontraction in the intermediate sense if there exist a
sequence {kn} ⊂ [1,∞) with kn → 1 as n→∞ and a constant κ ∈ [0, 1) such that

lim sup
n→∞

sup
x,y∈C

(‖Snx− Sny‖2 − kn‖x− y‖2 − κ‖(I − Sn)x− (I − Sn)y‖2) ≤ 0. (1.3)

Setting
µn = max{0, sup

x,y∈C
(‖Snx− Sny‖2 − kn‖x− y‖2 − κ‖(I − Sn)x− (I − Sn)y‖2)},

we see that µn → 0 as n→∞. Then (1.3) is reduced to the following:

‖Snx− Sny‖2 ≤ kn‖x− y‖2 + κ‖(I − Sn)x− (I − Sn)y‖2 + µn, ∀x, y ∈ C, n ≥ 1. (1.4)

Asymptotically strict pseudocontractions in the intermediate sense were introduced by Sahu, Xu and Yao
[21] as a generalization of asymptotically strict pseudocontractions.

From now on, R stands for the set of real numbers. Let B be a bifunction of C × C into R. Consider
the problem: find a p such that

B(p, y) ≥ 0, ∀y ∈ C. (1.5)

The solution set of the problem is denoted by EP (B). The problem was first introduced by Ky Fan [9]. In
the sense of Blum and Oettli [3], the Ky Fan is also called an equilibrium problem.

Equilibrium problems are revealed as an powerful and effective mathematical modelling for studying real
world problems which arise in many subjects, for instance, network, finance, transportation, elasticity and
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optimization; see [1], [2], [6], [7], [8], [11], [16], [22], [23], [24] and the references therein. It is known that
the generalized mixed equilibrium problem is to find p ∈ C such that

B(p, y) + 〈Ap, y − p〉+ ϕ(y)− ϕ(p) ≥ 0, ∀y ∈ C, (1.6)

where ϕ : C → R is a real valued function and A : C → H is a nonlinear mapping. We use GMEP (B,A, ϕ)
to denote the solution set of the equilibrium problem. That is,

GMEP (B,A,ϕ) := {p ∈ C : B(p, y) + 〈Ap, y − p〉+ ϕ(y)− ϕ(z) ≥ 0, ∀y ∈ C}.

Next, we give some special cases:
If A = 0 and ϕ = 0, then problem (1.6) is equivalent to (1.5).
If B = 0, then problem (1.6) is equivalent to find p ∈ C such that

〈Ap, y − p〉+ ϕ(y)− ϕ(z) ≥ 0, ∀y ∈ C, (1.7)

which is called the mixed variational inequality of Browder type.
If A = 0, then problem (1.6) is equivalent to find p ∈ C such that

B(p, y) + ϕ(y)− ϕ(z) ≥ 0, ∀y ∈ C, (1.8)

which is called the mixed equilibrium problem.
If ϕ = 0, then problem (1.6) is equivalent to find p ∈ C such that

B(p, y) + 〈Ap, y − p〉 ≥ 0, ∀y ∈ C, (1.9)

which is called the generalized equilibrium problem.
For solving the above equilibrium problems, let us assume that bifunction B : C × C → R satisfies the

following conditions:

(B-1) B is monotone;

(B-2) B(x, x) = 0, ∀x ∈ C;

(B-3) for each x ∈ C, y 7→ B(x, y) is convex and weakly lower semi-continuous;

(B-4) lim sup
t↓0

B(tz + (1− t)x, y) ≤ B(x, y), ∀x, y, z ∈ C.

Recently, above problems have been extensively investigated based on iterative methods in different
spaces by many authors; see, for instance, [8], [12], [13], [15], [19, 20, 25], and [26]–[29]. In this paper,
motivated by the research mentioned above, we investigate fixed points of an asymptotically strict pseudo-
contraction in the intermediate sense and generalized mixed equilibrium problem (1.6) based an a hybrid
method.

Next, we give the following tools which play an important role in our paper.

Lemma 1.1 ([18], [21]). Let S : C → C be a uniformly L-Lipschitz continuous and asymptotically strict
pseudocontraction in the intermediate sense. Then the mapping I −S is demiclosed at zero, that is, if {xn}
is a sequence in C such that xn ⇀ x̄ and xn − Sxn → 0, then x̄ ∈ F (S).

Lemma 1.2 ([18], [21]). Let C be a nonempty closed convex subset of H. Let S : C → C be an asymptotically
κ-strict pseudocontraction in the intermediate sense. Then F (S) is closed and convex.

Lemma 1.3 ([3]). Let C be a nonempty closed convex subset of H and let B : C × C → R be a bifunction
with (B-1), (B-2), (B-3) and (B-4) . Then, for any r > 0 and x ∈ H, there exists z ∈ C such that

B(z, y) +
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C.

Further, define

Trx =
{
z ∈ C : B(z, y) +

1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C

}
for all r > 0 and x ∈ H. Then, the following hold:



D. Li, J. Zhao, J. Nonlinear Sci. Appl. 9 (2016), 757–765 760

(a) Tr is single-valued firmly nonexpansive;

(b) EP (B) is convex and closed;

(c) F (Tr) = EP (B).

2. Main results

Theorem 2.1. Let C be a nonempty closed convex subset of H. Let B be a bifunction from C × C to R
enjoys (B-1), (B-2), (B-3) and (B-4). Let ϕ : C → R be a lower semicontinuous and convex function and
let A : C → H be a continuous and monotone mapping. Let S be a uniformly L-Lipschitz continuous and
asymptotically κ-strict pseudocontraction in the intermediate sense on C. Assume that the common solution
set GMEP (B,A,ϕ) ∩ F (S) is nonempty and bounded. Let {αn} and {βn} be sequences in [0, 1]. Let {rn}
be a real sequence in (0,∞). Let {xn} be a sequence generated as follows:

x1 ∈ H,C1 = C,

B(un, u) + ϕ(u)− ϕ(un) + 〈Aun, u− un〉+ 1
rn
〈u− un, un − xn〉 ≥ 0, ∀u ∈ C,

yn = (1− αn)
(
βnun + (1− βn)Snun

)
+ αnxn,

Cn+1 = {w ∈ Cn : ‖yn − w‖2 ≤ (kn − 1) sup{‖xn − w‖2 : w ∈ GMEP (B,A,ϕ) ∩ F (S)}
+µn + ‖xn − w‖2},

xn+1 = ProjCn+1x1, n ≥ 1,

where ProjCn+1 is the metric projection from H onto Cn+1. Assume that the control sequences {rn}, {αn}
and {βn} satisfy the following restrictions: 0 ≤ αn ≤ a < 1, lim inf

n→∞
rn > 0 and 0 < κ ≤ βn ≤ b < 1, where a

and b are two real numbers. Then sequence {xn} converges strongly to x̄ = PGMEP (B,A,ϕ)∩F (S)x1.

Proof. First, we define G(p, y) = B(p, y)+〈Ap, y−p〉+ϕ(y)−ϕ(p), ∀p, y ∈ C. Next, we prove that bifunction
G satisfies (B-1), (B-2), (B-3) and (B-4). Therefore, generalized mixed equilibrium problem is equivalent to
the following equilibrium problem:

find p ∈ C such that G(p, y) ≥ 0, ∀y ∈ C.

Next, we prove G is monotone. Since A is a continuous and monotone operator, we find from the definition
of G that

G(y, z) +G(z, y) = B(y, z) + 〈Ay, z − y〉+ ϕ(z)− ϕ(y) +B(z, y)

+ 〈Az, y − z〉+ ϕ(y)− ϕ(z)

= B(z, y) + 〈Az, y − z〉+B(y, z) + 〈Ay, z − y〉
≤ 〈Az −Ay, y − z〉
≤ 0.

It is clear that G satisfies (B-2). Next, we show that for each x ∈ C, y 7−→ G(x, y) is convex and lower
semicontinuous. For each x ∈ C, for all t ∈ (0, 1) and for all y, z ∈ C, since ϕ is convex, we have

G(x, ty + (1− t)z) = B(x, ty + (1− t)z) + 〈Ax, ty + (1− t)z − x〉+ ϕ(ty + (1− t)z)− ϕ(x)

≤ t
(
B(x, y) + ϕ(y)− ϕ(x) + 〈Ax, y − x〉

)
+ (1− t)

(
B(x, z) + ϕ(z)− ϕ(x) + 〈Ax, z − x〉

)
= (1− t)G(x, z) + tG(x, y).

So, y 7−→ G(x, y) is convex. Similarly, we find that y 7−→ G(x, y) is also lower semicontinuous. Next, we
show G satisfies (B-4), that is,

lim sup
t↓0

G(tz + (1− t)x, y) ≤ G(x, y), ∀x, y, z ∈ C.

Since A is continuous and ϕ is lower semicontinuous, we have
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lim sup
t↓0

G(tz + (1− t)x, y) = lim sup
t↓0

B(tz + (1− t)x, y)

+ lim sup
t↓0

(
ϕ(y)− ϕ(tz + (1− t)x)big)

+ lim sup
t↓0

〈A
(
tz + (1− t)x

)
, y −

(
tz + (1− t)x

)
〉

≤ B(x, y) + ϕ(y)− ϕ(x) + 〈Ax, y − x〉
= G(x, y).

Now, we are in a position to show that Cn is closed and convex. It is easy to see that Cn is closed. We
only show that Cn is convex. Note that C1 = H is convex. Suppose that Ci is convex for some positive
integer i ≥ 1. Next, we show that Ci+1 is convex for the same i. Put

Θn = sup{‖xn − w‖2 : w ∈ GMEP (B,A,ϕ) ∩ F (S)}.

Since
‖yi − w‖2 ≤ (ki − 1)Θi + µi + ‖xi − w‖2

is equivalent to
2〈xi − yi, w〉 ≤ ‖xi‖2 − ‖yi‖2 + (ki − 1)Θi + µi,

we take w1 and w2 in Ci+1 and put w̄ = tw1 + (1− t)w2 to find that w1 ∈ Ci, w2 ∈ Ci,

2〈xi − yi, w1〉 ≤ ‖xi‖2 − ‖yi‖2 + (ki − 1)Θi + µi

and
2〈xi − yi, w2〉 ≤ ‖xi‖2 − ‖yi‖2 + (ki − 1)Θi + µi.

Using the above two inequalities, we obtain that ‖yi−w‖2 ≤ ‖xi−w‖2+(ki−1)Θi+µi. By use the convexity
of Ci, we find that w̄ ∈ Ci. This shows that w̄ ∈ Ci+1. This yields that Cn is convex and closed. Next, we
find that GMEP (B,A, ϕ) ∩ F (S) ⊂ Cn. It is clear that GMEP (B,A,ϕ) ∩ F (S) ⊂ C1 = H. Assume that
GMEP (B,A,ϕ) ∩ F (S) ⊂ Ch for some integer h ≥ 1. We intend to claim that GMEP (B,A,ϕ) ∩ F (S) ⊂
Ch+1 for the same h. For any p ∈ GMEP (B,A,ϕ) ∩ F (S) ⊂ Ch, we have

‖yh − p‖2 ≤ αh‖xh − p‖2 + (1− αh)‖βh(uh − p) + (1− βh)(Shuh − p)‖2

≤ αh‖xh − p‖2 + (1− αh)
(
βh‖uh − p‖2

+ (1− βh)
(
kh‖uh − p‖2 + κ‖uh − Shuh‖2 + µh

)
− βh(1− βh)‖uh − Shuh‖2

)
≤ (1− αh)(kh − 1)‖xh − p‖2 + (1− αh)(1− βh)(κ− βh)‖uh − Shuh‖2

+ (1− αh)(1− βh)µh + ‖xh − p‖2

≤ (kh − 1)Θh + µh + ‖xh − p‖2.

This implies that GMEP (B,A,ϕ) ∩ F (S) ⊂ Cn. Since xn = PCnx1, we have ‖x1 − xn‖ ≤ ‖x1 − p‖. In
particular, one has

‖x1 − xn‖ ≤ ‖x1 − ProjGMEP (B,A,ϕ)∩F (S)x1‖.
This obtains the boundedness of {xn}. It follows that

0 ≤ 〈x1 − xn, xn − xn+1〉 ≤ ‖x1 − xn‖‖x1 − xn+1‖ − ‖x1 − xn‖2.

This implies ‖xn − x1‖ ≤ ‖xn+1 − x1‖. Hence, we obtain that lim
n→∞

‖xn − x1‖ exists. Since

‖xn − xn+1‖2 = ‖xn − x1‖2 + 2〈xn − x1, x1 − xn+1〉+ ‖x1 − xn+1‖2

= ‖xn − x1‖2 + 2〈xn − x1, x1 − xn + xn − xn+1〉+ ‖x1 − xn+1‖2

= ‖xn − x1‖2 − 2‖xn − x1‖2 + 2〈xn − x1, xn − xn+1〉+ ‖x1 − xn+1‖2

≤ ‖x1 − xn+1‖2 − ‖xn − x1‖2,
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we find that
lim
n→∞

‖xn − xn+1‖ = 0. (2.1)

By use of xn+1 = ProjCn+1x1 ∈ Cn+1, we have

‖yn − xn+1‖2 ≤ (kn − 1)Θn + µn + ‖xn − xn+1‖2.

Hence
lim
n→∞

‖xn+1 − yn‖ = 0. (2.2)

This together with (2.1) yield that
lim
n→∞

‖xn − yn‖ = 0. (2.3)

Since ‖xn − yn‖ = (1 − αn)‖xn −
(
βnun + (1 − βn)Snun

)
‖, we find from (2.3) and the restriction imposed

on sequence {αn} that
lim
n→∞

‖xn −
(
βnun + (1− βn)Snun

)
‖ = 0. (2.4)

For p ∈ GMEP (B,A,ϕ) ∩ F (S), one has

‖un − p‖2 ≤ 〈Trnxn − Trnp, xn − p〉 =
1

2
(‖un − p‖2 + ‖xn − p‖2 − ‖un − xn‖2).

Hence, we have
‖un − p‖2 ≤ ‖xn − p‖2 − ‖un − xn‖2. (2.5)

It follows that

‖yn − p‖2 ≤ αh‖xn − p‖2 + (1− αn)
(
βn‖un − p‖2 + (1− βn)‖Snun − Snp‖2

− βn(1− βn)‖un − p− (Snun − Snp)‖2
)

≤ αn‖xn − p‖2 + (1− αn)βn‖un − p‖2 + (1− αn)(1− βn)
(
kn‖un − p‖2

+ κ‖un − p− (Snun − Snp)‖2 + µn
)

− (1− αn)βn(1− βn)‖un − p− (Snun − Snp)‖2

≤ αn‖xn − p‖2 + (1− αn)kn‖un − p‖2

− (1− αn)(1− βn)(βn − κ)‖un − p− (Snun − Snp)‖2

≤ (kn − 1)‖xn − p‖2 − (1− αn)kn‖un − xn‖2 + ‖xn − p‖2.

This implies that

(1− αn)kn‖un − xn‖2 ≤ (kn − 1)‖xn − p‖2 − ‖yn − p‖2 + ‖xn − p‖2

≤ (‖xn − p‖+ ‖yn − p‖)‖xn − yn‖+ (kn − 1)‖xn − p‖2.

By use of (2.3), we find that limn→∞ ‖un − xn‖ = 0. Since {xn} is bounded, there exists a subsequence
{xni} of {xn} such that xni ⇀ q. It follows uni ⇀ q. Using the restriction imposed on {rn}, we may assume
there exists a positive real number r such that rn ≥ r. Hence,

lim
n→∞

‖un − xn‖
rn

= 0. (2.6)

Next, we show that q ∈ F (S). Note that

‖xn −
(
βnxn + (1− βn)Snxn

)
‖ ≤ ‖xn −

(
βnun + (1− βn)Snun

)
‖+ βn‖un − xn‖+ (1− βn)‖Snun − Snxn‖

≤ ‖xn −
(
βnun + (1− βn)Snun

)
‖+ L‖un − xn‖.
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It follows from (2.4) that
lim
n→∞

‖xn −
(
βnxn + (1− βn)Snxn

)
‖ = 0. (2.7)

Since
‖Snxn − xn‖ ≤ ‖Snxn −

(
βnxn + (1− βn)Snxn

)
‖+ ‖

(
βnxn + (1− βn)Snxn

)
− xn‖

≤ βn‖Snxn − xn‖+ ‖
(
βnxn + (1− βn)Snxn

)
− xn‖,

one sees from the restriction imposed on {βn} and (2.7) that

lim
n→∞

‖Snxn − xn‖ = 0. (2.8)

Since S is Lipschitz continuous, one has

‖xn − Sxn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − Sn+1xn+1‖+ ‖Sn+1xn+1 − Sn+1xn‖+ ‖Sn+1xn − Sxn‖
≤ (1 + L)‖xn − xn+1‖+ ‖xn+1 − Sn+1xn+1‖+ L‖Snxn − xn‖.

It follows from (2.1) and (2.8) that
lim
n→∞

‖Sxn − xn‖ = 0.

Using Lemma 1.1, we obtain that q ∈ F (S).
Next, we prove q ∈ GMEP (B,A,ϕ) = EP (G). By use of (B-1), one has 1

rn
〈u−un, un−xn〉 ≥ G(u, un).

Replacing n by ni, we arrive at 〈u − uni ,
uni−xni

rni
〉 ≥ G(u, uni). Using assumption (B-3), we get from (2.6)

that G(u, q) ≤ 0, ∀u ∈ C. For any t with 0 < t ≤ 1 and u ∈ C, let ut = tu + (1 − t)q. Since u ∈ C and
q ∈ C, we have ut ∈ C and hence G(ut, q) ≤ 0. It follows that

0 = G(ut, ut) ≤ tG(ut, u) + (1− t)G(ut, q) ≤ tG(ut, u),

which yields that G(ut, u) ≥ 0, ∀u ∈ C. Letting t ↓ 0, we obtain from assumption (B-4) that

G(q, u) ≥ 0, ∀u ∈ C.

This implies that q ∈ EP (G) = GMEP (B,A,ϕ). This shows that q ∈ GMEP (B,A,ϕ) ∩ F (S). Since
x̄ = PGMEP (B,A,ϕ)∩F (S)x1, we obtain that

‖x1 − x̄‖ ≤ ‖x1 − q‖ ≤ lim inf
i→∞

‖x1 − xni‖ ≤ lim sup
i→∞

‖x1 − xni‖ ≤ ‖x1 − x̄‖.

It follows that
lim
i→∞
‖x1 − xni‖ = ‖x1 − q‖ = ‖x1 − x̄‖.

Hence, {xni} converges strongly to x̄. It follows that the sequence {xn} converges strongly to x̄ =
PGMEP (B,A,ϕ)∩F (S)x1. This completes the proof.

Next, we give some subresults based on Theorem 2.1. First, we consider solutions of equilibrium problem
(1.5).

Corollary 2.2. Let C be a nonempty closed convex subset of H. Let B be a bifunction from C × C to R
which satisfies (B-1), (B-2), (B-3) and (B-4) and let S : C → C be a uniformly L-Lipschitz continuous and
asymptotically κ-strict pseudocontraction in the intermediate sense. Assume that EP (F ) is nonempty and
bounded. Let {αn} be a sequence in [0, 1]. Let {rn} be a real sequence in (0,∞). Let {xn} be a sequence
generated in the following manner:

x1 ∈ H,
C1 = C,

F (un, u) + 1
rn
〈u− un, un − xn〉 ≥ 0, ∀u ∈ C,

yn = αnxn + (1− αn)un,

Cn+1 = {w ∈ Cn : ‖yn − w‖ ≤ ‖xn − w‖},
xn+1 = ProjCn+1x1, n ≥ 1.
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Assume that the control sequences {rn} and {αn} satisfy the following restrictions: lim inf
n→∞

rn > 0 and

0 ≤ αn ≤ a < 1, where a is a real number. Then sequence {xn} converges strongly to x̄ = ProjEP (F )x1.

Proof. Putting ϕ = 0, A = 0 and S = I, we find from Theorem 2.1 the desired conclusion.

Next, we give a result on equilibrium problem (1.9).

Corollary 2.3. Let C be a nonempty closed convex subset of H. Let B be a bifunction from C × C to R
which satisfies (B-1), (B-2), (B-3) and (B-4) and A : C → H a continuous and monotone mapping. Assume
that EP (F,A) is nonempty and bounded. Let {αn} be a sequence in [0, 1]. Let {rn} be a real sequence in
(0,∞). Let {xn} be a sequence generated in the following manner:

x1 ∈ H,
C1 = C,

F (un, u) + 〈Aun, u− un〉+ 1
rn
〈u− un, un − xn〉 ≥ 0, ∀u ∈ C,

yn = αnxn + (1− αn)un,

Cn+1 = {w ∈ Cn : ‖yn − w‖ ≤ ‖xn − w‖},
xn+1 = ProjCn+1x1, n ≥ 1.

Assume that the control sequences {rn} and {αn} satisfy the following restrictions: lim inf
n→∞

rn > 0, 0 ≤ αn ≤
a < 1, where a is a real number. Then sequence {xn} converges strongly to x̄ = ProjEP (F,A)x1.

Finally, we give a result on fixed point of asymptotically κ-strict pseudocontraction in the intermediate
sense.

Corollary 2.4. Let C be a nonempty closed convex subset of H. Let S : C → C be a uniformly L-Lipschitz
continuous and asymptotically κ-strict pseudocontraction in the intermediate sense with a nonempty and
bounded fixed-point set. Let {αn} and {βn} be sequences in [0, 1]. Let {xn} be a sequence generated in the
following manner:

x1 ∈ C,
C1 = C,

yn = αnxn + (1− αn)
(
βnxn + (1− βn)Snxn

)
,

Cn+1 = {w ∈ Cn : ‖yn − w‖2 ≤ (kn − 1) sup{‖xn − w‖2 : w ∈ F (S)}+ µn + ‖xn − w‖2},
xn+1 = PCn+1x1, n ≥ 1.

Assume that the control sequences {αn} and {βn} satisfy the following restrictions: 0 ≤ αn ≤ a < 1 and

(b) 0 < κ ≤ βn ≤ b < 1, where a and b are two real numbers. Then sequence {xn} converges strongly to
x̄ = ProjF (S)x1.
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