Available online at www.tjnsa.com
J. Nonlinear Sci. Appl. 9 (2016), 1083-1092

Research Article

Nonlincar Sc

-(aEnyy Journal of Nonlinear Science and Applications
=] bP

Print: ISSN 2008-1898 Online: ISSN 2008-1901

Generalized mixed equilibrium and fixed point
problems in a Banach space

Sun Young Cho

Department of Mathematics, Gyeongsang National University, Jinju 660-701, Korea.

Communicated by Y. J. Cho

Abstract

In this paper, a quasi-¢-nonexpansive mapping and a generalized mixed equilibrium problem are in-
vestigated. A strong convergence theorem of common solutions is established in a non-uniformly convex
Banach space. The results presented in the paper improve and extend some recent results. (©2016 All rights
reserved.
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1. Introduction and Preliminaries

Let E be a real Banach space and let E* be the dual space of E. Let Sg be the unit sphere of E. Recall
that E is said to be uniformly convex if for any € € (0, 2] there exists 6 > 0 such that for any x,y € Sg,

|z —y| >e€ implies |z +y| <2—26.

E is said to be a strictly convex space if and only if ||z + y|| < 2 for all z,y € Sg and = # y. It is known
that a uniformly convex Banach space is reflexive and strictly convex.
Recall that FE is said to have a Gateaux differentiable norm if and only if
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exists for each x,y € Sg. In this case, we also say that E is smooth. F is said to have a uniformly Gateaux
differentiable norm if for each y € Sg, the limit is attained uniformly for all x € Sg. E is also said to have
a uniformly Fréchet differentiable norm if and only if the above limit is attained uniformly for z,y € Sg. In
this case, we say that E is uniformly smooth. It is known that a uniformly smooth Banach space is reflexive
and smooth.

Recall that E is said to have the KKP if lim,—soc ||zm — || = 0, for any sequence {z,,} C E, and z € E
with {z,,} converges weakly to x, and {||z,,||} converges strongly to ||z||. It is known that every uniformly
convex Banach space has the KKP; see [I1] and the references therein.

Recall that normalized duality mapping J from E to 2F" is defined by

Jo={y € E": |lz]|* = (z,y) = |ly[*}.

It is known if E is uniformly smooth, then J is uniformly norm-to-norm continuous on every bounded subset
of E; if E is a smooth Banach space, then J is single-valued and demi-continuous, i.e., continuous from the
strong topology of E to the weak star topology of F; if E is a smooth, strictly convex and reflexive Banach
space, then J is single-valued, one-to-one and onto.

Let C be nonempty convex and closed subset of E. Let B : C x C — R be a bifunction, ¥ : C' — R
be a real valued function and S : C — E* be a nonlinear mapping. Consider that the following generalized
mixed equilibrium problem is to find Z € C such that

B(z,z)+ (St,z —2)+ Yz —-Yz > 0,Vz € C. (1.1)

The solution set of the generalized mixed equilibrium problem is denoted by Sol(B,S,Y).

The generalized mixed equilibrium problem, which finds a lot of applications in physics, economics,
finance, transportation, network and structural analysis, elasticity and optimization, provides a natural,
novel and unified framework to study fixed point problems, variational inequality, complementarity problems,
and optimization problems; see [2], [12], [I3], [19], [18], [20] and the references therein.

If S =0, then the generalized mixed equilibrium problem is reduced to the following mixed equilibrium
problem: find z € C' such that

B(z,x)+Yxz—-Yz > 0,Vz € C. (1.2)

The solution set of the mixed equilibrium problem is denoted by Sol(B,Y").
If B =0, then the generalized mixed equilibrium problem is reduced to the following mixed variational
inequality of Browder type: find Z € C such that

(Sz,x —72)+Yor —Yz>0,Vr e C. (1.3)

The solution set of the mixed equilibrium problem is denoted by VI(C, B,Y).
If Y = 0, then the generalized mixed equilibrium problem is reduced to the following generalized equi-
librium problem: find Z € C such that

B(z,z) 4+ (Sz,x — ) > 0,Vz € C. (1.4)

The solution set of the generalized equilibrium problem is denoted by Sol(B, S).
If S =0and Y = 0, then the generalized mixed equilibrium problem is reduced to the following
equilibrium problem in the terminology of Blum and Oettli [4]: find z € C such that

B(z,x) > 0,Vz € C. (1.5)

The solution set of the equilibrium problem is denoted by Sol(B).
The following restrictions on bifunction B are essential in this paper.
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(R-1) B(a,a) =0,Ya € C;

(R-2) B(b,a) + B(a,b) <0,Ya,be C,

(R-3) B(a,b) > limsup, g B(tc + (1 —t)a,b), Va,b,c € C;

(R-4) b— B(a,b) is convex and weakly lower semi-continuous, Va € C.

Recently, the above nonlinear problems have been extensively studied based on iterative techniques; see
3], [6)-[10], [I4]-[17], [19], [22]-[26] and the references therein. In this paper, we study generalized mixed
equilibrium problem based on a monotone projection technique without any compactness assumption.
Let T be a mapping on C. T is said to be closed if for any sequence {z,} C C such that lim, , =, = 2’
and lim, oo T2, = 3/, then T2’ = 3. From now on, we use — and — to stand for the weak convergence
and strong convergence, respectively. Recall that a point p is said to be a fixed point of T" if and only if
p = Tp. p is said to be an asymptotic fixed point of T' if and only if C' contains a sequence {z,}, where
2, — p such that x, — Tz, — 0. From now on, We use Fiiz(T') to stand for the fixed point set and F\z;:(T)
to stand for the asymptotic fixed point set.

Next, we assume that F is a smooth Banach space which means mapping J is single-valued. Study the
functional

o(z,y) = |=]> + [ly|* — 2(z, Jy), Vz,y€E.

Let C be a closed convex subset of a real Hilbert space H. For any x € H, there exists an unique nearest
point in C', denoted by Pgx, such that

lz = Pex| < |z —yll, VyeC.

The operator P¢ is called the metric projection from H onto C'. It is known that Pg is firmly nonexpansive.
In [I], Alber studied a new mapping Projc in a Banach space E which is an analogue of Pg, the metric
projection, in Hilbert spaces. Recall that the generalized projection Projo : E — C' is a mapping that
assigns to an arbitrary point € F the minimum point of ¢(z,y).

Recall that 7 is said to be relatively nonexpansive [5] if Fiz(T) = Fiz(T) # 0 and

o(p, Tx) < ¢(p,x), VaeC,Vpe Fix(T).
T is said to be quasi-¢-nonexpansive [17] if Fiz(T) # () and
o(p, Tz) < d(p,x), VYo eC,Vpe Fix(T).

Remark 1.1. The class of quasi-¢-nonexpansive mappings is more desirable than the class of relatively
nonexpansive mappings because of strong restriction Fix(T) = Fixz(T).

Remark 1.2. The class of quasi-¢-nonexpansive mappings is reduced to the class of quasi-nonexpansive
mappings in the framework of Hilbert spaces.

The following lemmas also play an important role in this paper.

Lemma 1.3 ([2I]). Let r be a positive real number and let E be uniformly conver. Then there ezists a
convet, strictly increasing and continuous function g : [0,2r] — R such that g(0) = 0 and

11 = )b + tal|* + (1 = t)g([lb — all) < tlal® + (1 — 1) []b]>
for alla,be B":={a € E: |a]| <r} and t € [0,1].

Lemma 1.4 ([1]). Let E be a strictly convez, reflexive, and smooth Banach space and let C' be a nonempty,
closed, and convex subset of . Let x € E. Then

o(y,llcx) < ¢y, x) — p(llcz, z), Yy e C,

and xo = gz if and only if
(y — xo, Jo — Jg) <0,Vy € C.
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Lemma 1.5 ([I8]). Let E be a strictly convex and uniformly smooth Banach space which also has the KKP.
Let T be a closed quasi-¢-nonexpansive mappings on C. Then F(T) is closed and convez.

Lemma 1.6 ([4], [I7]). Let E be a strictly convex, smooth, and reflexive Banach space and let C' be a closed
convex subset of E. Let B be a function with restrictions (R-1), (R-2), (R-8) and (R-4), from C x C to R.
Let x € E and let v > 0. Then there exists z € C' such that

rB(z,y) + (z —y,Jz — Jx) < 0,Vy € C.
Define a mapping CP" by
CPry ={2€C:rB(z,y) + (y — 2, Jz— Jx) >0, VyecC}.
The following conclusions hold:
(1) CB" is single-valued quasi-¢-nonexpansive;

(2) Sol(B) = Fiz(CB") is closed and convez.

2. Main results
We are now in a position to state our main results.

Theorem 2.1. Let E be a strictly conver and uniformly smooth Banach space which also has the KKP. Let
C be a conver and closed subset of E and let B be a bifunction with (R-1), (R-2), (R-3) and (R-4). Let
S : C — E* be a continuous and monotone mapping and let Y : C — R be a lower semi-continuous and
convex function. Let T be a quasi-p-nonexpansive mappings on C. Assume that Sol(B,S,Y) N Fix(T) is
nonempty and T is closed. Let {cy,} be real sequence in (0,1) such that liminf, . a,(1 — ay,) > 0. Let
{z,} be a sequence generated by

(2o € E chosen arbitrarily,

C1=0C,

x1 = Projc, o,

TnB(zn, 2) + 10 (Yz = Y2z,) + 10 (Szpn, 2 — 2n) > (2 — 2, J 25, — Jx,), V2 € Cp,
Jyn = anJTxy, + (1 — ayp)d zp,

Cnp1=1{2 € Cn: d(2,2n) = 0(2,9n)},

Tny1 = Projo, ., 71,

where {ry} is a real sequence such that liminf, o 1, > 0. Then {x,} converges strongly to a special common
solution T, where T = Projso(p,s,y)nFiz(T)Z1-
Proof. Define

G(a,b) = B(a,b) + (Sa,b—a) + Yb—Ya,Va,b € C.

Next, we prove that bifunction G satisfies (R-1), (R-2), (R-3) and (R-4). Therefore, the generalized mixed
equilibrium problem is equivalent to the following equilibrium problem: find a € C such that G(a,b) > 0,
Vb € C. First, we prove G is monotone. Since S is a continuous and monotone operator, we find from the
definition of G that

G(b,c) + G(c,b) = B(b,c) + (Sb,c —b) + Yc—Yb+ B(c,b)
+ (Se,b—c)+Yb—-Ye
= B(c,b) + (Sc,b—¢) + B(b,¢) + (Sb,c — b)
< (Se—8b,b—c) <0.

It is clear that G satisfies (R-2). Next, we show that for each a € C, b — G(a,b) is a convex and lower
semicontinuous. For each a € C, for all t € (0,1) and for all b,c € C, since Y is convex, we have
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G(a,tb+ (1 —t)c)
= B(a,tb+ (1 —t)c) + (Sa,tb+ (1 —t)c—a) + Y(tb+ (1 —t)c) — Ya
<t(B(a,b)+Yb—Ya+ (Sa,b—a))
+ (1 —t)(B(a,c) + Yc—Ya+ (Sa,c — a))
= (1 —-1t)G(a,c) +tG(a,b).

So, b — G(a,b) is convex. Similarly, we find that b — G(a,b) is also lower semicontinuous. Since S is
continuous and Y is lower semicontinuous, we have

limsup G(tc + (1 —t)a,b) = limsup B(tc + (1 — t)a, b)

£10 £10
+ limsup (Yb — Y (tc + (1 — t)a))
t10
+ limsup(S(tc+ (1 — t)a),b — (tc+ (1 — t)a))
an
< B(a,b)+Yb—Ya+ (Sa,b—a)
= G(a,b).

Using Lemma one sees that Sol(G) = Sol(B,S,Y) is closed and convex. Using Lemma one sees
that Fiz(T) is also convex and closed. Hence, Sol(B,S,Y) N Fix(T) is convex and closed.

We are now in a position to show that C,, is convex and closed. It is obvious that C; = C is convex
and closed. Assume that C; is convex and closed for some i > 1. Let p1,p2 € Cijy1. It follows that
p=sp1+ (1 —s)p2 € C;, where s € (0,1). Since

¢(p17 yl) < ¢(p17 $i)7

and
(P2, yi) < ¢(p2, i),
one has
2(p1, Jai — Jyi) < ||lzil® — [yl
and

2(p2, Jai — Jyi) < il — llwill*
Using the above two inequalities, one has ¢(p,y;) < ¢(p,x;). This shows that C;y; is closed and convex.
Hence, C), is a convex and closed set.
Next, one proves Fixz(T) N Sol(B,S,Y) C C,. It is obvious Fiz(T) N Sol(B,S,Y) C C; = C. Suppose
that Fixz(T)NSol(B,S,Y) C C; for some positive integer i. For any z € Fiz(T)NSol(B) C C;, we see that
¢(z,yi) = 121> + [l I Ts + (1 — ) Tz
—2(z,0;J Tz + (1 — i) J z;)
<2l + ail Tl + (1 = i) || T2
—2(1 — i) (2, Jzi) — 204z, JTx;)
< a;p(z, Tai) + (1 — ;) (2, CFmiy)

where
CCrixg ={2€ C:rG(z,y) + (y — 2,2z — Jx) >0, VycC;}.

This shows that z € Cjy1. This implies that Fiz(T) N Sol(B,S,Y) C Cy. Using Lemma|[L.4] we find

(xn — 2z, Jx1 — Jxp) > 0,V2 € C.
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It follows that
(xn — 2z, Jx1 — Jxp) >0, Vz € Fix(T)NSol(B,S,Y) C Cp.

Using Lemma one has

¢(Tn, 1) < Q(Projpis(T)nsol(B,S,v)T1, T1) — A(PTOjFin(T)nSol(B,S,y) 15 Tn)
< O(Projpin(T)nsol(B)T1,T1),
which shows that {¢(zy, 1)} is bounded. Hence, {z,} is also bounded. Without loss of generality, we assume
Zn, — . Since every C), is convex and closed. So Z € C),. Since T € C),, one has ¢(xy,r1) < ¢(Z,z1). This
implies that
65, 21) < liminf (]2 + 212 — 2z, Jo1))
n—o0
= liminf ¢(xy,, x1)
n—ro0

< limsup ¢(zp, x1)

n—oo
S ¢(£7 371)~
Hence, one has lim,,_,o0 ¢(n, x1) = ¢(Z, 21). It follows that lim,, o || || = ||Z]]. Using the KKP, one obtains

that {x,} converges strongly to z as n — co. Since x,,41 € Cpy1 C Cp, we find that ¢(x,41,21) > P(an, 1),
which shows that {¢(xy, 1)} is nondecreasing. It follows that lim, .o ¢(zn, 1) exists. Since

¢(xn+17w1) - ¢($n,$1) > Qb(xn—l—hwn) > 07

one has limy, o0 ¢(2pt1,2,) = 0. Using the fact x,41 € Cp41, one sees

¢(xn+1a yn) < ¢(xn+17 :Un)

It follows that lim, oo @(Zn41,yn) = 0. Therefore, one has limy oo (||yn|| — [[Zn+1]|) = 0. This implies that
Tim [Tyl = lim [yl = 7] = J2].

This implies that {Jy,} is bounded. Without loss of generality, we assume that {Jy,} converges weakly to
y* € E*. In view of the reflexivity of E, we see that J(E) = E*. This shows that there exists an element
y € E such that Jy = y*. It follows that

S(@n+1,Yn) + 2(Tns1, Jyn) = Nzns1l® + | Tyl

Taking lim inf,,_,,, one has
0> [|1z]> — 2z, y*) + lly*|1?
= |11 + | 7ylI* - 2(z, Jy)
= ¢(z,y)
> 0.
That is, T = y, which in turn implies that Jz = y*. Hence, Jy, — JZ € E*. Since F is uniformly smooth,
hence, E* is uniformly convex and it has the KKP, we obtain lim,_ Jy, = JZ. Since J~! : E* — E is

demi-continuous and E has the KKP, one gets that y, — =, as n — oc.
On the other hand, we find from Lemma [T.3| that

¢(z,9n) < 1217 + anl|Tza|? + (1 = an) [Tz
—2(1 —apn)(z, Jzpn) — 20 (2, JTxy,)
— an(l = an)g(||JTxy — Jzn||)
< (2, Txy) + (1 — ) (2, CETmy,)
—an(1 = an)g(|JT2p — Jzn))
< ¢(z,2n) — an(l = an)g(|J T2y — J20)).
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Since
d(2, ) — d(2,yn) < ([[znll + lynlDllyn — 2ol + 2(2, Jyn — Jan),
we find
ILm ((z,2n) — ¢(2,yn)) =0, Vz € Fiz(T) N Sol(B).
This implies lim,, oo ||J2n — JT2y|| = 0. Hence, one has JTx, — JZ as n — co. Since J~ ! : E* — E is

demi-continuous, one has T'z,, — . Using the fact
N Tznll = |2l = [T znll = [[JZ|| < |JTzn — JZ],

one has ||T'z,|| — ||z|| as n — oo. Since E has the KKP, one has lim,,_o ||z —T'z,|| = 0. Using the closedness
of T, we find TZ = z. This proves € Fiz(T). Since {z,} converges strongly to Z and G is a monotone
bifunction, one has r,G(z, z,) < ||z — zn||||/ 2n — Jzp||- Since liminf,,_,o 7, > 0, we may assume there exists
> 0 such that r, > p. It follows that

|Jzn — Jxp|]
—

Hence, one has G(z,z) < 0. For 0 < s < 1, define z° = (1 — s)Z + sz. This implies that 0 > G(2*, ). Hence,
we have

G(z,2n) < |2 = znl|

0=G(z*,2°%) < sB(z%2).

It follows that G(Z,z) > 0, Vz € C. This implies that Z € Sol(G) = Sol(B,S,Y). Using Lemma we
find
(xn — 2, Jx1 — Jxp) > 0,V2 € Fiz(T) N Sol(B,S,Y).

Let n — oo, one has (Z — z, Jx; — JZ) > 0. It follows that z = Projpiz(mynsoi(B,s,y)r1- This completes the
proof. O

Remark 2.2. Theorem[2.1|mainly improve the corresponding results in [14], [15], [I7] and [18]. The framework
of the space is weak which do not require the uniform convexness.

In the framework of Hilbert spaces, we have the following result.

Theorem 2.3. Let E be a Hilbert space. Let C be a convex and closed subset of E and let B be a bifunction
with (R-1), (R-2), (R-3) and (R-4). Let S : C — E be a continuous and monotone mapping and let
Y : C' — R be a lower semi-continuous and convex function. Let T be a quasi-nonexpansive mappings on C'.
Assume that Sol(B,S,Y) N Fiz(T) is nonempty and T is closed. Let {ay,} be real sequence in (0,1) such
that liminf,, o an(1 — ap) > 0. Let {x,} be a sequence generated by

xg € E chosen arbitrarily,

Cr=0C,

z1 = Pe,wo,

TnB(zn,2) + 10 (Yz = Yz,) + 10 (Szn, 2 — 2n) > (20 — 2, 2n — X)), V2 € Cp,
Yn = Ty + (1 — ap)zp,

Cnp1={z € Cn: |z = anll = |2 — ynll},

\l‘n+1 = PCnHl'l,

where {ry} is a real sequence such that liminf,,_,o r, > 0. Then {x,} converges strongly to a special common
solution T, where T = Projso(p,s,y)nFiz(T)Z1-

Proof. The generalized projection is reduced to the metric projection and the class of quasi-¢-nonexpansive
mappings is reduced to the class of quasi-nonexpansive mappings. Using Theorem we find the following
results. 0
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From Theorem [2.1} we also have the following result on generalized equilibrium problem (|1.4)).

Corollary 2.4. Let E be a strictly conver and uniformly smooth Banach space which also has the KKP.
Let C be a convex and closed subset of E and let B be a bifunction with (R-1), (R-2), (R-3) and (R-4). Let
S :C — E* be a continuous and monotone mapping and let T be a quasi-¢-nonexpansive mappings on C.
Assume that Sol(B,S) N Fix(T') is nonempty and T is closed. Let {an} be real sequence in (0,1) such that
liminf, o0 an(l — ay) > 0. Let {z,} be a sequence generated by

xg € E chosen arbitrarily,

C,=0C,

z1 = Projc, xo,

TnB(zn, 2) + 1 (Szp, 2 — 2n) > (2n — 2, J 2, — J2p), V2 € Cp,
Jyn = anJTxy + (1 —ap)d zp,

Crt1 =12 € Cn: #(2,20) > ¢(2,Yn) },

| Tny1 = Projo, 1,

where {ry} is a real sequence such that liminf, o 1, > 0. Then {x,} converges strongly to a special common
solution T, where T = Projso(p,s)nFiz(T)%1-

From Theorem we also have the following result on mixed equilibrium problem (|1.2]).
Corollary 2.5. Let E be a strictly convex and uniformly smooth Banach space which also has the KKP.
Let C be a conver and closed subset of E and let B be a bifunction with (R-1), (R-2), (R-3) and (R-4). Let
Y : C — R be a lower semi-continuous and convex function and let T be a quasi-¢p-nonexpansive mappings

on C. Assume that Sol(B,Y) N Fixz(T) is nonempty and T is closed. Let {ay} be real sequence in (0,1)
such that iminf,, o (1 — ay) > 0. Let {x,} be a sequence generated by

(20 € E chosen arbitrarily,

C1=0C,

z1 = Projc, %o,

raB(zn, 2) + 1Yz —=Y2z,) > (2 — 2, J 2, — Jup,), V2 € Cp,
Jyn = anJTxy, + (1 — ap)d zp,

Cnt1 ={2 € Cn : d(2,20) > ¢(2,Yn)},

| Zni1 = Projo, 71,

where {ry} is a real sequence such that liminf,, o r, > 0. Then {x,} converges strongly to a special common
solution T, where T = Projse(B,y)nFiz(T)T1-

Finally, we give a result on equilibrium problem ([1.5)).
Corollary 2.6. Let E be a strictly convexr and uniformly smooth Banach space which also has the KKP.
Let C be a convex and closed subset of E and let B be a bifunction with (R-1), (R-2), (R-3) and (R-4). Let

T be a quasi-p-nonexpansive mappings on C. Assume that Sol(B) N Fix(T) is nonempty and T is closed.
Let {a,} be real sequence in (0,1) such that liminf, o an (1l — o) > 0. Let {x,} be a sequence generated

by

(120 € E chosen arbitrarily,

C1=C,

1 = Projc, xo,

rnB(zn, 2) > (zn — 2, J2n — Jxp),Vz € Cp,
Jyn = anJTxy, + (1 — ap)J zn,

Cny1 =1{2€Ch:9(z,70) > 9(2,9n)},

(| Tnt1 = Projo, ., 1,
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where {ry} is a real sequence such that liminf,,_, r, > 0. Then {x,} converges strongly to a special common
solution T, where T = Projso(B)nFiz(T)T1-

Remark 2.7. Corollary and Corollary mainly improve the corresponding results in [22]. We relax
the uniform convexness and the class of relatively nonexpansive mappings is also improved to the class of
quasi-¢-nonexpansive mappings.
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