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Abstract

In this paper, we give the definitions of compatibility and weakly reciprocally continuity for sequence of
random mappings Ti and a random self-mapping g. Further, using these definitions we establish quadruple
random coincidence and quadruple random fixed point results by applying the concept of an α-series for
sequence of mappings, introduced by Sihag et al. [V. Sihag, R. K. Vats, C. Vetro, Quaest. Math., 37 (2014),
1–6], in the setting of partially ordered metric spaces. Our results are some random versions and extensions
of results relating to triple fixed points theorems by R. K. Vats et al. [R. K. Vats, K. Tas, V. Sihag, A.
Kumar, J. Inequal. Appl., 2014 (2014), 12 pages], we also give some examples to illustrate our results.
c©2016 All rights reserved.
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1. Introduction and preliminaries

Random nonlinear analysis is an important mathematical discipline which is mainly concerned with the
study of random nonlinear operators and their properties and is needed for the study of various classes
of random equations. Random fixed point theorems are stochastic generalizations of classical fixed point
theorems. Random fixed point theorems for contraction mappings on separable complete metric spaces have
been proved by several authors (see Refs. [6], [7], [8], [9], [11], [13], [14], [15], [20], [24], [25], [26]).
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Bhaskar and Lakshmikantham [3] introduced the notion of a coupled fixed point and proved some coupled
fixed point theorems for mappings satisfying a mixed monotone property. They discussed the problem of
uniqueness of coupled fixed point and applied their theorems to problems of existence and uniqueness of
solution for a periodic boundary value problem. Lakshmikantham and Ćırić[12] introduced the concept of
mixed g−monotone mapping and proved coupled coincidence and coupled common fixed point theorems
for commuting mappings, extending the theorems due to Bhaskar and Lakshmikantham [3]. Recently, Ćırić
and Lakshmikantham [4] studied coupled random coincidence and coupled random fixed point theorems for
a pair of random mappings F : Ω×X ×X −→ X and g : Ω×X −→ X, where X is a complete separable
metric space and (Ω,Σ) is a measurable space, under some contractive conditions. Very recently, V. Berinde,
M. Borcut [2] introduced the concept of tripled fixed point and proved some related theorems. In a natural
fashion, some scholars have got triple and higher dimensional coincidence and fixed point results [1], [2],
[10], [17], [18], [21], [22].

Motivated and inspired by the above results, we prove quadruple random coincidence and quadruple
random fixed point theorems in partially ordered metric spaces for a random self-mapping g and a random
sequence {Ti}n∈N that have some useful properties.

For simplicity, we denote X ×X ×X × ...×X︸ ︷︷ ︸
k times

by Xk where k ∈ N . Let us recall some basic definitions.

Let (Ω,Σ) be a measurable space with Σ being a σ−algebra of subsets of Ω, and let (X, d) be a met-
ric space. A mapping T : Ω → X is called Σ-measurable, if for any open subset U of X, T−1(U) =
{ω : Tω ∈ U} ∈ Σ. In what follows, when we speak of measurability, we will mean Σ-measurability. A
mapping T : Ω × X → X is called a random operator if for any x ∈ X, T (·, x) is measurable. A mea-
surable mapping ζ : Ω → X is called a random fixed point of a random function T : Ω × X → X if
ζ(ω) = T (ω, ζ(ω)) for every ω ∈ Ω. A measurable mapping ζ : Ω×X → X is called a random coincidence
point of T : Ω×X → X and g : Ω×X → X if g(ω, ζ(ω)) = T (ω, ζ(ω)) for every ω ∈ Ω.

Definition 1.1 ([6]). Let (X,≤, d) be a complete separable partially ordered metric space and (Ω,Σ) be
a measurable space. Then F : Ω × (X ×X) → X and g : Ω ×X → X are said to be compatible random
operators, if

lim
n→∞

d(g(ω, F (ω, (xn, yn))), F (ω, g(ω, (xn, yn))) = 0

and
lim
n→∞

d(g(ω, F (ω, (yn, xn))), F (ω, g(ω, (yn, xn))) = 0,

whenever {xn} and {yn} are sequences in X such that lim
n→∞

g(ω, xn) = lim
n→∞

F (ω, (xn, yn)) = x and

lim
n→∞

g(ω, yn) = lim
n→∞

F (ω, (yn, xn)) = y for all ω ∈ Ω and for all x, y ∈ X being satisfied.

Definition 1.2 ([18]). Let (X,≤, d) be a complete partially ordered metric space. We say that X is regular
if the following conditions hold:

(i) if a non-decreasing sequence {xn} −→ x, then xn ≤ x for all n ≥ 0;
(ii) if a non-increasing sequence {yn} −→ y, then yn ≥ y for all n ≥ 0.

Definition 1.3 ([21]). Let {an} be a sequence of non-negative real numbers. We say that a series
∑+∞

n=1 an
is an α−series, if there exist 0 < α < 1 and nα ∈ N such that

∑k
i=1 ai ≤ αk for each k ≥ nα.

Remark 1.4 ([21]). Each convergent series of non-negative real terms is an α−series. However, there are
also divergent series that are α−series. For example,

∑+∞
n=1

1
n is an α−series.

2. Main results

Let (X, d,≤) be a separable partially ordered space, (Ω.Σ) be a measurable space, g be a random
self-mapping on X and {Ti} ∈ N be a sequence of random mappings from Ω × X4 into X such that
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Ti(Ω×X4) ⊆ g(Ω×X) and

Ti(ω, x, y, z, t) ≤ Ti+1(ω, u, v, r, s), Ti(ω, y, z, t, x) ≥ Ti+1(ω, v, r, s, u),

Ti(ω, z, t, x, y) ≤ Ti+1(ω, r, s, u, v) and Ti(ω, t, x, y, z) ≥ Ti+1(ω, s, u, v, r)
(2.1)

for all x, y, z, t, u, v, r, s ∈ X, ω ∈ Ω, i ∈ N with g(ω, x) ≤ g(ω, u), g(ω, y) ≥ g(ω, v), g(ω, z) ≤ g(ω, r) and
g(ω, t) ≥ g(ω, s).

In view of the above considerations, we obtain Definition 2.1.

Definition 2.1. Let (X,≤, d) be a complete separable partially ordered metric space, (Ω,Σ) be a measurable
space, {Ti}i∈N and g are said to be random compatible operators if

lim
n→+∞

d(g(ω, Tn(ω, xn, yn, zn, tn)), Tn(ω, g(ω, xn), g(ω, yn), g(ω, zn), g(ω, tn))) = 0,

lim
n→+∞

d(g(ω, Tn(ω, yn, zn, tn, xn)), Tn(ω, g(ω, yn), g(ω, zn), g(ω, tn), g(ω, xn))) = 0,

lim
n→+∞

d(g(ω, Tn(ω, zn, tn, xn, yn)), Tn(ω, g(ω, zn), g(ω, tn), g(ω, xn), g(ω, yn))) = 0

and
lim

n→+∞
d(g(ω, Tn(ω, tn, xn, yn, zn)), Tn(ω, g(ω, tn), g(ω, xn), g(ω, yn), g(ω, zn))) = 0.

Whenever {xn}, {yn}, {zn} and {tn} are sequences in X, such that

lim
n→+∞

Tn(ω, xn, yn, zn, tn) = lim
n→+∞

g(ω, xn+1) = x,

lim
n→+∞

Tn(ω, yn, zn, tn, xn) = lim
n→+∞

g(ω, yn+1) = y,

lim
n→+∞

Tn(ω, zn, tn, xn, xn) = lim
n→+∞

g(ω, zn+1) = z

and
lim

n→+∞
Tn(ω, tn, xn, yn, tn) = lim

n→+∞
g(ω, tn+1) = t

for some x, y, z, t ∈ X,ω ∈ Ω.

Definition 2.2. {Ti}i∈N and g are called random weakly reciprocally continuous if

lim
n→+∞

g(ω, Tn(ω, xn, yn, zn, tn)) = g(ω, x),

lim
n→+∞

g(ω, Tn(ω, yn, zn, tn, xn)) = g(ω, y),

lim
n→+∞

g(ω, Tn(ω, zn, tn, xn, yn)) = g(ω, z)

and
lim

n→+∞
g(ω, Tn(ω, tn, xn, yn, zn)) = g(ω, t),

whenever {xn}, {yn}, {zn} and {tn} are sequences in X, such that

lim
n→+∞

Tn(ω, xn, yn, zn, tn) = lim
n→+∞

g(ω, xn+1) = x,

lim
n→+∞

Tn(ω, yn, zn, tn, xn) = lim
n→+∞

g(ω, yn+1) = y,

lim
n→+∞

Tn(ω, zn, tn, xn, xn) = lim
n→+∞

g(ω, zn+1) = z

and
lim

n→+∞
Tn(ω, tn, xn, yn, tn) = lim

n→+∞
g(ω, tn+1) = t

for some x, y, z, t ∈ X,ω ∈ Ω.
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Theorem 2.3. Let (X,≤, d) be a separable partially ordered metric space, (Ω,Σ) be a measurable space. Let
g be a random self-mapping on X and {Ti}i∈N be a sequence of random mappings from Ω×X4 into X such
that Ti(Ω × X4) ⊆ g(Ω × X), g(Ω × X) is a complete subset of X, {Ti}i∈N and g are compatible random
operators, random weakly reciprocally continuous, g is monotonic non-decreasing, continuous, satisfying
condition (2.1) and the following condition:

d(Ti(ω, x, y, z, t), Tj(ω, u, v, r, s) ≤ βi,j [d(g(ω, x), Ti(ω, x, y, z, t)) + d(g(ω, u), Tj(ω, u, v, r, s))]

+ γi,jd(g(ω, u), g(ω, x))
(2.2)

for x, y, z, t, u, v, r, s∈ X with g(ω, x) ≤ g(ω, u), g(ω, v) ≤ g(ω, y), g(ω, z) ≤ g(ω, r), g(ω, s) ≤ g(ω, t);
0 ≤ βi,j , γi,j < 1 for i, j ∈ N and lim sup

n→∞
βi,n < 1.

Suppose also that there exist measurable mappings ξ0, η0, ζ0, ρ0 : Ω→ X such that

g(ω, ξ0) ≤ T0(ω, ξ0, η0, ζ0, ρ0),

g(ω, η0) ≥ T0(ω, η0, ζ0, ρ0, ξ0),

g(ω, ζ0) ≤ T0(ω, ζ0, ρ0, ξ0, η0)

and
g(ω, ρ0) ≥ T0(ω, ρ0, ξ0, η0, ζ0)

for all ω ∈ Ω. If
∑+∞

i=1 (
βi,i+1+γi,i+1

1−βi,i+1
) is an α−series and g(Ω × X) is regular, then {Ti}i∈N and g have a

quadruple random coincidence point.

Proof. Let Θ = {ζ : Ω → X} be a family of measurable mappings. Define a function h : Ω ×X → R+ as
follows:

h(ω, x) = d(x, g(ω, x)).

Since x→ g(ω, x) is continuous for all ω ∈ Ω, we conclude that h(ω, ·) is continuous for all ω ∈ Ω. Also,
since x → g(ω, x) is measurable for all x ∈ X, we conclude that h(·, x) is measurable for all ω ∈ Ω ([23],
p.868). Thus, h(ω, x) is the Caratheodory function. Therefore, if ζ : Ω → X is a measurable mapping,
then ω → h(ω, ζ(ω)) is also measurable [19]. Also, for each ζ ∈ Θ, the function η : Ω → X defined by
η(ω) = g(ω, ζ(ω)) is measurable, that is, η ∈ Θ.

Now, we shall construct four sequences of measurable mappings {ξn(ω)}, {ηn(ω)}, {ζn(ω)} and {ρn(ω)}
in Θ, and four sequences {g(ω, ξn(ω))}, {g(ω, ηn(ω))}, {g(ω, ζn(ω))} and {g(ω, ρn(ω))} in X as follows. Let
ξ0, η0, ζ0, ρ0 ∈ Θ be such that

g(ω, ξ0(ω)) ≤ T0(ω, ξ0(ω), η0(ω), ζ0(ω), ρ0(ω)),

g(ω, η0(ω)) ≥ T0(ω, η0(ω), ζ0(ω), ρ0(ω), ξ0(ω)),

g(ω, ζ0(ω)) ≤ T0(ω, ζ0(ω), ρ0(ω), ξ0(ω), η0(ω))

and
g(ω, ρ0(ω)) ≥ T0(ω, ρ0(ω), ξ0(ω), η0(ω), ζ0(ω))

for all ω ∈ Ω. Since Ti(Ω×X4) ⊆ g(Ω×X) by an appropriate Filippov measurable implicit function theorem
([5], [8], [16]), we can choose ξ0, η0, ζ0 and ρ0 ∈ Θ such that

g(ω, ξ1(ω)) = T0(ω, ξ0(ω), η0(ω), ζ0(ω), ρ0(ω)),

g(ω, η1(ω)) = T0(ω, η0(ω), ζ0(ω), ρ0(ω), ξ0(ω)),

g(ω, ζ1(ω)) = T0(ω, ζ0(ω), ρ0(ω), ξ0(ω), η0(ω)),

g(ω, ρ1(ω)) = T0(ω, ρ0(ω), ξ0(ω), η0(ω), ζ0(ω)),

(2.3)
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and for all ω ∈ Ω. Again taking into account that Ti(Ω ×X) ⊆ g(Ω ×X) and continuing this process, we
can construct sequence {ξn(ω)}, {ηn(ω)}, {ζn(ω)} and {ρn(ω)} in X such that

g(ω, ξn+1(ω)) = Tn(ω, ξn(ω), ηn(ω), ζn(ω), ρn(ω)),

g(ω, ηn+1(ω)) = Tn(ω, ηn(ω), ζn(ω), ρn(ω), ξn(ω)),

g(ω, ζn+1(ω)) = Tn(ω, ζn(ω), ρ0(ω), ξn(ω), ηn(ω)),

g(ω, ρn+1(ω)) = Tn(ω, ρn(ω), ξn(ω), ηn(ω), ζn(ω))

(2.4)

for all ω ∈ Ω, n ≥ 0.
Now, by using mathematical induction, we prove that

g(ω, ξn(ω)) ≤ g(ω, ξn+1(ω)),

g(ω, ηn(ω)) ≥ g(ω, ηn+1(ω)),

g(ω, ζn(ω)) ≤ g(ω, ζn+1(ω)),

g(ω, ρn(ω)) ≥ g(ω, ρn+1(ω))

(2.5)

for all n ≥ 0. Since
g(ω, ξ0(ω)) ≤ T0(ω, ξ0(ω), η0(ω), ζ0(ω), ρ0(ω)),

g(ω, η0(ω)) ≥ T0(ω, η0(ω), ζ0(ω), ρ0(ω), ξ0(ω)),

g(ω, ζ0(ω)) ≤ T0(ω, ζ0(ω), ρ0(ω), ξ0(ω), η0(ω))

and
g(ω, ρ0(ω)) ≥ T0(ω, ρ0(ω), ξ0(ω), η0(ω), ζ0(ω)),

in view of (2.1) and (2.4), we have
g(ω, ξ0(ω)) ≤ g(ω, ξ1(ω)),

g(ω, η0(ω)) ≥ g(ω, η1(ω)),

g(ω, ζ0(ω)) ≤ g(ω, ζ1(ω))

and
g(ω, ρ0(ω)) ≥ g(ω, ρ1(ω)),

that is, (2.5) hold for n = 0. We presume that (2.5) holds for some n > 0. Now, by (2.1) and (2.4), one
deduces that

g(ω, ξn+1(ω)) = Tn(ω, ξn(ω), ηn(ω), ζn(ω), ρn(ω))

≤ Tn+1(ω, ξn+1(ω), ηn+1(ω), ζn+1(ω), ρn+1(ω)) = g(ω, ξn+2(ω)),

g(ω, ηn+1(ω)) = Tn(ω, ηn(ω), ζn(ω), ρn(ω), ξn(ω))

≥ Tn+1(ω, ηn+1(ω), ζn+1(ω), ρn+1(ω), ξn+1(ω)) = g(ω, ηn+2(ω)),

g(ω, ζn+1(ω)) = Tn(ω, ζn(ω), ρn(ω), ξn(ω), ηn(ω))

≤ Tn+1(ω, ζn+1(ω), ρn+1(ω), ξn+1(ω), ηn+1(ω)) = g(ω, ζn+2(ω))

and
g(ω, ρn+1(ω)) = Tn(ω, ρn(ω), ξn(ω), ηn(ω), ζn(ω))

≥ Tn+1(ω, ρn+1(ω), ξn+1(ω), ηn+1(ω), ζn+1(ω)) = g(ω, ρn+2(ω)).

Thus by mathematical induction, we conclude that (2.5) holds for all n ≥ 0. Therefore, we have

g(ω, ξ0(ω)) ≤ g(ω, ξ1(ω)) ≤ g(ω, ξ2(ω)) ≤ ... ≤ g(ω, ξn+1(ω)) ≤ ...

g(ω, η0(ω)) ≥ g(ω, ξ1(ω)) ≥ g(ω, η2(ω)) ≥ ... ≥ g(ω, ηn+1(ω)) ≥ ...
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g(ω, ζ0(ω)) ≤ g(ω, ζ1(ω)) ≤ g(ω, ζ2(ω)) ≤ ... ≤ g(ω, ζn+1(ω)) ≤ ...

g(ω, ρ0(ω)) ≥ g(ω, ρ1(ω)) ≥ g(ω, ρ2(ω)) ≥ ... ≤ g(ω, ρn+1(ω)) ≥ · · · .

We denote

δn = d(g(ω, ξn(ω)), g(ω, ξn+1(ω))) + d(g(ω, ηn(ω)), g(ω, ηn+1(ω)))

+ d(g(ω, ζn(ω)), g(ω, ζn+1(ω))) + d(g(ω, ρn(ω)), g(ω, ρn+1(ω))).

Then by (2.2), we get

d(g(ω, ξ1(ω)), g(ω, ξ2(ω))) = d(T0(ω, ξ0(ω), η0(ω), ζ0(ω), ρ0(ω)), T1(ω, ξ1(ω), η1(ω), ζ1(ω), ρ1(ω)))

≤ β0,1[d(g(ω, ξ0(ω)), T0(ω, ξ0, η0(ω), ζ0(ω), ρ0(ω)))

+ d(g(ω, ξ1(ω)), T1(ω, ξ1(ω), η1(ω), ζ1(ω), ρ1(ω)))]

+ γ0,1d(g(ω, ξ0(ω)), g(ω, ξ1(ω)))

= β0,1[d(g(ω, ξ0(ω)), g(ω, ξ1(ω))) + d(g(ω, ξ1(ω)), g(ω, ξ2(ω)))]

+ γ0,1d(g(ω, ξ0(ω)), g(ω, ξ1(ω))).

It follows that

(1− β0,1)d(g(ω, ξ1(ω)), g(ω, ξ2(ω))) ≤ (β0,1 + γ0,1)d(g(ω, ξ0(ω)), g(ω, ξ1(ω))),

or, equivalently,

d(g(ω, ξ1(ω)), g(ω, ξ2(ω))) ≤ (
β0,1 + γ0,1
1− β0,1

)d(g(ω, ξ0(ω)), g(ω, ξ1(ω))).

Also, one obtains

d(g(ω, ξ2(ω)), g(ω, ξ3(ω))) = d(T1(ω, ξ1(ω), η1(ω), ζ1(ω), ρ1(ω)), T2(ω, ξ2(ω), η2(ω), ζ2(ω), ρ2(ω)))

≤ (
β1,2 + γ1,2
1− β1,2

)d(g(ω, ξ1(ω)), g(ω, ξ2(ω)))

≤ (
β0,1 + γ0,1
1− β0,1

)(
β1,2 + γ1,2
1− β1,2

)d(g(ω, ξ0(ω)), g(ω, ξ1(ω))).

Repeating the above procedure, we have

d(g(ω, ξn(ω)), g(ω, ξn+1(ω))) ≤
n−1∏
i=0

(
βi,i+1 + γi,i+1

1− βi,i+1
)d(g(ω, ξ0(ω)), g(ω, ξ1(ω))). (2.6)

Using similar arguments as above, one can also show that

d(g(ω, ηn(ω)), g(ω, ηn+1(ω))) ≤
n−1∏
i=0

(
βi,i+1 + γi,i+1

1− βi,i+1
)d(g(ω, η0(ω)), g(ω, η1(ω))), (2.7)

d(g(ω, ζn(ω)), g(ω, ζn+1(ω))) ≤
n−1∏
i=0

(
βi,i+1 + γi,i+1

1− βi,i+1
)d(g(ω, ζ0(ω)), g(ω, ζ1(ω))) (2.8)

and

d(g(ω, ρn(ω)), g(ω, ρn+1(ω))) ≤
n−1∏
i=0

(
βi,i+1 + γi,i+1

1− βi,i+1
)d(g(ω, ρ0(ω)), g(ω, ρ1(ω))). (2.9)
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From (2.6)-(2.9), we have

δn =d(g(ω, ξn(ω)), g(ω, ξn+1(ω))) + d(g(ω, ηn(ω)), g(ω, ηn+1(ω)))

+ d(g(ω, ζn(ω)), g(ω, ζn+1(ω))) + d(g(ω, ρn(ω)), g(ω, ρn+1(ω)))

≤
n−1∏
i=0

(
βi,i+1 + γi,i+1

1− βi,i+1
)[d(g(ω, ξ0(ω)), g(ω, ξ1(ω))) + d(g(ω, η0(ω)), g(ω, η1(ω)))

+ d(g(ω, ζ0(ω)), g(ω, ζ1(ω))) + d(g(ω, ρ0(ω)), g(ω, ρ1(ω)))]

=

n−1∏
i=0

(
βi,i+1 + γi,i+1

1− βi,i+1
)δ0.

(2.10)

Moreover, for p > 0 and by repeated use of the triangle inequality, one obtains

d(g(ω, ξn(ω)), g(ω, ξn+p(ω))) + d(g(ω, ηn(ω)), g(ω, ηn+p(ω))) + d(g(ω, ζn(ω)), g(ω, ζn+p(ω)))

+ d(g(ω, ρn(ω)), g(ω, ρn+p(ω)))

≤ d(g(ω, ξn(ω)), g(ω, ξn+1(ω))) + d(g(ω, ηn(ω)), g(ω, ηn+1(ω))) + d(g(ω, ζn(ω)), g(ω, ζn+1(ω)))

+ d(g(ω, ρn(ω)), g(ω, ρn+1(ω)))

+ d(g(ω, ξn+1(ω)), g(ω, ξn+2(ω))) + d(g(ω, ηn+1(ω)), g(ω, ηn+2(ω))) + d(g(ω, ζn+1(ω)), g(ω, ζn+2(ω)))

+ d(g(ω, ρn+1(ω)), g(ω, ρn+2(ω))) + ...

+ d(g(ω, ξn+p−1(ω)), g(ω, ξn+p(ω))) + d(g(ω, ηn+p−1(ω)), g(ω, ηn+p(ω)))

+ d(g(ω, ζn+p−1(ω)), g(ω, ζn+p(ω))) + d(g(ω, ρn+p−1(ω)), g(ω, ρn+p(ω)))

≤
n−1∏
i=0

(
βi,i+1 + γi,i+1

1− βi,i+1
)δ0 +

n∏
i=0

(
βi,i+1 + γi,i+1

1− βi,i+1
)δ0 + ...+

n+p−2∏
i=0

(
βi,i+1 + γi,i+1

1− βi,i+1
)δ0

=

p−1∑
k=0

n+k−1∏
i=0

(
βi,i+1 + γi,i+1

1− βi,i+1
)δ0 =

n+p−1∑
k=n

k−1∏
i=0

(
βi,i+1 + γi,i+1

1− βi,i+1
)δ0.

Since
∑+∞

i=1 (
βi,i+1+γi,i+1

1−βi,i+1
) is an α−series and using the fact that the geometric mean of non-negative numbers

is less than or equal to the arithmetic mean, it follows that

d(g(ω, ξn(ω)), g(ω, ξn+p(ω))) + d(g(ω, ηn(ω)), g(ω, ηn+p(ω))) + d(g(ω, ζn(ω)), g(ω, ζn+p(ω)))

+ d(g(ω, ρn(ω)), g(ω, ρn+p(ω)))

≤
n+p−1∑
k=n

[
1

k

k−1∑
i=0

(
βi,i+1 + γi,i+1

1− βi,i+1
)]kδ0

≤ (

n−p+1∑
k=n

αk)δ0 ≤
αn

1− α
δ0.

Now, taking the limit as n→ +∞, one deduces that

lim
n→∞

[(g(ω, ξn(ω)), g(ω, ξn+p(ω))) + d(g(ω, ηn(ω)), g(ω, ηn+p(ω)))

+ d(g(ω, ζn(ω)), g(ω, ζn+p(ω))) + d(g(ω, ρn(ω)), g(ω, ρn+p(ω)))] = 0.

Which further implies that

lim
n→∞

d(g(ω, ξn(ω)), g(ω, ξn+p(ω))) = lim
n→∞

d(g(ω, ηn(ω)), g(ω, ηn+p(ω)))

= lim
n→∞

d(g(ω, ζn(ω)), g(ω, ζn+p(ω))) = lim
n→∞

d(g(ω, ρn(ω)), g(ω, ρn+p(ω)))] = 0.
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Thus {g(ω, ξn(ω))}, {g(ω, ηn(ω))}, {g(ω, ζn(ω))} and {g(ω, ρn(ω))} are Cauchy sequences in X. Since
g(Ω×X) is complete, then there exists (ξ(ω), η(ω), ζ(ω), ρ(ω)) ∈ Θ, such that

lim
n→+∞

g(ω, ξn+1(ω) = lim
n→∞

Tn(ω, ξn(ω), ηn(ω), ζn(ω), ρn(ω)) = ξ(ω),

lim
n→+∞

g(ω, ηn+1(ω) = lim
n→∞

Tn(ω, ηn(ω), ζn(ω), ρn(ω), ξn(ω)) = η(ω),

lim
n→+∞

g(ω, ζn+1(ω) = lim
n→∞

Tn(ω, ζn(ω), ρn(ω), ξn(ω), ηn(ω)) = ζ(ω)

and
lim

n→+∞
g(ω, ρn+1(ω) = lim

n→∞
Tn(ω, ρn(ω), ξn(ω), ηn(ω), ζn(ω)) = ρ(ω).

Now, as {Ti}i∈N and g are weakly reciprocally continuous, we have

lim
n→+∞

g(ω, Tn(ω, ξn(ω), ηn(ω), ζn(ω), ρn(ω))) = g(ω, ξ(ω)),

lim
n→+∞

g(ω, Tn(ω, ηn(ω), ζn(ω), ρn(ω), ξn(ω))) = g(ω, η(ω)),

lim
n→+∞

g(ω, Tn(ω, ζn(ω), ρn(ω), ξn(ω), ηn(ω))) = g(ω, ζ(ω))

and
lim

n→+∞
g(ω, Tn(ω, ρn(ω), ξn(ω), ηn(ω), ζn(ω))) = g(ω, ρ(ω)).

On the other hand, the compatibility of {Ti}i∈N and g yields

lim
n→+∞

d(g(ω, Tn(ω, ξn(ω), ηn(ω), ζn(ω), ρn(ω)), Tn(ω, g(ω, ξn(ω), g(ω, ηn(ω), g(ω, ζn(ω), g(ω, ρn(ω))) = 0,

lim
n→+∞

d(g(ω, Tn(ω, ηn(ω), ζn(ω), ρn(ω), ξn(ω)), Tn(ω, g(ω, ηn(ω), g(ω, ζn(ω), g(ω, ρn(ω), g(ω, ξn(ω))) = 0,

lim
n→+∞

d(g(ω, Tn(ω, ζn(ω), ρn(ω), ξn(ω), ηn(ω)), Tn(ω, g(ω, ζn(ω), g(ω, ρn(ω), g(ω, ξn(ω), g(ω, ηn(ω))) = 0

and

lim
n→+∞

d(g(ω, Tn(ω, ρn(ω), ξn(ω), ηn(ω), ζn(ω)), Tn(ω, g(ω, ρn(ω), g(ω, ξn(ω), g(ω, ηn(ω), g(ω, ζn(ω))) = 0.

Then we have

lim
n→+∞

Tn(ω, g(ω, ξn(ω), g(ω, ηn(ω), g(ω, ζn(ω), g(ω, ρn(ω)) = g(ω, ξ(ω)),

lim
n→+∞

Tn(ω, g(ω, ηn(ω), g(ω, ζn(ω), g(ω, ρn(ω), g(ω, ξn(ω)) = g(ω, η(ω)),

lim
n→+∞

Tn(ω, g(ω, ζn(ω), g(ω, ρn(ω), g(ω, ξn(ω), g(ω, ηn(ω)) = g(ω, ζ(ω))

and
lim

n→+∞
Tn(ω, g(ω, ρn(ω), g(ω, ξn(ω), g(ω, ηn(ω), g(ω, ζn(ω)) = g(ω, ρ(ω)).

Since {g(ω, ξn(ω))} and {g(ω, ζn(ω)} are non-decreasing and {g(ω, ηn(ω))} and {g(ω, ρn(ω))}
is non-increasing, using the regularity of X, we have g(ω, ξn(ω)) ≤ ξ(ω), η(ω) ≥ g(ω, ηn(ω)),
g(ω, ζn(ω)) ≤ ζ(ω) and g(ω, ρn(ω)) ≤ ρ(ω) for all n ≥ 0. Then by (2.2), one obtains

d(Ti(ω, ξ(ω), η(ω), ζ(ω), ρ(ω)),Tn(ω, ξn(ω), ηn(ω), ζn(ω), ρn(ω))

≤βi,n[d(g(ω, ξ(ω)), Ti(ω, ξ(ω), η(ω), ζ(ω), ρ(ω)))

+ d(g(ω, ξn(ω))), Tn(ω, g(ω, ξn(ω)), g(ω, ηn(ω)), g(ω, ζn(ω)), g(ω, ρn(ω))))]

+ γi,nd(g(ω, ξn(ω))), g(ω, ξ(ω))).

Taking the limit as n → +∞, we obtain Ti(ω, ξ(ω), η(ω), ζ(ω), ρ(ω)) = g(ω, ξ(ω)) as βi,n < 1. Similarly,
it can be proved that g(ω, η(ω)) = Ti(η(ω), ζ(ω), ρ(ω), ξ(ω)), g(ω, ζ(ω)) = Ti(ζ(ω), ρ(ω), ξ(ω), η(ω)) and
g(ω, ρ(ω)) = Ti(ρ(ω), ξ(ω), η(ω), ζ(ω)). Thus, (ξ(ω), η(ω), ζ(ω), ρ(ω)) is a quadruple coincidence point of
{Ti}i∈N and g.
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If g is the identity mapping, as a consequence of Theorem 2.3, we state the following corollary.

Corollary 2.4. Let (X, d,≤) be a complete separable partially ordered metric space. (Ω,Σ) be a measurable
space. Let {Ti}i∈N be a sequence of random mappings from Ω×X4 into X such that {Ti}i∈N satisfies, for
x, y, z, t, u, v, r, s ∈ X, with x ≤ u, v ≥ y, z ≤ r and t ≥ s the following conditions:

(i)
Ti(ω, x, y, z, t) ≤ Ti+1(ω, u, v, r, s), Ti(ω, y, z, t, x) ≥ Ti+1(ω, v, r, s, u),

Ti(ω, z, t, x, y) ≤ Ti+1(ω, r, s, u, v) and Ti(ω, t, x, y, z) ≥ Ti+1(ω, s, u, v, r).

(ii)

d(Ti(ω, x, y, z, t), Tj(ω, u, v, r, s)) ≤ βi,j [d(ω, x), Ti(ω, x, y, z, t) + d(ω, u), Tj(ω, u, v, r, s)]

+ γi,jd((ω, u), (ω, x)),
(2.11)

and 0 ≤ βi,j , γi,j < 1 for i, j ∈ N.
Suppose also that there exists measurable mappings ξ0, η0, ζ0, ρ0 : Ω→ X such that

ξ0(ω) ≤ T0(ω, ξ0(ω), η0(ω), ζ0(ω), ρ0(ω)),

η0(ω) ≥ T0(ω, η0(ω), ζ0(ω), ρ0(ω), ξ0(ω)),

ζ0(ω) ≤ T0(ω, ζ0(ω), ρ0(ω), ξ0(ω), η0(ω))

and
ρ0(ω) ≥ T0(ω, ρ0(ω), ξ0(ω), η0(ω), ζ0(ω))

for all ω ∈ Ω. If
∑+∞

i=1 (
βi,i+1+γi,i+1

1−βi,i+1
) is an α−series and g(Ω × X) is regular, then {Ti}i∈N and g have a

random quadruple fixed point.

Now, we give useful conditions for the existence and uniqueness of a quadrupled common fixed point.

Theorem 2.5. In addition to the hypotheses of Theorem 2.3, suppose that for all measurable mappings
x, y, z, t : Ω→ X and u, v, r, s : Ω→ X, there exist measurable mappings a, b, c, d : Ω→ X such that

(Ti(ω, a(ω), b(ω), c(ω), d(ω)), Ti(ω, b(ω), c(ω), d(ω), a(ω)),

Ti(ω, c(ω), d(ω), a(ω), b(ω)), Ti(ω, d(ω), a(ω), b(ω), c(ω)))
(2.12)

is comparable to

(Ti(ω, x(ω), y(ω), z(ω), t(ω)), Ti(ω, y(ω), z(ω), t(ω), x(ω)),

Ti(ω, z(ω), t(ω), x(ω), y(ω)), Ti(ω, t(ω), x(ω), y(ω), z(ω))),

(Ti(ω, u(ω), v(ω), r(ω), s(ω)), Ti(ω, v(ω), r(ω), s(ω), u(ω)),

Ti(ω, r(ω), s(ω), u(ω), v(ω)), Ti(ω, s(ω), u(ω), v(ω), r(ω))).

(2.13)

Then {Ti}i∈N and g have a unique random quadruple common fixed point.

Proof. From Theorem 2.3, the set of quadruple random coincidence points is non-empty. Now, we show
that if (x(ω), y(ω), z(ω), t(ω)) and (u(ω), v(ω), r(ω), s(ω)) are quadruple random coincidence points, that is,
if

g(ω, x(ω)) = Ti(ω, x(ω), y(ω), z(ω), t(ω)),

g(ω, y(ω)) = Ti(ω, y(ω), z(ω), t(ω), x(ω)),

g(ω, z(ω)) = Ti(ω, z(ω), t(ω), x(ω), y(ω)),

g(ω, t(ω)) = Ti(ω, t(ω), x(ω), y(ω), z(ω)),

g(ω, u(ω)) = Ti(ω, u(ω), v(ω), r(ω), s(ω)),

g(ω, v(ω)) = Ti(ω, v(ω), r(ω), s(ω), u(ω)),

g(ω, r(ω)) = Ti(ω, r(ω), s(ω), u(ω), v(ω)),

g(ω, s(ω)) = Ti(ω, s(ω), r(ω), u(ω), v(ω)).
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We prove that (g(ω, x(ω)), g(ω, y(ω), g(ω, z(ω), g(ω, t(ω)) and (g(ω, u(ω), g(ω, v(ω), g(ω, r(ω), g(ω, s(ω)) are
equal. By assumption, there exists (Ti(ω, a(ω), b(ω), c(ω), d(ω))) is comparable to (2.12) and (2.13). De-
fine sequences {g(ω, an(ω))}, {g(ω, bn(ω))}, {g(ω, cn(ω))} and {g(ω, dn(ω))} such that a(ω) = a0(ω), b(ω) =
b0(ω), c(ω) = c0(ω) and d(ω) = d0(ω) for all n, and

g(ω, an(ω)) = Tn−1(ω, an−1(ω), bn−1(ω), cn−1(ω), dn−1(ω)),

g(ω, bn(ω)) = Tn−1(ω, bn−1(ω), cn−1(ω), dn−1(ω), an−1(ω)),

g(ω, cn(ω)) = Tn−1(ω, cn−1(ω), dn−1(ω), an−1(ω), bn−1(ω)),

g(ω, dn(ω)) = Tn−1(ω, dn−1(ω), an−1(ω), bn−1(ω), cn−1(ω)).

Since (2.12) is comparable with (2.13), we can assume that (g(ω, x(ω)), g(ω, y(ω)), g(ω, z(ω)), g(ω, t(ω))) ≥
(g(ω, a(ω)), g(ω, b(ω)), g(ω, c(ω)), g(ω, d(ω))) = (g(ω, a0(ω)), g(ω, b0(ω)), g(ω, c0(ω)), g(ω, d0(ω))), then we
get

d(g(ω, x(ω), g(ω, an+1))) = d(Ti(ω, x(ω), y(ω), z(ω), t(ω)), Tn(ω, an(ω), bn(ω), cn(ω), dn(ω)))

≤ βi,n[d(g(ω, x(ω)), Ti(ω, x(ω), y(ω), z(ω), t(ω)))

+ d(g(ω, an(ω)), Tn(ω, an(ω), bn(ω), cn(ω), dn(ω)))]

+ γi,nd(g(ω, x(ω), g(ω, an(ω)))).

Taking the limit as n → ∞, we obtain lim
n→∞

d(g(ω, x(ω), g(ω, an+1))) = 0 as 0 < βi,n, γi,n < 1. Similarly, it

can be proved that

lim
n→∞

d(g(ω, x(ω), g(ω, an+1))) = 0, lim
n→∞

d(g(ω, y(ω), g(ω, bn+1))) = 0,

lim
n→∞

d(g(ω, z(ω), g(ω, cn+1))) = 0, lim
n→∞

d(g(ω, t(ω), g(ω, dn+1))) = 0,

lim
n→∞

d(g(ω, u(ω), g(ω, an+1))) = 0, lim
n→∞

d(g(ω, v(ω), g(ω, bn+1))) = 0,

lim
n→∞

d(g(ω, r(ω), g(ω, cn+1))) = 0, lim
n→∞

d(g(ω, s(ω), g(ω, dn+1))) = 0.

By compatibility of Ti and g, we get

lim
n→∞

g(ω, g(ω, an+1(ω))) = lim
n→∞

g(ω, Tn(ω, an(ω), bn(ω), cn(ω), dn(ω)))

= lim
n→∞

Tn(ω, g(ω, an(ω), g(ω, bn(ω), g(ω, cn(ω), g(ω, dn(ω))),

lim
n→∞

g(ω, g(ω, bn+1(ω))) = lim
n→∞

g(ω, Tn(ω, bn(ω), cn(ω), dn(ω), an(ω)))

= lim
n→∞

Tn(ω, g(ω, bn(ω), g(ω, cn(ω), g(ω, dn(ω), g(ω, an(ω))),

lim
n→∞

g(ω, g(ω, cn+1(ω))) = lim
n→∞

g(ω, Tn(ω, cn(ω), dn(ω), an(ω), bn(ω)))

= lim
n→∞

Tn(ω, g(ω, cn(ω), g(ω, dn(ω), g(ω, an(ω), g(ω, bn(ω))),

lim
n→∞

g(ω, g(ω, dn+1(ω))) = lim
n→∞

g(ω, Tn(ω, dn(ω), an(ω), bn(ω), cn(ω)))

= lim
n→∞

Tn(ω, g(ω, dn(ω), g(ω, an(ω), g(ω, bn(ω), g(ω, cn(ω))).

Set
lim
n→∞

g(ω, an(ω)) = ξ(ω), lim
n→∞

g(ω, bn(ω)) = η(ω),
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lim
n→∞

g(ω, cn(ω)) = ζ(ω), lim
n→∞

g(ω, dn(ω)) = ρ(ω).

Then, we have
g(ω, ξ(ω)) = Ti(ω, ξ(ω), η(ω), ζ(ω), ρ(ω)),

g(ω, η(ω)) = Ti(ω, η(ω), ζ(ω), ρ(ω), ξ(ω)),

g(ω, ζ(ω)) = Ti(ω, ζ(ω), ρ(ω), ξ(ω), η(ω)),

g(ω, ρ(ω)) = Ti(ω, ρ(ω), ξ(ω), η(ω), ζ(ω)).

Thus, (ξ(ω), η(ω), ζ(ω), ρ(ω)) is a quadruple common random coincidence point of Ti and g. Putting

(u(ω), v(ω), r(ω), s(ω)) = (ξ(ω), η(ω), ζ(ω), ρ(ω)),

we have
g(ω, u(ω)) = g(ω, ξ(ω)), g(ω, v(ω)) = g(ω, η(ω)),

g(ω, r(ω)) = g(ω, ζ(ω)), g(ω, s(ω)) = g(ω, ρ(ω)).

From the above results, we have

g(ω, ξ(ω)) = Ti(ω, ξ(ω), η(ω), ζ(ω), ρ(ω)) = ξ(ω),

g(ω, η(ω)) = Ti(ω, η(ω), ζ(ω), ρ(ω), ξ(ω)) = η(ω),

g(ω, ζ(ω)) = Ti(ω, ζ(ω), ρ(ω), ξ(ω), η(ω)) = ζ(ω),

g(ω, ρ(ω)) = Ti(ω, ρ(ω), ξ(ω), η(ω), ζ(ω)) = ρ(ω).

Thus, (ξ(ω), η(ω), ζ(ω), ρ(ω)) is a unique quadruple random fixed point.

3. An application

In this section, we give an example to demonstrate Theorem 2.3.

Example 3.1. Let X = [0, 1], define d(x, y) =| x − y | , Ω = [0, 1] and let Σ be the sigma algebra
of Lebesgue’s measurable subset of [0, 1]. Define g : Ω × X → X,Ti : Ω × X4 → X and defines as

Ti(ω, x, y, z, t) = (x+y+z+t)ω
4i , g(ω, x) = ωx for all x, y, z, t ∈ X and ω ∈ Ω.

We check the sequences {xn(ω)} = ω
n , {yn(ω)} = ω

n+1 , {zn(ω)} = ω
n+2 and {tn(ω)} = ω

n+3 , one can easily
observe that {Ti}i∈N and g are random compatible, random weakly reciprocally continuous, g is monotonic
non-decreasing, continuous, as well as satisfying condition (2.2).

By taking 0 < βi,j < 1 and 0 ≤ γi,j < 1, we will check the inequality (2.2) is satisfied, thus all the
hypotheses of Theorem 2.3 are satisfied and (0,0,0,0), (1,1,1,1) are the quadruple random coincident points
of g and Ti. Moreover, using the same Ti and g in Theorem 2.5, (0,0,0,0) is the unique quadruple random
fixed point of g and Ti.
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[12] V. Lakshmikantham, L.Ćirić, Coupled fixed point theorems for nonlinear contractions in partially ordered metric

spaces, Nonlinear Anal., 70 (2009), 4341–4349. 1
[13] G. Z. Li, H. Duan, On Random Fixed Point Theorems of Random Monotone Operators, Appl. Math. Lett., 18

(2005), 1019–1026. 1
[14] S. Li, X. Xiao, L. Li, J. Lv, Random Approximation with Weak Contraction Random Operators and a Random

Fixed Point Theorem for Nonexpansive Random Self-mappings, J. Inequal. Appl., 2012 (2012), 7 pages. 1
[15] T. C. Lin, Random approximations and random fixed point theorems for non-self maps, Proc. Amer. Math. Soc.,

103 (1988), 1129–1135. 1
[16] E. J. McShane, R. B. J. Warified, On Filippov’s implicit functions lemma, Proc. Amer. Math. Soc., 18 (1967),

41–47. 2
[17] Z. Mustafa, H. Aydi, E. Karapinar, Mixed g-monotone property and quadruple fied point theorems in partially

ordered metric spaces, Fixed Point Theory Appl., 2012 (2012), 19 pages. 1
[18] H. K. Nashine, B. Samet, Fixed Point Results for Mappings Satisfying (ψ,ϕ) -weakly Contractive Condition in

Partially Ordered Metric Spaces, Nonlinear Anal., 74 (2010), 2201–2209. 1, 1.2
[19] R. T. Rockafellar, Measurable dependence of convex sets and functions in parameters, J. Math. Anal. Appl., 28

(1969), 4–25. 2
[20] M. Saha, N. Ganguly, Random Fixed Point Theorem on a Ćirić-type Contractive Mapping and Its Consequence,
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