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Abstract

We study the existence of mild solutions to differential inclusions with nonlocal conditions. The first
result is established when evolution system is equicontinuous and multifunction is upper semi-continuous.
Then another result is obtained when evolution system is not equicontinuous and not compact. The measure
of noncompactness and the fixed point theorem for multivalued mappings play key roles in the proof. An
example is provided to illustrate our results. c©2016 All rights reserved.
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1. Introduction

In this paper, we consider the nonlocal initial value problem in a Banach space X{
u′(t) ∈ A(t)u(t) + F (t, u(t)), t ∈ [0, b],
u(0) = g(u),

(1.1)

where F is an upper Carathéodory multifunction, g : C([0, b];X) → X is a given X−valued function. The
family of linear operators {A(t)}t∈[0,b] generates a strong continuous evolution system {U(t, s) : t, s ∈ 4}
with 4 = {(t, s) ∈ [0, b]× [0, b] : 0 ≤ s ≤ t ≤ b}.
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The study of abstract nonlocal initial value problems was initiated by Byszewski and the importance of
the problem consists in the fact that it is more general and has better effect than the classical initial conditions
u(0) = u0 alone. Then it has been studied extensively under various conditions, see[3, 4, 7, 8, 13, 14, 21].
Byszewski and Lakshmikantham [9] obtained the existence and uniqueness of mild solutions in the case that
Lipschitz-type conditions are satisfied. Ntouyas and Tsamatos[18] studied the case that operator semigroup
is compact and F is single-valued. Fan et al.[11] studied the nonlocal impulsive differential equations when
A(t) is governed by a compact semigroup, which is extended to impulsive differential inclusions scenario by
Ji and Li[15] under weaker conditions. In [2, 10, 12], the measure of noncompactness is used to discuss some
classes of differential and integral equations. Among the previous results, the multifunction F is usually
supposed to be Lipschitz continuous or compact.

The purpose of this paper is to study the nonlocal differential inclusions (1.1) when evolution sys-
tem U(t, s) is not compact and F is not compact. Sometimes it is difficult to get the compactness of
U(t, s). For example, let X = L2(−∞,+∞). The ordinary differential operator A(t) ≡ A = d/dx with
D(A) = H1(−∞,+∞), generates a semigroup T (t) defined by T (t)u(s) = u(t + s), for every u ∈ X. The
C0−semigroup T (t) is not compact on X. Compared with the results in[10, 12], we need not define a two-
component measure of noncompactness and the Banach space X is not separable. This is due to the careful
analysis to the combination of the properties of semicompact sets and Hausdorff measure of noncompactness.

This paper is organized as follows. In Section 2, we recall some concepts and facts about the multifunc-
tions and evolution system. In Section 3 and Section 4, we obtain the existence of mild solutions to nonlocal
problem (1.1) when U(t, s) is equicontinuous and strongly continuous, respectively. At last, an example is
presented to illustrate the application of our main result.

2. Preliminaries

In this section, we introduce some definitions and preliminary facts for multivalued analysis which will
be used in this paper.

Let X and Y be two Hausdorff topological spaces. We use the notation

P (X) = {A ⊆ X : nonempty},

Pcl(X) = {A ⊆ X : nonempty, closed},

Pb(X) = {A ⊆ X : nonempty, bounded},

Pc(X) = {A ⊆ X : nonempty, convex},

Pcp(X) = {A ⊆ X : nonempty, compact},

Pcp,c(X) = Pcp(X) ∩ Pc(X).

A multivalued map F : X → P (Y ) is said to be convex(closed) valued if F (x) is convex(closed) in Y for
each x ∈ X. F is said to be compact if F (B) is relatively compact for every B ∈ Pb(X).

F : X → P (Y ) is said to be upper semi-continuous(u.s.c.) on X if for each x0 ∈ X the set F (x0) is a
nonempty, closed subset of Y , and if for each open subset K of Y containing F (x0), there exists an open
neighborhood Γ of x0 such that F (Γ) ⊆ K.

Assume that D ⊂ X and Fx is closed for all x ∈ D, then the following conclusions hold:

(i) if F is u.s.c. and D is closed, then F has a closed graph(i.e., xn → x, yn → y, yn ∈ F (xn) imply
y ∈ F (x)).

(ii) if F (D) is compact and D is closed, then F is u.s.c. if and only if F has a closed graph.

Through this paper, let(X, ‖·‖) be a real Banach space. We denote by C([0, b];X) the space of X-valued
continuous functions on [0, b] with the norm ‖x‖ = sup{‖x(t)‖, t ∈ [0, b]} and by L1([0, b];X) the space of

X-valued Bochner integrable functions on [0, b] with the norm ‖f‖L1 =
∫ b
0 ‖f(t)‖ dt. We define
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SF (u) := {f ∈ L1([0, b];X) : f(t) ∈ F (t, u(t)) a.e. on [0, b]}.

F is said to be bounded on bounded sets if F (B) =
⋃

x∈B F (x) is bounded in X for every B ∈ Pb(X), i.e.,
supx∈B{sup{‖y‖ : y ∈ F (x)}} <∞. We say that F has a fixed point if there is x ∈ X such that x ∈ F (x).

We also recall some notions of evolution system.
A two parameter family {U(t, s)}(t,s)∈4, U(t, s) : X → X of bounded linear operators, is called an

evolution system if the following conditions are satisfied:

(1) U(s, s) = I, U(t, r)U(r, s) = U(t, s), for 0 ≤ s ≤ r ≤ t ≤ b;

(2) (t, s)→ U(t, s) is strongly continuous on 4.

An evolution system U(t, s) is said to be compact if U(t, s) is compact for any t− s > 0. U(t, s) is said
to be equicontinuous if {U(t, s)x : x ∈ B} is equicontinuous at 0 ≤ s < t ≤ b for any bounded subset B ⊂ X
(cf. [6]). Obviously if U(t, s) is a compact evolution system, it must be equicontinuous. And the inverse
relationship usually is not correct.

Since the evolution system U(t, s) is strongly continuous on the compact set 4 = [0, b]× [0, b], then there
exists M > 0 such that ‖U(t, s)‖ ≤M for any (t, s) ∈ 4. More details about evolution system can be found
in Pazy[19].

Definition 2.1. A function u ∈ C([0, b];X) is a mild solution of nonlocal problem (1.1) if:

u(t) = U(t, 0)g(u) +

∫ t

0
U(t, s)f(s) ds

for all t ∈ [0, b], where f ∈ SF (u).

Now we introduce the Hausdorff measure of noncompactness (in short MNC) β(·) defined by

β(B) = inf{ε > 0; B has a finite ε−net in X}

for each bounded subset B in Banach space X. We recall the following properties of the Hausdorff measure
of noncompactness β.

Lemma 2.2 ([5]). Let X be a real Banach space and B,C ⊆ X be bounded. Then the following properties
are satisfied:

(1) B is relatively compact if and only if β(B) = 0;

(2) β(B) = β(B) = β(conv B), where B and conv B mean the closure and convex hull of B, respectively;

(3) β(B) ≤ β(C) when B ⊆ C;

(4) β(B + C) ≤ β(B) + β(C), where B + C = {x+ y : x ∈ B, y ∈ C};
(5) β(B ∪ C) ≤ max{β(B), β(C)};
(6) β(λB) ≤ |λ|β(B) for any λ ∈ R;

(7) If the map Q : D(Q) ⊆ X → Z is Lipschitz continuous with constant k, then βZ(QB) ≤ kβ(B) for any
bounded subset B ⊆ D(Q), where Z is a Banach space.

(8) If {Wn}∞n=1 is a decreasing sequence of bounded closed nonempty subsets of X and limn→∞ β(Wn) = 0,
then

⋂∞
n=1Wn is nonempty and compact in X.

We will also use the sequential MNC β0 generated by β, that is, for any bounded subset B ⊂ X, we
define

β0(B) = sup
{
β({xn : n ≥ 1}) : {xn}∞n=1 is a sequence in B

}
.

From [5] we know that
β0(B) ≤ β(B) ≤ 2β0(B). (2.1)

If X is a separable space, we have β0(B) = β(B).
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Lemma 2.3 ([5]).

(1) If W ⊂ C([0, b];X) is bounded, then β(W (t)) ≤ β(W ) for all t ∈ [0, b], where W (t) = {u(t);u ∈
W} ⊂ X. Furthermore if W is equicontinuous on [0, b], then β(W (t)) is continuous on [0, b] and
β(W ) = sup{β(W (t)), t ∈ [0, b]}.

(2) If W ⊂ C([0, b];X) is bounded and equicontinuous, then

β
(∫ t

0
W (s) ds

)
≤
∫ t

0
β(W (s)) ds

for all t ∈ [0, b], where
∫ t
0 W (s) ds = {

∫ t
0 x(s) ds : x ∈W}.

Lemma 2.4 ([17], Theorem 4.2.2). Let {fn}+∞n=1 be a sequence of functions in L1([0, b];X). Assume that
there exist µ, η ∈ L1([0, b];R+) satisfying

sup
n≥1
‖fn(t)‖ ≤ µ(t) and β({fn(t)}+∞n=1) ≤ η(t) a.e. t ∈ [0, b].

Then for all t ∈ [0, b], we have

β
({ ∫ t

0
U(t, s)fn(s) ds : n ≥ 1

})
≤ 2M

∫ t

0
η(s) ds.

Definition 2.5. A countable set {fn}+∞n=1 ⊂ L1([0, b];X) is said to be semicompact if

• the sequence {fn(t)}+∞n=1 is relatively compact in X for a.a. t ∈ [0, b];

• it is integrably bounded: there is a function µ ∈ L1([0, b];R+) satisfying sup
n≥1
‖fn(t)‖ ≤ µ(t) for a.e.

t ∈ [0, b].

The following lemma can be found in Theorem 2 of [10] and Theorem 5.1.1 of [17].

Lemma 2.6. Let (Kf)(t) =
∫ t
0 U(t, s)f(s) ds. If {fn}+∞n=1 ⊂ L1([0, b];X) is semicompact, then the set

{Kfn}+∞n=1 is relatively compact in C([0, b];X) and moreover, if fn ⇀ f0, then for all t ∈ [0, b], (Kfn)(t)→
(Kf)(t) as n→ +∞.

Firstly we give the assumption on the function F .
(F1) F is an upper Carathéodory multifunction, i.e., for every x ∈ X the multifunction F (·, x) : [0, b]→

Pcp, c(X) admits a strongly measurable selector; for a.e. t ∈ [0, b] the multifunction F (t, ·) : X → Pcp,c(X)
is u.s.c.. And for each u ∈ C([0, b];X), the set SF (u) is nonempty.

Lemma 2.7 ([20]). Let X be a Banach space and F a multifunction satisfying assumption (F1). Let
Γ : L1([0, b];X)→ C([0, b];X) be a linear continuous mapping. Then the operator

Γ ◦ SF : C([0, b];X)→ Pcl,c(C([0, b];X)), x→ (Γ ◦ SF )(x) := Γ(SF (x))

is a closed graph operator in C([0, b];X)× C([0, b], X).

Lemma 2.8 ([1]). Let D be a nonempty, closed and convex subset of a completely Hausdorff locally convex
linear topological space and let G : D → P (D) be an upper semi-continuous, compact map with G(x) a
nonempty, closed, convex subset of D. Then G has a fixed point in D.

3. U(t, s) is equicontinuous

In this section, we give the existence result for nonlocal problem (1.1) when the nonlocal item g is
compact, i.e., g maps a bounded set into a relatively compact set. We list the following hypotheses:
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(A1) {A(t)}t∈[0,b] is a family of linear operators. A(t) : D(A) ⊂ X → X generates an equicontinuous
evolution system {U(t, s) : (t, s) ∈ 4}, D(A) not depending on t and dense subset of X (see[19]).

(g) g : C([0, b];X)→ X is continuous and compact.

(F2) there exists a constant L > 0 such that for any bounded set D ⊂ X,

β(F (t,D)) ≤ Lβ(D)

for a.e. t ∈ [0, b].

(E) There exists a constant r > 0 such that

M
[

sup
u∈W0

‖g(u)‖+ b sup{‖f(t)‖ : t ∈ [0, b], f ∈ SF (u), u ∈W0}
]
≤ r,

where W0 := {u ∈ C([0, b];X) : ‖u(t)‖ ≤ r for t ∈ [0, b]}.

Lemma 3.1. If the hypotheses (A1), (F1) (E) are satisfied, then the functions in set{∫ t

0
U(t, s)f(s) ds : f ∈ SF (u), u ∈W0

}
are equicontinuous for t ∈ [0, b].

Proof. For 0 ≤ t < t+ h ≤ b, we have that∥∥∥∫ t+h

0
U(t+ h, s)f(s) ds−

∫ t

0
U(t, s)f(s) ds

∥∥∥ ≤ ∥∥∥∫ t

0
U(t+ h, s)f(s) ds−

∫ t

0
U(t, s)f(s) ds

∥∥∥
+

∫ t+h

t
‖U(t+ h, s)f(s)‖ ds. (3.1)

If t = 0, then the right hand side of (3.1) can be made small when h is small independent of u ∈ W0. If
t > 0, then we can find a small ε > 0 with t− ε > 0. Then it follows from (3.1) that∥∥∥∫ t

0
U(t+ h, s)f(s) ds−

∫ t

0
U(t, s)f(s) ds

∥∥∥
≤
∥∥∥U(t+ h, t− ε)

∫ t−ε

0
U(t− ε, s)f(s) ds− U(t, t− ε)

∫ t−ε

0
U(t− ε, s)f(s) ds

∥∥∥
+
∥∥∥∫ t

t−ε
U(t+ h, s)f(s) ds

∥∥∥+
∥∥∥∫ t

t−ε
U(t, s)f(s) ds

∥∥∥. (3.2)

As U(t, s) is equicontinuous for t > s, we have∥∥∥[U(t+ h, t− ε)− U(t, t− ε)]
∫ t−ε

0
U(t− ε, s)f(s) ds

∥∥∥→ 0, as h→ 0,

uniformly for u ∈W0.
From hypothesis (E), we know that {f(s) : f ∈ SF (u), u ∈W0} is integrably bounded. Then combining

(3.1), (3.2) and the absolute continuity of integrals, we get that
{∫ t

0 U(t, s)f(s) ds : f ∈ SF (u), u ∈W0

}
is

equicontinuous for t ∈ [0, b].

Theorem 3.2. Assume that the hypotheses (A1), (F1), (F2), (g), (E) are satisfied, then the nonlocal prob-
lem (1.1) has at least one mild solution on [0, b].

Proof. For any u ∈W0, we define the integral multioperator G on C([0, b];X) by

(Gu)(t) =
{
v ∈ C([0, b];X) : v(t) = U(t, 0)g(u) +

∫ t

0
U(t, s)f(s) ds, f ∈ SF (u)

}
,

with (G1u)(t) = U(t, 0)g(u), (G2u)(t) = {v ∈ C([0, b];X) : v(t) =
∫ t
0 U(t, s)f(s) ds, f ∈ SF (u)}.
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From hypothesis (E) we know that W0 is a bounded, closed and convex subset of C([0, b];X) such that
GW0 ⊆W0. Subsequently, we will prove G has a fixed point by using Lemma 2.8.

Firstly, we prove that G has a closed graph on C([0, b];X) with closed convex values. In fact, it is easy
to check that G has convex values. Now we show that G has a closed graph. Let (um)m∈N, (vm)m∈N ⊂
C([0, b];X), um → u, vm ∈ G(um), vm → v, in C([0, b];X). Then there exists a sequence {fm}∞m=1 ⊂
L1([0, b];X), fm ∈ SF (um) for m ≥ 1, such that

vm(t) = U(t, 0)g(um) +

∫ t

0
U(t, s)fm(s) ds

for all t ∈ [0, b]. Consider the linear operator Γ : L1([0, b];X) → C([0, b];X) defined by (Γf)(t) =∫ t
0 U(t, s)f(s) ds. Obviously, Γ is linear and continuous. Then from Lemma 2.7, we get that Γ ◦ SF (·)

is a closed graph operator. Moreover, we have

vm(·)− U(·, 0)g(um) ∈ Γ ◦ SF (um).

Since um → u and vm → v, we obtain that

v(·)− U(·, 0)g(u) ∈ Γ ◦ SF (u),

that is,

v(t)− U(t, 0)g(u) =

∫ t

0
U(t, s)f(s) ds

for some f ∈ SF (u). Therefore, G has a closed graph. Hence G has closed values on C([0, b];X).
Next, we show that G is a compact map, i.e. there exists a nonempty, bounded subset W ⊂ C([0, b];X)

such that GW is compact.
For u ∈W0, 0 ≤ t1 < t2 ≤ b, using the semigroup property we have

‖G1u(t2)−G1u(t1)‖ ≤ ‖U(t2, 0)g(u)− U(t1, 0)g(u)‖
≤ ‖[U(t2, 0)− U(t1, 0)]g(u)‖.

Thus, G1W0 is equicontinuous on [0, b] due to the compactness of g and the strong continuity of U(t, s).
Moreover, from Lemma 3.1, we have got that G2W0 is equicontinuous on [0, b]. Therefore, we have that the
functions in GW0 = (G1 +G2)W0 are equicontinuous on [0, b].

For any x0 ∈W0, define by

W1 = conv{GW0, x0}, Wn = conv{GWn−1, x0},

where conv means the closure of convex hull, n = 2, 3, · · · . We know that Wn+1 ⊂ Wn for n = 1, 2, · · ·
as W1 ⊂W0, and W1, W2, · · · , Wn, · · · are nonempty, closed, bounded, convex and equicontinuous. Thus
{Wn} is a decreasing sequence of subsets of C([0, b];X). We set

W = ∩∞n=1Wn,

then W is a nonempty, closed, bounded, convex and equicontinuous subset of C([0, b];X).
From Lemma 2.2 and Lemma 2.3, noticing the compactness of g, we have

β(W1(t)) ≤ β(U(t, 0)g(W0)) + β({
∫ t

0
U(t, s)f(s) ds, f ∈ SF (u), u ∈W0})

≤
∫ t

0
β({U(t, s)f(s), f ∈ SF (u), u ∈W0}) ds

≤M
∫ t

0
Lβ(W0(s)) ds

≤MLtβ(W0)
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for t ∈ [0, b]. Further,

β(W2(t)) ≤ β(U(t, 0)g(W1)) + β({
∫ t

0
U(t, s)f(s) ds, f ∈ SF (u), u ∈W1})

≤ML

∫ t

0
β(W1(s)) ds

≤ML

∫ t

0
MLsβ(W0) ds

≤M2L2 t
2

2!
β(W0)

for t ∈ [0, b]. We can continue this iterative procedure and get that

β(Wn(t)) ≤ MnLntn

n!
β(W0)

for t ∈ [0, b]. As Wn is equicontinuous on [0, b], by Lemma 2.3(1), we have that

β(Wn) = sup
t∈[0,b]

β(Wn(t)) ≤ MnLnbn

n!
β(W0).

By the fact that MnLnbn

n! → 0 as n → ∞, we have β(Wn) → 0. According to Lemma 2.2 (8), we get that

W = ∩∞n=1Wn is relatively compact in C([0, b];X). Then G(W ) ⊂W is compact and G has a closed graph,
so we have that G is u.s.c. on W .

Finally, due to Lemma 2.8, G has at least one fixed point u ∈ G(u), and u is a mild solution to the
nonlocal problem (1.1). This completes the proof.

4. U(t, s) is strongly continuous

Now we shall look for the existence result of problem (1.1) when evolution system U(t, s) is not compact
and not equicontinuous, which seems to be not a simple proof. Using the property of semicompact sets and
measure of noncompactness, we can solve this difficulty.

In this section, we list the following hypothesis:
(A2) {A(t)}t∈[0,b] is a family of linear operators and A(t) : D(A) ⊂ X → X generates a strongly

continuous evolution system {U(t, s) : (t, s) ∈ 4}, D(A) not depending on t and dense subset of X .

Theorem 4.1. Assume that the hypotheses (A2), (F1), (F2), (g), (E) are satisfied, then the nonlocal prob-
lem (1.1) has at least one mild solution on [0, b].

Proof. We denote by W0 = {u ∈ C([0, b];X) : ‖u(t)‖ ≤ r for all t ∈ [0, b]}. Then W0 ⊂ C([0, b];X) is
bounded and convex. We define the multifunction G on C([0, b];X) by

(Gu)(t) =
{
v ∈ C([0, b];X) : v(t) = U(t, 0)g(u) +

∫ t

0
U(t, s)f(s) ds, f ∈ SF (u)

}
,

with (G1u)(t) = U(t, 0)g(u), (G2u)(t) = {v ∈ C([0, b];X) : v(t) =
∫ t
0 U(t, s)f(s) ds, f ∈ SF (u)}.

According to Theorem 3.2, we have proved that GW0 ⊆ W0 and G has a closed graph on C([0, b];X)
with closed convex values. Now we shall use a different way to get the compactness of set W ⊂W0.

Define W1 = conv{G(W0), u0}, where conv means the closure of the convex hull in C([0, b];X), u0 ∈W0.
From hypothesis (E), we know that ‖u(t)‖ ≤ r for any u ∈ G(W0), t ∈ [0, b]. It follows that W1 ⊂W0.

We define
Wn+1 = conv{G(Wn), u0}, for n = 1, 2, · · · . (4.1)
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It is easy to show that {Wn}∞n=1 is a decreasing sequence of bounded, closed, convex subsets in C([0, b];X).

Then the set W =
∞⋂
n=1

Wn is a nonempty bounded convex closed subset in C([0, b];X). Taking the limit in

both sides of (4.1), we have W = conv{G(W ), u0}.
Now we shall prove that W is relatively compact in C([0, b];X). For n ≥ 1 and t ∈ [0, b], Wn(t) and

G(Wn(t)) are bounded subsets of X. Then from inequality (2.1), for any ε > 0 and each t ∈ [0, b], there is

a sequence {u(n)k }
∞
k=1 ⊂Wn such that

β(Wn+1(t)) = β(conv{(GWn)(t), u0(t)}) = β(GWn(t))

≤ 2β({(Gu(n)k )(t)}∞k=1) + ε

≤ 2β(U(t, 0)g({u(n)k }
∞
k=1)

+ 2β
(
{
∫ t

0
U(t, s)f(s) ds, f ∈ SF (u

(n)
k )}∞k=1

)
+ ε.

As g is a compact operator, we have that

β(U(t, 0)g({u(n)k }
∞
k=1) = 0.

Then by Lemma 2.4 and hypothesis (F2), we get

β(Wn+1(t)) ≤ 2β
(
{
∫ t

0
U(t, s)f(s) ds, f ∈ SF (u

(n)
k )}∞k=1

)
+ ε

≤ 4M

∫ t

0
β
(
{f(s), f ∈ SF (u

(n)
k )}∞k=1

)
ds+ ε

≤ 4M

∫ t

0
β
(
{F
(
s, u

(n)
k (s)

)
}∞k=1

)
ds+ ε

≤ 4ML

∫ t

0
β
(
{u(n)k (s)}∞k=1

)
ds+ ε

≤ 4ML

∫ t

0
β(Wn(s)) ds+ ε

for each t ∈ [0, b]. Since ε > 0 is arbitrary, it follows from the above inequality that

β(Wn+1(t)) ≤ 4ML

∫ t

0
β(Wn(s))ds (4.2)

for each t ∈ [0, b]. As Wn is decreasing for n, we define

η(t) = lim
n→∞

β(Wn(t))

for each t ∈ [0, b]. Taking the limit in both sides of (4.2), we obtain that

η(t) ≤ 4ML

∫ t

0
η(s)ds, for each t ∈ [0, b].

Note that here we cannot apply Gronwall’s inequality to conclude η(t) = 0 for t ∈ [0, b] because η(·) ∈
L1([0, b];R+) is not necessarily continuous on [0, b]. From Lemma 2.3 (2), the continuity of η(·) and β(Wn(·))
needs the equicontinuity of U(t, s), which is absent in our assumptions. We reconsider this integral inequality.

Set ηn(t) = β(Wn(t)), ρn+1(t) = 4ML
∫ t
0 ηn(s)ds. As for each t ∈ [0, b], ηn(t) is a decreasing sequence

and η(t) = lim
n→∞

ηn(t), we get that lim
n→∞

ρn+1(t) exists from Levi Lemma. Let ρ(t) = lim
n→∞

ρn+1(t). Taking

the limit in both sides of ρn+1(t) = 4ML
∫ t
0 ηn(s)ds, we have

ρ(t) ≤ 4ML

∫ t

0
η(s)ds. (4.3)
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From (4.2), we have ηn(t) ≤ 4ML
∫ t
0 ηn−1(s)ds = ρn(t). Taking the limit in both sides, we get that

η(t) ≤ ρ(t). (4.4)

Combining (4.3) and (4.4), we get that

ρ(t) ≤ 4ML

∫ t

0
ρ(s)ds,

where ρ(t) is continuous on [0, b]. Using the Gronwall’s inequality, we conclude that ρ(t) ≡ 0 on [0, b]. As
η(t) ≤ ρ(t), it follows that η(t) ≡ 0 on [0, b]. That is,

η(t) = lim
n→∞

β(Wn(t)) = 0, for each t ∈ [0, b]. (4.5)

As W (t) =
∞⋂
n=1

Wn(t) = lim
n→∞

Wn(t), from (4.5), we have

β(W (t)) = 0 (4.6)

for each t ∈ [0, b].
Subsequently, we shall prove that β(GW ) = 0. To this end, from inequality (2.1), for any ε > 0, there

exists a sequence {yn}∞n=1 ⊂ GW such that

β(GW ) ≤ 2β({yn}∞n=1) + ε. (4.7)

Then there exists {un}∞n=1 ⊂W , such that

yn = G1(un) +G2(un). (4.8)

Firstly, we show that {G1(un)}∞n=1 ⊂ C([0, b];X) is relatively compact. From the strong continuity of
U(t, s) and the compactness of g, we know that, for each t ∈ [0, b], the set {U(t, 0)g(un) : n ≥ 1} is relatively
compact in X. Now, for 0 ≤ t < t+ h ≤ b, using the semigroup property we have

‖U(t+ h, 0)g(un)− U(t, 0)g(un)‖ ≤M‖[U(t+ h, t)− I]g(un)‖.

Thus the functions in {U(·, 0)g(un) : n ≥ 1} are equicontinuous from the compactness of {g(un) : n ≥ 1} and
the strong continuity of U(t, s). According to Ascoli-Arzela Theorem, we get {G1(un) = U(·, 0)g(un) : n ≥ 1}
is relatively compact in C([0, b];X).

Next, we shall prove that {G2(un)}∞n=1 ⊂ C([0, b];X) is relatively compact by using the property of
semicompact sets. For fn ∈ SF (un), from hypothesis (F2), we get that

β({fn(s)}∞n=1) ≤ β(F (s, {un(s)}∞n=1))

≤ lβ({un(s)}∞n=1)

≤ lβ(W (s))

for a.e. s ∈ [0, b]. Then from (4.6) β(W (s)) = 0, we have that

β({fn(s)}∞n=1) = 0

i.e., {fn(s)}∞n=1 is relatively compact in X for a.e. s ∈ [0, b]. Moreover, from hypothesis (E), we have

‖fn(s)‖ ≤
r −M supu∈W0

‖g(u)‖
Mb

for s ∈ [0, b]. As g(W0) is bounded, we draw the conclusion that the sequence of functions {fn(s)}∞n=1 is
integrably bounded for a.e. s ∈ [0, b]. So {fn(s)}∞n=1 ⊂ L1([0, b];X) is semicompact due to Definition 2.5.
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By applying Lemma 2.6, we have that set {G2(un)}∞n=1 = {
∫ t
0 U(t, s)fn(s) ds, fn ∈ SF (un)} is relatively

compact in C([0, b];X).
From (4.8), we have

β({yn}∞n=1) ≤ β({G1un}∞n=1) + β({G2un}∞n=1),

which implies β({yn}∞n=1) = 0 due to the above analysis. And from (4.7), we know that

β(GW ) ≤ 2β({yn}∞n=1) + ε.

As ε is arbitrary, it follows from the above inequality that β(GW ) = 0. Thus, we get that

β(W ) = β(conv{GW,u0}) = β(GW ) = 0.

Therefore, W is convex compact and nonempty in C([0, b];X) and G(W ) ⊂ W . Then G(W ) ⊂ W is
compact and G has a closed graph, so we have that G is upper semi-continuous on W .

Finally, due to Lemma 2.8, G has at least one fixed point u ∈ G(u), and u is the mild solution to the
nonlocal problem (1.1). This completes the proof of Theorem 4.1.

Remark 4.2. If multifunction F (·) is compact or Lipschitz continuous , then L in hypothesis (F2) becomes
zero or a Lipschitz constant. Here the evolution system U(t, s) is only supposed to be strongly continuous
and they are weaker in essence compared with the previous results. In our paper [16], we discussed the
fractional differential equations with nonlocal conditions when the semigroup is not compact. There the
work is based on a new regular measure of noncompactness (see Lemma 3.1 of [16]). We think in some way
the new MNC and the classical Hausdorff MNC may be connected by the properties of semicompact sets in
the present paper.

5. An example

As an application of Theorem 4.1, we give the following partial differential equation with nonlocal
conditions: 

∂
∂tω(t, x) ∈ ∂

∂xω(t, x) + F (t, ω(t, x)), 0 ≤ t ≤ b, 0 ≤ x ≤ π,
ω(t, 0) = ω(t, π) = 0,

ω(0, x) =
∫ b
0 g1(s) log(1 + |ω(s, x)|)ds, 0 ≤ x ≤ π.

(5.1)

Take X = L2[0, π] and define A(t) ≡ A : D(A) ⊂ X → X by Az = z′ with the domain D(A) = {z ∈
X : z′ ∈ X, z(0) = z(π) = 0}. It is well known that A is an infinitesimal generator of a strongly continuous
operator semigroup T (t) defined by T (t)z(s) = z(t+ s) for each z ∈ X. T (t) is not a compact semigroup on
X and β(T (t)D) ≤ β(D) for a bounded subset D, where β is the Hausdorff MNC.

We assume that the following conditions hold:

(1) F : [0, b]×X → P (X) is a multifunction defined by

F (t, z)(x) = F (t, z(x)), 0 ≤ t ≤ b, 0 ≤ x ≤ π,

and hypotheses (F1) and (F2) hold.

(2) g : C([0, b];X)→ X is a continuous function defined by

g(u)(x) =

∫ b

0
g1(s) log(1 + |u(s)(x)|)ds, u ∈ C([0, b];X),

with u(s)(x) = ω(s, x), g1(·) ∈ L1([0, b];R). Then g is a compact operator.

Under the above assumptions, the partial differential equation (5.1) can be reformulated as the abstract
problem (1.1). If the hypothesis (E) also holds, then the nonlocal problem (5.1) has at least one mild
solution on [0, b] according to Theorem 4.1.
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