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Abstract

In this paper, a monotone projection algorithm is investigated for solving common solutions of a fixed
point problem of an asymptotically strict pseudocontraction, an equilibrium problem and a zero problem of
the sum of two monotone mappings. Strong convergence theorems are established in the framework of real
Hilbert spaces. c©2016 All rights reserved.
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1. Introduction and Preliminaries

In this paper, we always assume that H is a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖.
Let C be a nonempty closed convex subset of H. PC denotes the metric projection from H onto C.

Let T be a mapping on C. F (T ) stands for the fixed point set of T . Recall that T is said to be
nonexpansive iff

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C.
T is said to be asymptotically nonexpansive iff there exists a sequence {kn} ⊂ [1,∞) with limn→∞ kn = 1
such that

‖Tnx− Tny‖ ≤ kn‖x− y‖, ∀x, y ∈ C, n ≥ 1.

The class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk [11]. They proved
that if C is also bounded, then F (T ) is not empty; see [11] for more details.
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T is said to be κ-strictly pseudocontractive iff there exists a constant κ ∈ [0, 1) such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + κ‖(x− Tx)− (y − Ty)‖2, ∀x, y ∈ C.

The class of strict pseudocontractions was introduced by Browder and Petryshyn [5]. It is clear that every
nonexpansive mapping is a 0-strict pseudocontraction.

T is said to be an asymptotically κ-strict pseudocontraction iff there exist a sequence {kn} ⊂ [1,∞) with
limn→∞ kn = 1 and a constant κ ∈ [0, 1) such that

‖Tnx− Tny‖2 ≤ kn‖x− y‖2 + κ‖(I − Tn)x− (I − Tn)y‖2, ∀x, y ∈ C, n ≥ 1.

The class of asymptotically strict pseudocontractions is introduced by Qihou [20]. It is clear that every
asymptotically nonexpansive mapping is an asymptotically 0-strict pseudocontraction.

Let A : C → H be a mapping. Recall that A is said to be monotone iff

〈Ax−Ay, x− y〉 ≥ 0, ∀x, y ∈ C.

A is said to be strongly monotone iff there exists a constant α > 0 such that

〈Ax−Ay, x− y〉 ≥ α‖x− y‖2, ∀x, y ∈ C.

For such a case, we also say that A is an α-strongly monotone mapping. A is said to be inverse-strongly
monotone iff there exists a constant α > 0 such that

〈Ax−Ay, x− y〉 ≥ α‖Ax−Ay‖2, ∀x, y ∈ C.

For such a case, we also say that A is an α-inverse-strongly monotone mapping. It is clear that A is
inverse-strongly monotone if and only if A−1 is strongly monotone.

Recall that the classical variational inequality problem is to find x ∈ C such that

〈Ax, y − x〉 ≥ 0, ∀y ∈ C. (1.1)

It is known that x ∈ C is a solution to problem (1.1) if and only if x is a fixed point of mapping PC(I− rA),
where r > 0 is a constant and I is the identity mapping. Recently, iterative methods have been intensively
investigated for solving solutions of variational inequality (1.1) by many authors in the framework of Hilbert
spaces; see [8], [17], [18], [21], [22], [28], [30], and the references therein.

Let B be a set-valued mapping. In this paper, we use D(B) to denote the domain of B. Recall that
B is said to be monotone on H if for all x, y ∈ H, f ∈ Bx and g ∈ By imply 〈x − y, f − g〉 ≥ 0. A
monotone mapping B is maximal on H if the graph G(B) of B is not properly contained in the graph of
any other monotone mapping. It is known that a monotone mapping B is maximal if and only if, for any
(x, f) ∈ H ×H, 〈x− y, f − g〉 ≥ 0 for all (y, g) ∈ G(B) implies f ∈ Bx. Let r > 0 be a real number. We can
define the single-valued resolvent Jr = (I + rA)−1. It is known that Jr : H → D(B) is firmly nonexpansive
and B−1(0) = F (Jr). Let A be a monotone mapping of C into H and NCv the normal cone to C at v ∈ C,
i.e.,

NCv = {w ∈ H : 〈v − u,w〉 ≥ 0, ∀u ∈ C}

and define a mapping T on C by

Tv =

{
Av +NCv, v ∈ C
∅, v /∈ C.

Then T is maximal monotone and 0 ∈ Tv if and only if 〈Av, u − v〉 ≥ 0 for all u ∈ C; see [24] and the
references therein.

Let F be a bifunction of C ×C into R, where R denotes the set of real numbers. Consider the following
equilibrium problem.

Find x ∈ C such that F (x, y) ≥ 0, ∀y ∈ C. (1.2)
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In this paper, the set of such an x ∈ C is denoted by EP (F ), i.e., EP (F ) = {x ∈ C : F (x, y) ≥ 0,∀y ∈
C}.

To study problem (1.2), we may assume that F satisfies the following conditions:

(A1) F (x, x) = 0 for all x ∈ C;

(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C,
lim sup

t↓0
F (tz + (1− t)x, y) ≤ F (x, y);

(A4) for each x ∈ C, y 7→ F (x, y) is convex and lower semi-continuous.

Recently, problem (1.2) was studied based on iterative methods by many authors; see [6], [13], [15],
[23], [31] and the references therein. The advantage of projection methods is that strong convergence is
guaranteed without any compact assumptions. And when C is a line variety, a closed ball, a closed cone
or a closed polytope, the computation of PC is easy to implement. Problem (1.2) is well known to be
very useful and efficient tools in mathematics. It provides a unified framework for studying many problems
arising in engineering sciences, structural analysis, and other fields; see, e.g., [1], [12], [26], [18], [19], [27].
A closely related subject of current interest is the problem of finding a common solution of nonlinear
operator-equations, variational inequality (1.1) and equilibrium problem (1.2). The motivation for this
subject is mainly due to its possible applications to mathematical modeling of concrete complex problems.
Indeed, a classical strategy to construct such mathematical models consists in introducing constraints which
can be expressed as subproblems of a more general problem. In some cases, these constraints can be
given by variational inequalities, by fixed point problems, or by problems of different types [2, 3], [6]-[10],
[14, 16, 17, 18, 29].

Motivated by the research going on this direction, we study a regularization projection algorithm for
solving common solutions of variational inequality (1.1), equilibrium problem (1.2) and fixed points of
an asymptotically strict pseudocontraction. Possible computation errors are taken into account. Strong
convergence theorems are established in the framework of real Hilbert spaces.

In order to prove our main results, we also need the following lemmas.

Lemma 1.1 ([4]). Let C be a nonempty closed convex subset of H and let F : C × C → R be a bifunction
satisfying (A1)-(A4). Then, for any r > 0 and x ∈ H, there exists z ∈ C such that

F (z, y) +
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C.

Further, define

Trx = {z ∈ C : F (z, y) +
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C}

for all r > 0 and x ∈ H. Then, the following hold:

(a) Tr is single-valued;

(b) Tr is firmly nonexpansive, i.e., for any x, y ∈ H,

‖Trx− Try‖2 ≤ 〈Trx− Try, x− y〉;

(c) F (Tr) = EP (F );

(d) EP (F ) is closed and convex.

Lemma 1.2 ([25]). Let C be a nonempty closed convex subset of H and let T : C → C an asymptotically
strict pseudocontraction. Then I − T is demi-closed, this is, if {xn} is a sequence in C with xn ⇀ x and
xn − Txn → 0, then x ∈ F (T ).
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2. Main results

Theorem 2.1. Let C be a nonempty closed convex subset of H and let F be a bifunction from C ×C to R
which satisfies (A1)-(A4). Let A : C → H be an α-inverse-strongly monotone mapping and let B : H ⇒ H
be a maximal monotone mapping such that D(B) ⊂ C. Let T : C → C be an asymptotically κ-strict
pseudocontraction. Assume that Ω = F (T ) ∩ (A + B)−1(0) ∩ EP (F ) is not empty and bounded. Let {rn}
and {sn} be two positive real number sequences. Let {αn} and {βn} be real number sequences in (0, 1). Let
{xn} be a sequence generated in the following process:

x1 ∈ C,
C1 = C,

F (zn, z) + 1
sn
〈z − zn, zn − Jrn(xn − rnAxn + en)〉 ≥ 0, ∀z ∈ C,

yn = αnxn + (1− αn)βnzn + (1− βn)(1− αn)Tnzn,

Cn+1 = {λ ∈ Cn : ‖yn − λ‖ ≤ ‖xn − λ‖+ (
√
kn − 1)Θn +

√
kn‖en‖},

xn+1 = PCn+1x1, n ≥ 1,

where Jrn = (I+rnA)−1, {en} is a sequence in H such that
∑∞

n=1 ‖en‖ <∞ and Θn = sup{‖xn−q‖ : q ∈ Ω}.
Assume that the control sequences satisfy the following restrictions: 0 ≤ αn ≤ a < 1, κ ≤ βn ≤ b < 1,
lim infn→∞ sn > 0 and 0 < r ≤ rn ≤ r′ < 2α, where a, b, r, r′ are real constants. Then {xn} converges
strongly to PΩx1.

Proof. From the construction of Cn, we see that Cn is convex and closed so that the metric projection onto
Cn is well defined. For any x, y ∈ C, we see that

‖(I − rnA)x− (I − rnA)y‖2

= ‖x− y‖2 − 2rn〈x− y,Ax−Ay〉+ r2
n‖Ax−Ay‖2

≤ ‖x− y‖2 − rn(2α− rn)‖Ax−Ay‖2.

Using the restrictions imposed on {rn}, we see that ‖(I − rnA)x− (I − rnA)y‖ ≤ ‖x− y‖. This proves that
I − rnA is nonexpansive.

Next, we show that Ω ⊂ Cn. It is clear that Ω ⊂ C1 = C. Suppose that Ω ⊂ Ch for some h ≥ 1. Next,
we show that Ω ⊂ Ch+1 for the same h. Let p ∈ Ω be fixed arbitrarily. By use of Lemma 1.1, we find that
zh = Tshwh, where wh = Jrh

(
xh− rhAxh + eh). It follows from the firm nonexpansivity of the resolvent that

‖zh − p‖ ≤ ‖wh − p‖
≤ ‖
(
xh − rhAxh + eh)−

(
p− rhAp)‖

≤ ‖xh − p‖+ ‖eh‖.
(2.1)

Since T is an asymptotically κ-strict pseudocontraction, we have

‖βhzh + (1− βh)T hzh − p‖2

≤ βh‖yh − p‖2 + (1− βh)(kh‖yh − p‖2 + κ‖(zh − p)− (T hzh − T hp)‖2)

− βh(1− βh)‖(yh − p)− (T hzh − T hp)‖2

≤ kh‖zh − p‖2 − (1− βh)(βh − κ)‖(zh − p)− (T hzh − T hp)‖2.

Using the restrictions imposed on sequence {βn}, we find that

‖βhzh + (1− βh)T hzh − p‖ ≤
√
kh‖zh − p‖. (2.2)

It follows from (2.1) and (2.2) that
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‖yh − p‖ ≤ αh‖xh − p‖+ (1− αh)‖βhzh + (1− βh)T hzh − p‖

≤ αh‖xh − p‖+ (1− αh)
√
kh‖zh − p‖

≤ ‖xh − p‖+ (
√
kh − 1)‖xh − p‖+

√
kh‖eh‖.

This proves that Ω ⊂ Cn.
Now, we are in a position to show that {xn} is bounded. Note that xn = PCnx1. For any p ∈ Ω ⊂ Cn,

we have ‖x1 − xn‖ ≤ ‖x1 − p‖. In particular, we have

‖x1 − xn‖ ≤ ‖x1 − PΩx1‖.

This implies that {xn} is bounded. Since {xn} is bounded, we see that there exists a subsequence {xni} of
{xn} which converges weakly to x. Since xn = PCnx1 and xn+1 = PCn+1x1 ∈ Cn+1 ⊂ Cn, we have that

0 ≤ 〈x1 − xn, xn − xn+1〉
= 〈x1 − xn, xn − x1 + x1 − xn+1〉
≤ −‖x1 − xn‖2 + ‖x1 − xn‖‖x1 − xn+1‖.

Hence, we have
‖x1 − xn‖ ≤ ‖x1 − xn+1‖.

It follows that limn→∞ ‖xn − x1‖ exists. Since

‖xn − xn+1‖2

= ‖xn − x1‖2 + 2〈xn − x1, x1 − xn + xn − xn+1〉+ ‖x1 − xn+1‖2

= ‖xn − x1‖2 − 2‖xn − x1‖2 + 2〈xn − x1, xn − xn+1〉+ ‖x1 − xn+1‖2

≤ ‖x1 − xn+1‖2 − ‖xn − x1‖2,

we find that
lim
n→∞

‖xn − xn+1‖ = 0. (2.3)

Since xn+1 = PCn+1x1 ∈ Cn+1, we see that ‖yn−xn+1‖ ≤ ‖xn−xn+1‖+ (
√
kn− 1)Θn +

√
kn‖en‖. It follows

that
‖yn − xn‖ ≤ 2‖xn+1 − xn‖+ (

√
kn − 1)Θn +

√
kn‖en‖.

Since (
√
kn − 1)Θn +

√
kn‖en‖ → 0 as n→∞, we obtain from (2.3) that

lim
n→∞

‖xn − yn‖ = 0.

On the other hand, we have

‖xn − yn‖ = (1− αn)‖xn −
(
βnzn + (1− βn)Tnzn

)
‖.

Using the restriction imposed on {αn}, we find that

lim
n→∞

‖xn −
(
βnzn + (1− βn)Tnzn

)
‖ = 0. (2.4)

Since Tsn is firmly nonexpansive, we find that

‖zn − p‖2 ≤ 〈wn − p, zn − p〉

=
1

2

(
‖wn − p‖2 + ‖zn − p‖2 − ‖zn − wn‖2

)
.
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That is,
‖zn − p‖2 ≤ ‖wn − p‖2 − ‖wn − zn‖2

≤ ‖xn − p‖2 + ‖en‖(‖en‖+ 2‖xn − p‖)− ‖wn − zn‖2.

It follows that

‖yn − p‖2 ≤ αn‖xn − p‖2 + (1− αn)kn‖zn − p‖2

≤ kn‖xn − p‖2 + kn‖en‖(‖en‖+ 2‖xn − p‖)− (1− αn)kn‖wn − zn‖2.

Hence, we have

(1− αn)kn‖wn − zn‖2 ≤ (kn − 1)‖xn − p‖2 + kn‖en‖(‖en‖+ 2‖xn − p‖)
+ ‖xn − p‖2 − ‖xn+1 − p‖2.

It follows from the restriction imposed on {αn} that

lim
n→∞

‖wn − zn‖ = 0. (2.5)

Since A is inverse-strongly monotone, we find that

‖wn − p‖2 ≤ ‖
(
xn − rnAxn + en)−

(
p− rnAp)‖2

≤ ‖
(
xn − rnAxn)−

(
p− rnAp)‖2 + ‖en‖(‖en‖+ 2‖xn − p‖)

≤ ‖xn − p‖2 − rn(2α− rn)‖Axn −Ap‖2 + ‖en‖(‖en‖+ 2‖xn − p‖).

It follows that
‖yn − p‖2 ≤ αn‖xn − p‖2 + (1− αn)kn‖zn − p‖2

≤ αn‖xn − p‖2 + (1− αn)kn‖wn − p‖2

≤ kn‖xn − p‖2 − rn(2α− rn)(1− αn)kn‖Axn −Ap‖2

+ ‖en‖kn(‖en‖+ 2‖xn − p‖).

This implies that

rn(2α− rn)(1− αn)kn‖Axn −Ap‖2

≤ (kn − 1)‖xn − p‖2 + ‖xn − p‖2 − ‖xn+1 − p‖2 + ‖en‖kn(‖en‖+ 2‖xn − p‖).

Using the restrictions imposed on {αn} and {rn}, we find that

lim
n→∞

‖Axn −Ap‖ = 0. (2.6)

Since Jrn is firmly nonexpansive, we find that

‖wn − p‖2 ≤ 〈
(
xn − rnAxn + en)−

(
p− rnAp), wn − p〉

=
1

2
{‖
(
xn − rnAxn + en)−

(
p− rnAp)‖2 + ‖wn − p‖2

− ‖
(
xn − rnAxn + en)−

(
p− rnAp)− (wn − p)‖2}

≤ 1

2
{‖xn − p‖2 + ‖en‖(‖en‖+ 2‖xn − p‖) + ‖wn − p‖2

− ‖xn − wn −
(
rn(Axn −Ap)− en

)
‖2}

≤ 1

2
{‖xn − p‖2 + ‖en‖(‖en‖+ 2‖xn − p‖) + ‖wn − p‖2 − ‖xn − wn‖2

+ 2‖xn − wn‖‖rn(Axn −Ap)− en‖ − ‖rn(Axn −Ap)− en‖2}.



B. A. Bin Dehaish, H. O. Bakodah, A. Latif, X. Qin , J. Nonlinear Sci. Appl. 9 (2016), 957–966 963

It follows that
‖wn − p‖2 ≤ ‖xn − p‖2 + ‖en‖(‖en‖+ 2‖xn − p‖)− ‖xn − wn‖2

+ 2rn‖xn − wn‖‖Axn −Ap‖+ 2‖xn − wn‖‖en‖.

This implies that

‖yn − p‖2 ≤ αn‖xn − p‖2 + (1− αn)kn‖zn − p‖2

≤ αn‖xn − p‖2 + (1− αn)kn‖wn − p‖2

≤ kn‖xn − p‖2 + kn‖en‖(‖en‖+ 2‖xn − p‖)− (1− αn)kn‖xn − wn‖2

+ 2rnkn‖xn − wn‖‖Axn −Ap‖+ 2kn‖xn − wn‖‖en‖.

Hence, we have

(1− αn)kn‖xn − wn‖2

≤ (kn − 1)‖xn − p‖2 + kn‖en‖(‖en‖+ 2‖xn − p‖) + ‖xn − p‖2 − ‖xn+1 − p‖2

+ 2rnkn‖xn − wn‖‖Axn −Ap‖+ 2kn‖xn − wn‖‖en‖.

By use of (2.6), we find from the restriction imposed on {αn} that

lim
n→∞

‖xn − wn‖ = 0. (2.7)

Since ‖xn − zn‖ ≤ ‖xn − wn‖+ ‖wn − zn‖, we find from (2.5) and (2.7) that

lim
n→∞

‖xn − zn‖ = 0. (2.8)

Next, we show x ∈ F (T ). Note that

‖
(
βnxn + (1− βn)Tnxn

)
− xn‖

≤ ‖
(
βnxn + (1− βn)Tnxn

)
−
(
βnzn + (1− βn)Tnzn

)
‖

+ ‖
(
βnzn + (1− βn)Tnzn

)
− xn‖

≤ βn‖xn − zn‖+ (1− βn)‖Tnxn − Tnzn‖+ ‖
(
βnzn + (1− βn)Tnzn

)
− xn‖

≤ βn‖xn − zn‖+ (1− βn)L‖xn − zn‖+ ‖
(
βnzn + (1− βn)Tnzn

)
− xn‖,

where L stands for the Lipschitz constant of T . By use of (2.4) and (2.8), we find that

lim
n→∞

‖
(
βnxn + (1− βn)Tnxn

)
− xn‖ = 0. (2.9)

Note that
‖Tnxn − xn‖ ≤ ‖Tnxn −

(
βnxn + (1− βn)Tnxn

)
‖

+ ‖
(
βnxn + (1− βn)Tnxn

)
− xn‖

≤ βn‖Tnxn − xn‖+ ‖
(
βnxn + (1− βn)Tnxn

)
− xn‖,

which yields that
(1− βn)‖Tnxn − xn‖ ≤ ‖

(
βnxn + (1− βn)Tnxn

)
− xn‖.

Using the restriction imposed on {βn}, we find from (2.9) that limn→∞ ‖Tnxn−xn‖ = 0. Since T is uniformly
L-Lipschitz continuous, we can obtain that limn→∞ ‖Txn − xn‖ = 0. By use of Lemma 1.2, we find that
x ∈ F (T ).

Next, we prove x ∈ (A+B)−1(0). Since wn = Jrn(xn − rnAxn + en), we find that

xn − wn + en
rn

−Axn ∈ Bwn.
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Let µ ∈ Bν. Since B is monotone, we find that〈
xn − wn + en

rn
−Axn − µ,wn − ν

〉
≥ 0.

It follows that 〈−Ax− µ, x− ν〉 ≥ 0. This implies that −Ax ∈ Bx, that is, x ∈ (A+B)−1(0).
Finally, we show that x ∈ EP (F ). Note that

F (zn, z) +
1

sn
〈z − zn, zn − wn〉 ≥ 0, ∀z ∈ C.

Since F is monotone, we see that

1

sni

〈z − zni , zni − wni〉 ≥ F (z, zni), ∀z ∈ C.

By use of (2.5) and (2.8), we find that

F (z, x) ≤ 0, ∀z ∈ C.

For each t with 0 < t ≤ 1, let zt = tz+ (1− t)x, where z ∈ C. It follows that zt ∈ C and hence F (zt, x) ≤ 0.
It follows that

0 = F (zt, zt) ≤ tF (zt, z) + (1− t)F (zt, x) ≤ tF (zt, z),

which yields that F (zt, z) ≥ 0, ∀z ∈ C. Letting t ↓ 0, we obtain that F (x, z) ≥ 0, ∀z ∈ C. This implies that
x ∈ EP (F ). Since x ∈ Ω, we find that

‖x1 − PΩx1‖ ≤ ‖x1 − x‖ ≤ lim inf
i→∞

‖x1 − xni‖

≤ lim sup
i→∞

‖x1 − xni‖ ≤ ‖x1 − PΩx1‖,

which yields that
lim
i→∞
‖x1 − xni‖ = ‖x1 − x‖ = ‖x1 − PΩx1‖.

Since H is a Hilbert space, we get that {xni} converges strongly to PΩx1. Therefore, we can conclude that
{xn} converges strongly to PΩx1. The proof is completed.

If T is an identity, we have the following result.

Corollary 2.2. Let C be a nonempty closed convex subset of H and let F be a bifunction from C ×C to R
which satisfies (A1)-(A4). Let A : C → H be an α-inverse-strongly monotone mapping and let B : H ⇒ H
be a maximal monotone mapping such that Dom(B) ⊂ C. Assume that Ω = (A+B)−1(0) ∩ EP (F ) is not
empty. Let {rn} and {sn} be two positive real number sequences. Let {αn} be a real number sequence in
(0, 1). Let {xn} be a sequence generated in the following process:

x1 ∈ C,
C1 = C,

F (zn, z) + 1
sn
〈z − zn, zn − Jrn(xn − rnAxn + en)〉 ≥ 0, ∀z ∈ C,

yn = αnxn + (1− αn)zn,

Cn+1 = {λ ∈ Cn : ‖yn − λ‖ ≤ ‖xn − λ‖+ ‖en‖},
xn+1 = PCn+1x1, n ≥ 1,

where {en} is a sequence in H such that
∑∞

n=1 ‖en‖ < ∞. Assume that the control sequences satisfy the
following restrictions: 0 ≤ αn ≤ a < 1, lim infn→∞ sn > 0 and 0 < r ≤ rn ≤ r′ < 2α, where a, r, r′ are real
constants. Then {xn} converges strongly to PΩx1.
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Corollary 2.3. Let C be a nonempty closed convex subset of H. Let A : C → H be an α-inverse-strongly
monotone mapping and let B : H ⇒ H be a maximal monotone mapping such that D(B) ⊂ C. Let
T : C → C be an asymptotically κ-strict pseudocontraction. Assume that Ω = F (T ) ∩ (A + B)−1(0) is
not empty and bounded. Let {rn} be a positive real number sequence. Let {αn} and {βn} be real number
sequences in (0, 1). Let {xn} be a sequence generated in the following process:

x1 ∈ C,
C1 = C,

zn = Jrn(xn − rnAxn + en),

yn = αnxn + (1− αn)βnzn + (1− βn)(1− αn)Tnzn,

Cn+1 = {λ ∈ Cn : ‖yn − λ‖ ≤ ‖xn − λ‖+ (
√
kn − 1)Θn +

√
kn‖en‖},

xn+1 = PCn+1x1, n ≥ 1,

where {en} is a sequence in H such that
∑∞

n=1 ‖en‖ <∞ and Θn = sup{‖xn− q‖ : q ∈ Ω}. Assume that the
control sequences satisfy the following restrictions: 0 ≤ αn ≤ a < 1, κ ≤ βn ≤ b < 1, 0 < r ≤ rn ≤ r′ < 2α,
where a, b, r, r′ are real constants. Then {xn} converges strongly to PΩx1.

Proof. Set F (x, y) = 0, for any x, y ∈ C and sn = 1. Since Dom(B) ⊂ C, we see that zn = Jrn
(
xn−rnAxn+

en). This completes the proof.

If A and B are zero mappings, we find from Theorem 2.1 the following result immediately.

Corollary 2.4. Let C be a nonempty closed convex subset of H and let F be a bifunction from C × C to
R which satisfies (A1)-(A4). Let T : C → C be an asymptotically κ-strict pseudocontraction. Assume that
Ω = F (T ) ∩ EP (F ) is not empty and bounded. Let {sn} be a positive real number sequence. Let {αn} and
{βn} be real number sequences in (0, 1). Let {xn} be a sequence generated in the following process:

x1 ∈ C,
C1 = C,

F (zn, z) + 1
sn
〈z − zn, zn − xn − en〉 ≥ 0, ∀z ∈ C,

yn = αnxn + (1− αn)βnzn + (1− βn)(1− αn)Tnzn,

Cn+1 = {λ ∈ Cn : ‖yn − λ‖ ≤ ‖xn − λ‖+ (
√
kn − 1)Θn +

√
kn‖en‖},

xn+1 = PCn+1x1, n ≥ 1,

where {en} is a sequence in H such that
∑∞

n=1 ‖en‖ < ∞ and Θn = sup{‖xn − q‖ : q ∈ Ω}. Assume that
the control sequences satisfy the following restrictions: 0 ≤ αn ≤ a < 1, κ ≤ βn ≤ b < 1, lim infn→∞ sn > 0,
where a and b are real constants. Then {xn} converges strongly to PΩx1.
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